// SPDX-License-Identifier: GPL-2.0-or-later /* * (C) Copyright 2022 - Analog Devices, Inc. * * Written and/or maintained by Timesys Corporation * * Converted to driver model by Nathan Barrett-Morrison * * Contact: Nathan Barrett-Morrison * Contact: Greg Malysa * Contact: Ian Roberts * Contact: Piotr Wojtaszczyk * */ #include #include #include #include #include #include #include #define SPI_IDLE_VAL 0xff #define MAX_CTRL_CS 7 /* SPI_CONTROL */ #define SPI_CTL_EN 0x00000001 /* Enable */ #define SPI_CTL_MSTR 0x00000002 /* Master/Slave */ #define SPI_CTL_PSSE 0x00000004 /* controls modf error in master mode */ #define SPI_CTL_ODM 0x00000008 /* Open Drain Mode */ #define SPI_CTL_CPHA 0x00000010 /* Clock Phase */ #define SPI_CTL_CPOL 0x00000020 /* Clock Polarity */ #define SPI_CTL_ASSEL 0x00000040 /* Slave Select Pin Control */ #define SPI_CTL_SELST 0x00000080 /* Slave Select Polarity in transfers */ #define SPI_CTL_EMISO 0x00000100 /*Enable MISO */ #define SPI_CTL_SIZE 0x00000600 /*Word Transfer Size */ #define SPI_CTL_SIZE08 0x00000000 /*SIZE: 8 bits */ #define SPI_CTL_SIZE16 0x00000200 /*SIZE: 16 bits */ #define SPI_CTL_SIZE32 0x00000400 /*SIZE: 32 bits */ #define SPI_CTL_LSBF 0x00001000 /*LSB First */ #define SPI_CTL_FCEN 0x00002000 /*Flow-Control Enable */ #define SPI_CTL_FCCH 0x00004000 /*Flow-Control Channel Selection */ #define SPI_CTL_FCPL 0x00008000 /*Flow-Control Polarity */ #define SPI_CTL_FCWM 0x00030000 /*Flow-Control Water-Mark */ #define SPI_CTL_FIFO0 0x00000000 /*FCWM: Tx empty or Rx Full */ #define SPI_CTL_FIFO1 0x00010000 /*FCWM: Tx empty or Rx full (>=75%) */ #define SPI_CTL_FIFO2 0x00020000 /*FCWM: Tx empty or Rx full (>=50%) */ #define SPI_CTL_FMODE 0x00040000 /*Fast-mode Enable */ #define SPI_CTL_MIOM 0x00300000 /*Multiple I/O Mode */ #define SPI_CTL_MIO_DIS 0x00000000 /*MIOM: Disable */ #define SPI_CTL_MIO_DUAL 0x00100000 /*MIOM: Enable DIOM (Dual I/O Mode) */ #define SPI_CTL_MIO_QUAD 0x00200000 /*MIOM: Enable QUAD (Quad SPI Mode) */ #define SPI_CTL_SOSI 0x00400000 /*Start on MOSI */ #define SPI_CTL_MMWEM 0x40000000 /*Start on MMWEM */ #define SPI_CTL_MMSE 0x80000000 /*Start on MMSE */ /* SPI_RX_CONTROL */ #define SPI_RXCTL_REN 0x00000001 /*Receive Channel Enable */ #define SPI_RXCTL_RTI 0x00000004 /*Receive Transfer Initiate */ #define SPI_RXCTL_RWCEN 0x00000008 /*Receive Word Counter Enable */ #define SPI_RXCTL_RDR 0x00000070 /*Receive Data Request */ #define SPI_RXCTL_RDR_DIS 0x00000000 /*RDR: Disabled */ #define SPI_RXCTL_RDR_NE 0x00000010 /*RDR: RFIFO not empty */ #define SPI_RXCTL_RDR_25 0x00000020 /*RDR: RFIFO 25% full */ #define SPI_RXCTL_RDR_50 0x00000030 /*RDR: RFIFO 50% full */ #define SPI_RXCTL_RDR_75 0x00000040 /*RDR: RFIFO 75% full */ #define SPI_RXCTL_RDR_FULL 0x00000050 /*RDR: RFIFO full */ #define SPI_RXCTL_RDO 0x00000100 /*Receive Data Over-Run */ #define SPI_RXCTL_RRWM 0x00003000 /*FIFO Regular Water-Mark */ #define SPI_RXCTL_RWM_0 0x00000000 /*RRWM: RFIFO Empty */ #define SPI_RXCTL_RWM_25 0x00001000 /*RRWM: RFIFO 25% full */ #define SPI_RXCTL_RWM_50 0x00002000 /*RRWM: RFIFO 50% full */ #define SPI_RXCTL_RWM_75 0x00003000 /*RRWM: RFIFO 75% full */ #define SPI_RXCTL_RUWM 0x00070000 /*FIFO Urgent Water-Mark */ #define SPI_RXCTL_UWM_DIS 0x00000000 /*RUWM: Disabled */ #define SPI_RXCTL_UWM_25 0x00010000 /*RUWM: RFIFO 25% full */ #define SPI_RXCTL_UWM_50 0x00020000 /*RUWM: RFIFO 50% full */ #define SPI_RXCTL_UWM_75 0x00030000 /*RUWM: RFIFO 75% full */ #define SPI_RXCTL_UWM_FULL 0x00040000 /*RUWM: RFIFO full */ /* SPI_TX_CONTROL */ #define SPI_TXCTL_TEN 0x00000001 /*Transmit Channel Enable */ #define SPI_TXCTL_TTI 0x00000004 /*Transmit Transfer Initiate */ #define SPI_TXCTL_TWCEN 0x00000008 /*Transmit Word Counter Enable */ #define SPI_TXCTL_TDR 0x00000070 /*Transmit Data Request */ #define SPI_TXCTL_TDR_DIS 0x00000000 /*TDR: Disabled */ #define SPI_TXCTL_TDR_NF 0x00000010 /*TDR: TFIFO not full */ #define SPI_TXCTL_TDR_25 0x00000020 /*TDR: TFIFO 25% empty */ #define SPI_TXCTL_TDR_50 0x00000030 /*TDR: TFIFO 50% empty */ #define SPI_TXCTL_TDR_75 0x00000040 /*TDR: TFIFO 75% empty */ #define SPI_TXCTL_TDR_EMPTY 0x00000050 /*TDR: TFIFO empty */ #define SPI_TXCTL_TDU 0x00000100 /*Transmit Data Under-Run */ #define SPI_TXCTL_TRWM 0x00003000 /*FIFO Regular Water-Mark */ #define SPI_TXCTL_RWM_FULL 0x00000000 /*TRWM: TFIFO full */ #define SPI_TXCTL_RWM_25 0x00001000 /*TRWM: TFIFO 25% empty */ #define SPI_TXCTL_RWM_50 0x00002000 /*TRWM: TFIFO 50% empty */ #define SPI_TXCTL_RWM_75 0x00003000 /*TRWM: TFIFO 75% empty */ #define SPI_TXCTL_TUWM 0x00070000 /*FIFO Urgent Water-Mark */ #define SPI_TXCTL_UWM_DIS 0x00000000 /*TUWM: Disabled */ #define SPI_TXCTL_UWM_25 0x00010000 /*TUWM: TFIFO 25% empty */ #define SPI_TXCTL_UWM_50 0x00020000 /*TUWM: TFIFO 50% empty */ #define SPI_TXCTL_UWM_75 0x00030000 /*TUWM: TFIFO 75% empty */ #define SPI_TXCTL_UWM_EMPTY 0x00040000 /*TUWM: TFIFO empty */ /* SPI_CLOCK */ #define SPI_CLK_BAUD 0x0000FFFF /*Baud Rate */ /* SPI_DELAY */ #define SPI_DLY_STOP 0x000000FF /*Transfer delay time */ #define SPI_DLY_LEADX 0x00000100 /*Extended (1 SCK) LEAD Control */ #define SPI_DLY_LAGX 0x00000200 /*Extended (1 SCK) LAG control */ /* SPI_SSEL */ #define SPI_SLVSEL_SSE1 0x00000002 /*SPISSEL1 Enable */ #define SPI_SLVSEL_SSE2 0x00000004 /*SPISSEL2 Enable */ #define SPI_SLVSEL_SSE3 0x00000008 /*SPISSEL3 Enable */ #define SPI_SLVSEL_SSE4 0x00000010 /*SPISSEL4 Enable */ #define SPI_SLVSEL_SSE5 0x00000020 /*SPISSEL5 Enable */ #define SPI_SLVSEL_SSE6 0x00000040 /*SPISSEL6 Enable */ #define SPI_SLVSEL_SSE7 0x00000080 /*SPISSEL7 Enable */ #define SPI_SLVSEL_SSEL1 0x00000200 /*SPISSEL1 Value */ #define SPI_SLVSEL_SSEL2 0x00000400 /*SPISSEL2 Value */ #define SPI_SLVSEL_SSEL3 0x00000800 /*SPISSEL3 Value */ #define SPI_SLVSEL_SSEL4 0x00001000 /*SPISSEL4 Value */ #define SPI_SLVSEL_SSEL5 0x00002000 /*SPISSEL5 Value */ #define SPI_SLVSEL_SSEL6 0x00004000 /*SPISSEL6 Value */ #define SPI_SLVSEL_SSEL7 0x00008000 /*SPISSEL7 Value */ /* SPI_RWC */ #define SPI_RWC_VALUE 0x0000FFFF /*Received Word-Count */ /* SPI_RWCR */ #define SPI_RWCR_VALUE 0x0000FFFF /*Received Word-Count Reload */ /* SPI_TWC */ #define SPI_TWC_VALUE 0x0000FFFF /*Transmitted Word-Count */ /* SPI_TWCR */ #define SPI_TWCR_VALUE 0x0000FFFF /*Transmitted Word-Count Reload */ /* SPI_IMASK */ #define SPI_IMSK_RUWM 0x00000002 /*Receive Water-Mark Interrupt Mask */ #define SPI_IMSK_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */ #define SPI_IMSK_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */ #define SPI_IMSK_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */ #define SPI_IMSK_TCM 0x00000040 /*Transmit Collision Interrupt Mask */ #define SPI_IMSK_MFM 0x00000080 /*Mode Fault Interrupt Mask */ #define SPI_IMSK_RSM 0x00000100 /*Receive Start Interrupt Mask */ #define SPI_IMSK_TSM 0x00000200 /*Transmit Start Interrupt Mask */ #define SPI_IMSK_RFM 0x00000400 /*Receive Finish Interrupt Mask */ #define SPI_IMSK_TFM 0x00000800 /*Transmit Finish Interrupt Mask */ /* SPI_IMASKCL */ #define SPI_IMSK_CLR_RUW 0x00000002 /*Receive Water-Mark Interrupt Mask */ #define SPI_IMSK_CLR_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */ #define SPI_IMSK_CLR_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */ #define SPI_IMSK_CLR_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */ #define SPI_IMSK_CLR_TCM 0x00000040 /*Transmit Collision Interrupt Mask */ #define SPI_IMSK_CLR_MFM 0x00000080 /*Mode Fault Interrupt Mask */ #define SPI_IMSK_CLR_RSM 0x00000100 /*Receive Start Interrupt Mask */ #define SPI_IMSK_CLR_TSM 0x00000200 /*Transmit Start Interrupt Mask */ #define SPI_IMSK_CLR_RFM 0x00000400 /*Receive Finish Interrupt Mask */ #define SPI_IMSK_CLR_TFM 0x00000800 /*Transmit Finish Interrupt Mask */ /* SPI_IMASKST */ #define SPI_IMSK_SET_RUWM 0x00000002 /*Receive Water-Mark Interrupt Mask */ #define SPI_IMSK_SET_TUWM 0x00000004 /*Transmit Water-Mark Interrupt Mask */ #define SPI_IMSK_SET_ROM 0x00000010 /*Receive Over-Run Interrupt Mask */ #define SPI_IMSK_SET_TUM 0x00000020 /*Transmit Under-Run Interrupt Mask */ #define SPI_IMSK_SET_TCM 0x00000040 /*Transmit Collision Interrupt Mask */ #define SPI_IMSK_SET_MFM 0x00000080 /*Mode Fault Interrupt Mask */ #define SPI_IMSK_SET_RSM 0x00000100 /*Receive Start Interrupt Mask */ #define SPI_IMSK_SET_TSM 0x00000200 /*Transmit Start Interrupt Mask */ #define SPI_IMSK_SET_RFM 0x00000400 /*Receive Finish Interrupt Mask */ #define SPI_IMSK_SET_TFM 0x00000800 /*Transmit Finish Interrupt Mask */ /* SPI_STATUS */ #define SPI_STAT_SPIF 0x00000001 /*SPI Finished */ #define SPI_STAT_RUWM 0x00000002 /*Receive Water-Mark Breached */ #define SPI_STAT_TUWM 0x00000004 /*Transmit Water-Mark Breached */ #define SPI_STAT_ROE 0x00000010 /*Receive Over-Run Indication */ #define SPI_STAT_TUE 0x00000020 /*Transmit Under-Run Indication */ #define SPI_STAT_TCE 0x00000040 /*Transmit Collision Indication */ #define SPI_STAT_MODF 0x00000080 /*Mode Fault Indication */ #define SPI_STAT_RS 0x00000100 /*Receive Start Indication */ #define SPI_STAT_TS 0x00000200 /*Transmit Start Indication */ #define SPI_STAT_RF 0x00000400 /*Receive Finish Indication */ #define SPI_STAT_TF 0x00000800 /*Transmit Finish Indication */ #define SPI_STAT_RFS 0x00007000 /*SPI_RFIFO status */ #define SPI_STAT_RFIFO_EMPTY 0x00000000 /*RFS: RFIFO Empty */ #define SPI_STAT_RFIFO_25 0x00001000 /*RFS: RFIFO 25% Full */ #define SPI_STAT_RFIFO_50 0x00002000 /*RFS: RFIFO 50% Full */ #define SPI_STAT_RFIFO_75 0x00003000 /*RFS: RFIFO 75% Full */ #define SPI_STAT_RFIFO_FULL 0x00004000 /*RFS: RFIFO Full */ #define SPI_STAT_TFS 0x00070000 /*SPI_TFIFO status */ #define SPI_STAT_TFIFO_FULL 0x00000000 /*TFS: TFIFO full */ #define SPI_STAT_TFIFO_25 0x00010000 /*TFS: TFIFO 25% empty */ #define SPI_STAT_TFIFO_50 0x00020000 /*TFS: TFIFO 50% empty */ #define SPI_STAT_TFIFO_75 0x00030000 /*TFS: TFIFO 75% empty */ #define SPI_STAT_TFIFO_EMPTY 0x00040000 /*TFS: TFIFO empty */ #define SPI_STAT_FCS 0x00100000 /*Flow-Control Stall Indication */ #define SPI_STAT_RFE 0x00400000 /*SPI_RFIFO Empty */ #define SPI_STAT_TFF 0x00800000 /*SPI_TFIFO Full */ /* SPI_ILAT */ #define SPI_ILAT_RUWMI 0x00000002 /*Receive Water Mark Interrupt */ #define SPI_ILAT_TUWMI 0x00000004 /*Transmit Water Mark Interrupt */ #define SPI_ILAT_ROI 0x00000010 /*Receive Over-Run Indication */ #define SPI_ILAT_TUI 0x00000020 /*Transmit Under-Run Indication */ #define SPI_ILAT_TCI 0x00000040 /*Transmit Collision Indication */ #define SPI_ILAT_MFI 0x00000080 /*Mode Fault Indication */ #define SPI_ILAT_RSI 0x00000100 /*Receive Start Indication */ #define SPI_ILAT_TSI 0x00000200 /*Transmit Start Indication */ #define SPI_ILAT_RFI 0x00000400 /*Receive Finish Indication */ #define SPI_ILAT_TFI 0x00000800 /*Transmit Finish Indication */ /* SPI_ILATCL */ #define SPI_ILAT_CLR_RUWMI 0x00000002 /*Receive Water Mark Interrupt */ #define SPI_ILAT_CLR_TUWMI 0x00000004 /*Transmit Water Mark Interrupt */ #define SPI_ILAT_CLR_ROI 0x00000010 /*Receive Over-Run Indication */ #define SPI_ILAT_CLR_TUI 0x00000020 /*Transmit Under-Run Indication */ #define SPI_ILAT_CLR_TCI 0x00000040 /*Transmit Collision Indication */ #define SPI_ILAT_CLR_MFI 0x00000080 /*Mode Fault Indication */ #define SPI_ILAT_CLR_RSI 0x00000100 /*Receive Start Indication */ #define SPI_ILAT_CLR_TSI 0x00000200 /*Transmit Start Indication */ #define SPI_ILAT_CLR_RFI 0x00000400 /*Receive Finish Indication */ #define SPI_ILAT_CLR_TFI 0x00000800 /*Transmit Finish Indication */ /* SPI_MMRDH */ #define SPI_MMRDH_MERGE 0x04000000 /*Merge Enable */ #define SPI_MMRDH_DMY_SZ 0x00007000 /*Bytes of Dummy */ #define SPI_MMRDH_ADDR_PINS 0x00000800 /*Pins used for Address */ #define SPI_MMRDH_ADDR_SZ 0x00000700 /*Bytes of Read Address */ #define SPI_MMRDH_OPCODE 0x000000FF /*Read Opcode */ #define SPI_MMRDH_TRIDMY_OFF 24 /*Bytes of Dummy offset */ #define SPI_MMRDH_DMY_SZ_OFF 12 /*Bytes of Dummy offset */ #define SPI_MMRDH_ADDR_SZ_OFF 8 /*Bytes of Read Address offset */ #define BIT_SSEL_VAL(x) ((1 << 8) << (x)) /* Slave Select input value bit */ #define BIT_SSEL_EN(x) (1 << (x)) /* Slave Select enable bit*/ struct adi_spi_regs { u32 revid; u32 control; u32 rx_control; u32 tx_control; u32 clock; u32 delay; u32 ssel; u32 rwc; u32 rwcr; u32 twc; u32 twcr; u32 reserved0; u32 emask; u32 emaskcl; u32 emaskst; u32 reserved1; u32 status; u32 elat; u32 elatcl; u32 reserved2; u32 rfifo; u32 reserved3; u32 tfifo; u32 reserved4; u32 mmrdh; u32 mmtop; }; struct adi_spi_platdata { u32 max_hz; u32 bus_num; struct adi_spi_regs __iomem *regs; }; struct adi_spi_priv { u32 control; u32 clock; u32 bus_num; u32 max_cs; struct adi_spi_regs __iomem *regs; }; /** * By convention, this driver uses the same CS numbering that is used with the SSEL bit * definitions (both here and in the TRM on which this is based), which are 1-indexed not * 0-indexed. The valid CS range is therefore [1,max_cs], in contrast with other drivers * where it is [0,max_cs-1]. */ static int adi_spi_cs_info(struct udevice *bus, uint cs, struct spi_cs_info *info) { struct adi_spi_priv *priv = dev_get_priv(bus); if (cs == 0 || cs > priv->max_cs) { dev_err(bus, "invalid chipselect %u\n", cs); return -EINVAL; } return 0; } static int adi_spi_of_to_plat(struct udevice *bus) { struct adi_spi_platdata *plat = dev_get_plat(bus); fdt_addr_t addr; plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency", 500000); plat->bus_num = dev_read_u32_default(bus, "bus-num", 0); addr = dev_read_addr(bus); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->regs = map_sysmem(addr, sizeof(*plat->regs)); return 0; } static int adi_spi_probe(struct udevice *bus) { struct adi_spi_platdata *plat = dev_get_plat(bus); struct adi_spi_priv *priv = dev_get_priv(bus); priv->bus_num = plat->bus_num; priv->regs = plat->regs; priv->max_cs = dev_read_u32_default(bus, "num-cs", MAX_CTRL_CS); iowrite32(0x0, &plat->regs->control); iowrite32(0x0, &plat->regs->rx_control); iowrite32(0x0, &plat->regs->tx_control); return 0; } static int adi_spi_remove(struct udevice *dev) { return -ENODEV; } static int adi_spi_claim_bus(struct udevice *dev) { struct adi_spi_priv *priv; struct udevice *bus = dev->parent; priv = dev_get_priv(bus); debug("%s: control:%i clock:%i\n", __func__, priv->control, priv->clock); iowrite32(priv->control, &priv->regs->control); iowrite32(priv->clock, &priv->regs->clock); iowrite32(0x0, &priv->regs->delay); return 0; } static int adi_spi_release_bus(struct udevice *dev) { struct adi_spi_priv *priv; struct udevice *bus = dev->parent; priv = dev_get_priv(bus); debug("%s: control:%i clock:%i\n", __func__, priv->control, priv->clock); iowrite32(0x0, &priv->regs->rx_control); iowrite32(0x0, &priv->regs->tx_control); iowrite32(0x0, &priv->regs->control); return 0; } void adi_spi_enable_ssel(struct adi_spi_priv *priv, int cs) { setbits_32(&priv->regs->ssel, BIT_SSEL_EN(cs)); } void adi_spi_set_ssel(struct adi_spi_priv *priv, int cs, int high) { if (high) setbits_32(&priv->regs->ssel, BIT_SSEL_VAL(cs)); else clrbits_32(&priv->regs->ssel, BIT_SSEL_VAL(cs)); } void adi_spi_cs_activate(struct adi_spi_priv *priv, struct dm_spi_slave_plat *slave_plat) { bool high = slave_plat->mode & SPI_CS_HIGH; adi_spi_set_ssel(priv, slave_plat->cs[0], high); adi_spi_enable_ssel(priv, slave_plat->cs[0]); } void adi_spi_cs_deactivate(struct adi_spi_priv *priv, struct dm_spi_slave_plat *slave_plat) { bool high = slave_plat->mode & SPI_CS_HIGH; /* invert CS for matching SSEL to deactivate */ adi_spi_set_ssel(priv, slave_plat->cs[0], !high); } static void discard_rx_fifo_contents(struct adi_spi_regs *regs) { while (!(ioread32(®s->status) & SPI_STAT_RFE)) ioread32(®s->rfifo); } static int adi_spi_fifo_mio_xfer(struct adi_spi_priv *priv, const u8 *tx, u8 *rx, uint bytes, uint32_t mio_mode) { u8 value; /* switch current SPI transfer to mio SPI mode */ clrsetbits_32(&priv->regs->control, SPI_CTL_SOSI, mio_mode); /* * Data can only be transferred in one direction in multi-io SPI * modes, trigger the transfer in respective direction. */ if (rx) { iowrite32(0x0, &priv->regs->tx_control); iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RTI, &priv->regs->rx_control); while (bytes--) { while (ioread32(&priv->regs->status) & SPI_STAT_RFE) if (ctrlc()) return -1; value = ioread32(&priv->regs->rfifo); *rx++ = value; } } else if (tx) { iowrite32(0x0, &priv->regs->rx_control); iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &priv->regs->tx_control); while (bytes--) { value = *tx++; iowrite32(value, &priv->regs->tfifo); while (ioread32(&priv->regs->status) & SPI_STAT_TFF) if (ctrlc()) return -1; } /* Wait till the tfifo is empty */ while ((ioread32(&priv->regs->status) & SPI_STAT_TFS) != SPI_STAT_TFIFO_EMPTY) if (ctrlc()) return -1; } else { return -1; } return 0; } static int adi_spi_fifo_1x_xfer(struct adi_spi_priv *priv, const u8 *tx, u8 *rx, uint bytes) { u8 value; /* * Set current SPI transfer in normal mode and trigger * the bi-direction transfer by tx write operation. */ iowrite32(priv->control, &priv->regs->control); iowrite32(SPI_RXCTL_REN, &priv->regs->rx_control); iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &priv->regs->tx_control); while (bytes--) { value = (tx ? *tx++ : SPI_IDLE_VAL); debug("%s: tx:%x ", __func__, value); iowrite32(value, &priv->regs->tfifo); while (ioread32(&priv->regs->status) & SPI_STAT_RFE) if (ctrlc()) return -1; value = ioread32(&priv->regs->rfifo); if (rx) *rx++ = value; debug("rx:%x\n", value); } return 0; } static int adi_spi_fifo_xfer(struct adi_spi_priv *priv, int buswidth, const u8 *tx, u8 *rx, uint bytes) { switch (buswidth) { case 1: return adi_spi_fifo_1x_xfer(priv, tx, rx, bytes); case 2: return adi_spi_fifo_mio_xfer(priv, tx, rx, bytes, SPI_CTL_MIO_DUAL); case 4: return adi_spi_fifo_mio_xfer(priv, tx, rx, bytes, SPI_CTL_MIO_QUAD); default: return -ENOTSUPP; } } static int adi_spi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev->parent; struct adi_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(dev); const u8 *tx = dout; u8 *rx = din; uint bytes = bitlen / 8; int ret = 0; debug("%s: bus_num:%i cs:%i bitlen:%i bytes:%i flags:%lx\n", __func__, priv->bus_num, slave_plat->cs[0], bitlen, bytes, flags); if (flags & SPI_XFER_BEGIN) adi_spi_cs_activate(priv, slave_plat); if (bitlen == 0) goto done; /* we can only do 8 bit transfers */ if (bitlen % 8) { flags |= SPI_XFER_END; goto done; } /* Discard invalid rx data and empty rfifo */ discard_rx_fifo_contents(priv->regs); ret = adi_spi_fifo_1x_xfer(priv, tx, rx, bytes); done: if (flags & SPI_XFER_END) adi_spi_cs_deactivate(priv, slave_plat); return ret; } static int adi_spi_set_speed(struct udevice *bus, uint speed) { struct adi_spi_platdata *plat = dev_get_plat(bus); struct adi_spi_priv *priv = dev_get_priv(bus); int ret; u32 clock, spi_base_clk; struct clk spi_clk; ret = clk_get_by_name(bus, "spi", &spi_clk); if (ret < 0) { dev_err(bus, "Can't get SPI clk: %d\n", ret); return ret; } spi_base_clk = clk_get_rate(&spi_clk); if (speed > plat->max_hz) speed = plat->max_hz; if (speed > spi_base_clk) return -ENODEV; clock = spi_base_clk / speed; if (clock) clock--; priv->clock = clock; debug("%s: priv->clock: %x, speed: %x, get_spi_clk(): %x\n", __func__, clock, speed, spi_base_clk); return 0; } static int adi_spi_set_mode(struct udevice *bus, uint mode) { struct adi_spi_priv *priv = dev_get_priv(bus); u32 reg; reg = SPI_CTL_EN | SPI_CTL_MSTR; if (mode & SPI_CPHA) reg |= SPI_CTL_CPHA; if (mode & SPI_CPOL) reg |= SPI_CTL_CPOL; if (mode & SPI_LSB_FIRST) reg |= SPI_CTL_LSBF; reg &= ~SPI_CTL_ASSEL; priv->control = reg; debug("%s: control=%d, cs_pol=%d\n", __func__, reg, mode & SPI_CS_HIGH ? 1 : 0); return 0; } /** * U-boot's version of spi-mem does not support mixed bus-width * commands nor anything more than 1x mode. * Using a custom exec_op implementation, we can support it. */ static int adi_spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { int rv = 0; struct udevice *bus = slave->dev->parent; struct adi_spi_priv *priv = dev_get_priv(bus); struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev); u8 tmpbuf[64]; int i; if ((op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes) > sizeof(tmpbuf)) return -ENOMEM; for (i = 0; i < op->cmd.nbytes; i++) tmpbuf[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); for (i = 0; i < op->addr.nbytes; i++) tmpbuf[i + op->cmd.nbytes] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); memset(tmpbuf + op->addr.nbytes + op->cmd.nbytes, 0xff, op->dummy.nbytes); adi_spi_cs_activate(priv, slave_plat); discard_rx_fifo_contents(priv->regs); if (op->cmd.nbytes) { rv = adi_spi_fifo_xfer(priv, op->cmd.buswidth, tmpbuf, NULL, op->cmd.nbytes); if (rv != 0) goto cleanup; } if (op->addr.nbytes) { rv = adi_spi_fifo_xfer(priv, op->addr.buswidth, tmpbuf + op->cmd.nbytes, NULL, op->addr.nbytes); if (rv != 0) goto cleanup; } if (op->dummy.nbytes) { rv = adi_spi_fifo_xfer(priv, op->dummy.buswidth, tmpbuf + op->cmd.nbytes + op->addr.nbytes, NULL, op->dummy.nbytes); if (rv != 0) goto cleanup; } if (op->data.dir == SPI_MEM_DATA_IN) rv = adi_spi_fifo_xfer(priv, op->data.buswidth, NULL, op->data.buf.in, op->data.nbytes); else if (op->data.dir == SPI_MEM_DATA_OUT) rv = adi_spi_fifo_xfer(priv, op->data.buswidth, op->data.buf.out, NULL, op->data.nbytes); cleanup: adi_spi_cs_deactivate(priv, slave_plat); return rv; } static const struct spi_controller_mem_ops adi_spi_mem_ops = { .exec_op = adi_spi_mem_exec_op, }; static const struct dm_spi_ops adi_spi_ops = { .claim_bus = adi_spi_claim_bus, .release_bus = adi_spi_release_bus, .xfer = adi_spi_xfer, .set_speed = adi_spi_set_speed, .set_mode = adi_spi_set_mode, .cs_info = adi_spi_cs_info, .mem_ops = &adi_spi_mem_ops, }; static const struct udevice_id adi_spi_ids[] = { { .compatible = "adi,spi3" }, { } }; U_BOOT_DRIVER(adi_spi3) = { .name = "adi_spi3", .id = UCLASS_SPI, .of_match = adi_spi_ids, .ops = &adi_spi_ops, .of_to_plat = adi_spi_of_to_plat, .probe = adi_spi_probe, .remove = adi_spi_remove, .plat_auto = sizeof(struct adi_spi_platdata), .priv_auto = sizeof(struct adi_spi_priv), .per_child_auto = sizeof(struct spi_slave), };