// SPDX-License-Identifier: GPL-2.0 /* * Driver for Atmel QSPI Controller * * Copyright (C) 2015 Atmel Corporation * Copyright (C) 2018 Cryptera A/S * * Author: Cyrille Pitchen * Author: Piotr Bugalski */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* QSPI register offsets */ #define QSPI_CR 0x0000 /* Control Register */ #define QSPI_MR 0x0004 /* Mode Register */ #define QSPI_RD 0x0008 /* Receive Data Register */ #define QSPI_TD 0x000c /* Transmit Data Register */ #define QSPI_SR 0x0010 /* Status Register */ #define QSPI_SR2 0x0024 /* SAMA7G5 Status Register */ #define QSPI_IER 0x0014 /* Interrupt Enable Register */ #define QSPI_IDR 0x0018 /* Interrupt Disable Register */ #define QSPI_IMR 0x001c /* Interrupt Mask Register */ #define QSPI_SCR 0x0020 /* Serial Clock Register */ #define QSPI_IAR 0x0030 /* Instruction Address Register */ #define QSPI_ICR 0x0034 /* Instruction Code Register */ #define QSPI_WICR 0x0034 /* Write Instruction Code Register */ #define QSPI_IFR 0x0038 /* Instruction Frame Register */ #define QSPI_RICR 0x003C /* Read Instruction Code Register */ #define QSPI_SMR 0x0040 /* Scrambling Mode Register */ #define QSPI_SKR 0x0044 /* Scrambling Key Register */ #define QSPI_REFRESH 0x0050 /* Refresh Register */ #define QSPI_WRACNT 0x0054 /* Write Access Counter Register */ #define QSPI_DLLCFG 0x0058 /* DLL Configuration Register */ #define QSPI_PCALCFG 0x005C /* Pad Calibration Configuration Register */ #define QSPI_PCALBP 0x0060 /* Pad Calibration Bypass Register */ #define QSPI_TOUT 0x0064 /* Timeout Register */ #define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */ #define QSPI_WPSR 0x00E8 /* Write Protection Status Register */ #define QSPI_VERSION 0x00FC /* Version Register */ /* Bitfields in QSPI_CR (Control Register) */ #define QSPI_CR_QSPIEN BIT(0) #define QSPI_CR_QSPIDIS BIT(1) #define QSPI_CR_DLLON BIT(2) #define QSPI_CR_DLLOFF BIT(3) #define QSPI_CR_STPCAL BIT(4) #define QSPI_CR_SRFRSH BIT(5) #define QSPI_CR_SWRST BIT(7) #define QSPI_CR_UPDCFG BIT(8) #define QSPI_CR_STTFR BIT(9) #define QSPI_CR_RTOUT BIT(10) #define QSPI_CR_LASTXFER BIT(24) /* Bitfields in QSPI_MR (Mode Register) */ #define QSPI_MR_SMM BIT(0) #define QSPI_MR_LLB BIT(1) #define QSPI_MR_WDRBT BIT(2) #define QSPI_MR_SMRM BIT(3) #define QSPI_MR_DQSDLYEN BIT(3) #define QSPI_MR_CSMODE_MASK GENMASK(5, 4) #define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4) #define QSPI_MR_CSMODE_LASTXFER (1 << 4) #define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4) #define QSPI_MR_NBBITS_MASK GENMASK(11, 8) #define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK) #define QSPI_MR_OENSD BIT(15) #define QSPI_MR_DLYBCT_MASK GENMASK(23, 16) #define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK) #define QSPI_MR_DLYCS_MASK GENMASK(31, 24) #define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK) /* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */ #define QSPI_SR_RDRF BIT(0) #define QSPI_SR_TDRE BIT(1) #define QSPI_SR_TXEMPTY BIT(2) #define QSPI_SR_OVRES BIT(3) #define QSPI_SR_CSR BIT(8) #define QSPI_SR_CSS BIT(9) #define QSPI_SR_INSTRE BIT(10) #define QSPI_SR_LWRA BIT(11) #define QSPI_SR_QITF BIT(12) #define QSPI_SR_QITR BIT(13) #define QSPI_SR_CSFA BIT(14) #define QSPI_SR_CSRA BIT(15) #define QSPI_SR_RFRSHD BIT(16) #define QSPI_SR_TOUT BIT(17) #define QSPI_SR_QSPIENS BIT(24) #define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR) /* Bitfields in QSPI_SCR (Serial Clock Register) */ #define QSPI_SCR_CPOL BIT(0) #define QSPI_SCR_CPHA BIT(1) #define QSPI_SCR_SCBR_MASK GENMASK(15, 8) #define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK) #define QSPI_SCR_DLYBS_MASK GENMASK(23, 16) #define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK) /* Bitfields in QSPI_SR2 (SAMA7G5 Status Register) */ #define QSPI_SR2_SYNCBSY BIT(0) #define QSPI_SR2_QSPIENS BIT(1) #define QSPI_SR2_CSS BIT(2) #define QSPI_SR2_RBUSY BIT(3) #define QSPI_SR2_HIDLE BIT(4) #define QSPI_SR2_DLOCK BIT(5) #define QSPI_SR2_CALBSY BIT(6) /* Bitfields in QSPI_IAR (Instruction Address Register) */ #define QSPI_IAR_ADDR GENMASK(31, 0) /* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */ #define QSPI_ICR_INST_MASK GENMASK(7, 0) #define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK) #define QSPI_ICR_INST_MASK_SAMA7G5 GENMASK(15, 0) #define QSPI_ICR_OPT_MASK GENMASK(23, 16) #define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK) /* Bitfields in QSPI_IFR (Instruction Frame Register) */ #define QSPI_IFR_WIDTH_MASK GENMASK(2, 0) #define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0) #define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0) #define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0) #define QSPI_IFR_WIDTH_DUAL_IO (3 << 0) #define QSPI_IFR_WIDTH_QUAD_IO (4 << 0) #define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0) #define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0) #define QSPI_IFR_WIDTH_OCT_OUTPUT (7 << 0) #define QSPI_IFR_WIDTH_OCT_IO (8 << 0) #define QSPI_IFR_WIDTH_OCT_CMD (9 << 0) #define QSPI_IFR_INSTEN BIT(4) #define QSPI_IFR_ADDREN BIT(5) #define QSPI_IFR_OPTEN BIT(6) #define QSPI_IFR_DATAEN BIT(7) #define QSPI_IFR_OPTL_MASK GENMASK(9, 8) #define QSPI_IFR_OPTL_1BIT (0 << 8) #define QSPI_IFR_OPTL_2BIT (1 << 8) #define QSPI_IFR_OPTL_4BIT (2 << 8) #define QSPI_IFR_OPTL_8BIT (3 << 8) #define QSPI_IFR_ADDRL BIT(10) #define QSPI_IFR_ADDRL_SAMA7G5 GENMASK(11, 10) #define QSPI_IFR_TFRTYP_MEM BIT(12) #define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13) #define QSPI_IFR_CRM BIT(14) #define QSPI_IFR_DDREN BIT(15) #define QSPI_IFR_NBDUM_MASK GENMASK(20, 16) #define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK) #define QSPI_IFR_END BIT(22) #define QSPI_IFR_SMRM BIT(23) #define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */ #define QSPI_IFR_DQSEN BIT(25) #define QSPI_IFR_DDRCMDEN BIT(26) #define QSPI_IFR_HFWBEN BIT(27) #define QSPI_IFR_PROTTYP GENMASK(29, 28) #define QSPI_IFR_PROTTYP_STD_SPI 0 #define QSPI_IFR_PROTTYP_TWIN_QUAD 1 #define QSPI_IFR_PROTTYP_OCTAFLASH 2 #define QSPI_IFR_PROTTYP_HYPERFLASH 3 /* Bitfields in QSPI_SMR (Scrambling Mode Register) */ #define QSPI_SMR_SCREN BIT(0) #define QSPI_SMR_RVDIS BIT(1) #define QSPI_SMR_SCRKL BIT(2) /* Bitfields in QSPI_REFRESH (Refresh Register) */ #define QSPI_REFRESH_DELAY_COUNTER GENMASK(31, 0) /* Bitfields in QSPI_WRACNT (Write Access Counter Register) */ #define QSPI_WRACNT_NBWRA GENMASK(31, 0) /* Bitfields in QSPI_DLLCFG (DLL Configuration Register) */ #define QSPI_DLLCFG_RANGE BIT(0) /* Bitfields in QSPI_PCALCFG (DLL Pad Calibration Configuration Register) */ #define QSPI_PCALCFG_AAON BIT(0) #define QSPI_PCALCFG_DAPCAL BIT(1) #define QSPI_PCALCFG_DIFFPM BIT(2) #define QSPI_PCALCFG_CLKDIV GENMASK(6, 4) #define QSPI_PCALCFG_CALCNT GENMASK(16, 8) #define QSPI_PCALCFG_CALP GENMASK(27, 24) #define QSPI_PCALCFG_CALN GENMASK(31, 28) /* Bitfields in QSPI_PCALBP (DLL Pad Calibration Bypass Register) */ #define QSPI_PCALBP_BPEN BIT(0) #define QSPI_PCALBP_CALPBP GENMASK(11, 8) #define QSPI_PCALBP_CALNBP GENMASK(19, 16) /* Bitfields in QSPI_TOUT (Timeout Register) */ #define QSPI_TOUT_TCNTM GENMASK(15, 0) /* Bitfields in QSPI_WPMR (Write Protection Mode Register) */ #define QSPI_WPMR_WPEN BIT(0) #define QSPI_WPMR_WPITEN BIT(1) #define QSPI_WPMR_WPCREN BIT(2) #define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8) #define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK) /* Bitfields in QSPI_WPSR (Write Protection Status Register) */ #define QSPI_WPSR_WPVS BIT(0) #define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8) #define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC) #define ATMEL_QSPI_TIMEOUT 1000000 /* us */ #define ATMEL_QSPI_SYNC_TIMEOUT 300000 /* us */ #define QSPI_DLLCFG_THRESHOLD_FREQ 90000000U #define QSPI_TOUT_MAX 0xffff /** * struct atmel_qspi_pcal - Pad Calibration Clock Division * @pclk_rate: peripheral clock rate. * @pclkdiv: calibration clock division. The clock applied to the calibration * cell is divided by pclkdiv + 1. */ struct atmel_qspi_pcal { u32 pclk_rate; u8 pclk_div; }; #define ATMEL_QSPI_PCAL_ARRAY_SIZE 8 static const struct atmel_qspi_pcal pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE] = { {25000000, 0}, {50000000, 1}, {75000000, 2}, {100000000, 3}, {125000000, 4}, {150000000, 5}, {175000000, 6}, {200000000, 7}, }; struct atmel_qspi_caps { bool has_qspick; bool has_gclk; bool has_ricr; bool octal; }; struct atmel_qspi_priv_ops; #define MAX_CS_COUNT 2 struct atmel_qspi { void __iomem *regs; void __iomem *mem; resource_size_t mmap_size; const struct atmel_qspi_caps *caps; const struct atmel_qspi_priv_ops *ops; struct udevice *dev; ulong bus_clk_rate; u32 mr; struct gpio_desc cs_gpios[MAX_CS_COUNT]; }; struct atmel_qspi_priv_ops { int (*set_cfg)(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 *offset); int (*transfer)(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 offset); }; struct atmel_qspi_mode { u8 cmd_buswidth; u8 addr_buswidth; u8 data_buswidth; u32 config; }; static const struct atmel_qspi_mode atmel_qspi_modes[] = { { 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI }, { 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT }, { 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT }, { 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO }, { 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO }, { 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD }, { 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD }, }; static const struct atmel_qspi_mode atmel_qspi_sama7g5_modes[] = { { 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI }, { 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT }, { 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT }, { 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO }, { 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO }, { 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD }, { 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD }, { 1, 1, 8, QSPI_IFR_WIDTH_OCT_OUTPUT }, { 1, 8, 8, QSPI_IFR_WIDTH_OCT_IO }, { 8, 8, 8, QSPI_IFR_WIDTH_OCT_CMD }, }; #ifdef VERBOSE_DEBUG static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz) { switch (offset) { case QSPI_CR: return "CR"; case QSPI_MR: return "MR"; case QSPI_RD: return "RD"; case QSPI_TD: return "TD"; case QSPI_SR: return "SR"; case QSPI_IER: return "IER"; case QSPI_IDR: return "IDR"; case QSPI_IMR: return "IMR"; case QSPI_SCR: return "SCR"; case QSPI_SR2: return "SR2"; case QSPI_IAR: return "IAR"; case QSPI_ICR: return "ICR/WICR"; case QSPI_IFR: return "IFR"; case QSPI_RICR: return "RICR"; case QSPI_SMR: return "SMR"; case QSPI_SKR: return "SKR"; case QSPI_REFRESH: return "REFRESH"; case QSPI_WRACNT: return "WRACNT"; case QSPI_DLLCFG: return "DLLCFG"; case QSPI_PCALCFG: return "PCALCFG"; case QSPI_PCALBP: return "PCALBP"; case QSPI_TOUT: return "TOUT"; case QSPI_WPMR: return "WPMR"; case QSPI_WPSR: return "WPSR"; case QSPI_VERSION: return "VERSION"; default: snprintf(tmp, sz, "0x%02x", offset); break; } return tmp; } #endif /* VERBOSE_DEBUG */ static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset) { u32 value = readl(aq->regs + offset); #ifdef VERBOSE_DEBUG char tmp[16]; dev_vdbg(aq->dev, "read 0x%08x from %s\n", value, atmel_qspi_reg_name(offset, tmp, sizeof(tmp))); #endif /* VERBOSE_DEBUG */ return value; } static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset) { #ifdef VERBOSE_DEBUG char tmp[16]; dev_vdbg(aq->dev, "write 0x%08x into %s\n", value, atmel_qspi_reg_name(offset, tmp, sizeof(tmp))); #endif /* VERBOSE_DEBUG */ writel(value, aq->regs + offset); } static int atmel_qspi_reg_sync(struct atmel_qspi *aq) { u32 val; return readl_poll_timeout(aq->regs + QSPI_SR2, val, !(val & QSPI_SR2_SYNCBSY), ATMEL_QSPI_SYNC_TIMEOUT); } static int atmel_qspi_update_config(struct atmel_qspi *aq) { int ret; ret = atmel_qspi_reg_sync(aq); if (ret) return ret; atmel_qspi_write(QSPI_CR_UPDCFG, aq, QSPI_CR); return atmel_qspi_reg_sync(aq); } static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op, const struct atmel_qspi_mode *mode) { if (op->cmd.buswidth != mode->cmd_buswidth) return false; if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth) return false; if (op->data.nbytes && op->data.buswidth != mode->data_buswidth) return false; return true; } static int atmel_qspi_find_mode(const struct spi_mem_op *op) { u32 i; for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++) if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i])) return i; return -ENOTSUPP; } static int atmel_qspi_sama7g5_find_mode(const struct spi_mem_op *op) { u32 i; for (i = 0; i < ARRAY_SIZE(atmel_qspi_sama7g5_modes); i++) if (atmel_qspi_is_compatible(op, &atmel_qspi_sama7g5_modes[i])) return i; return -EOPNOTSUPP; } static bool atmel_qspi_supports_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct atmel_qspi *aq = dev_get_priv(slave->dev->parent); if (!spi_mem_default_supports_op(slave, op)) return false; if (aq->caps->octal) { if (atmel_qspi_sama7g5_find_mode(op) < 0) return false; else return true; } if (atmel_qspi_find_mode(op) < 0) return false; /* special case not supported by hardware */ if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth && op->dummy.nbytes == 0) return false; return true; } /* * Switch QSPI controller between regular SPI mode or Serial Memory Mode (SMM). */ static int atmel_qspi_set_serial_memory_mode(struct atmel_qspi *aq, bool enable) { int ret = 0; /* only write if designated state differs from current state */ if (!!(aq->mr & QSPI_MR_SMM) != enable) { if (enable) aq->mr |= QSPI_MR_SMM; else aq->mr &= ~QSPI_MR_SMM; atmel_qspi_write(aq->mr, aq, QSPI_MR); if (aq->caps->has_gclk) ret = atmel_qspi_update_config(aq); } return ret; } static int atmel_qspi_set_cfg(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 *offset) { u32 iar, icr, ifr; u32 dummy_cycles = 0; int mode; iar = 0; icr = QSPI_ICR_INST(op->cmd.opcode); ifr = QSPI_IFR_INSTEN; mode = atmel_qspi_find_mode(op); if (mode < 0) return mode; ifr |= atmel_qspi_modes[mode].config; if (op->dummy.nbytes) dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth; /* * The controller allows 24 and 32-bit addressing while NAND-flash * requires 16-bit long. Handling 8-bit long addresses is done using * the option field. For the 16-bit addresses, the workaround depends * of the number of requested dummy bits. If there are 8 or more dummy * cycles, the address is shifted and sent with the first dummy byte. * Otherwise opcode is disabled and the first byte of the address * contains the command opcode (works only if the opcode and address * use the same buswidth). The limitation is when the 16-bit address is * used without enough dummy cycles and the opcode is using a different * buswidth than the address. */ if (op->addr.buswidth) { switch (op->addr.nbytes) { case 0: break; case 1: ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT; icr |= QSPI_ICR_OPT(op->addr.val & 0xff); break; case 2: if (dummy_cycles < 8 / op->addr.buswidth) { ifr &= ~QSPI_IFR_INSTEN; ifr |= QSPI_IFR_ADDREN; iar = (op->cmd.opcode << 16) | (op->addr.val & 0xffff); } else { ifr |= QSPI_IFR_ADDREN; iar = (op->addr.val << 8) & 0xffffff; dummy_cycles -= 8 / op->addr.buswidth; } break; case 3: ifr |= QSPI_IFR_ADDREN; iar = op->addr.val & 0xffffff; break; case 4: ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL; iar = op->addr.val & 0x7ffffff; break; default: return -ENOTSUPP; } } /* offset of the data access in the QSPI memory space */ *offset = iar; /* Set number of dummy cycles */ if (dummy_cycles) ifr |= QSPI_IFR_NBDUM(dummy_cycles); /* Set data enable and data transfer type. */ if (op->data.nbytes) { ifr |= QSPI_IFR_DATAEN; if (op->addr.nbytes) ifr |= QSPI_IFR_TFRTYP_MEM; } mode = atmel_qspi_set_serial_memory_mode(aq, true); if (mode < 0) return mode; /* Clear pending interrupts */ (void)atmel_qspi_read(aq, QSPI_SR); /* Set QSPI Instruction Frame registers. */ if (op->addr.nbytes && !op->data.nbytes) atmel_qspi_write(iar, aq, QSPI_IAR); if (aq->caps->has_ricr) { if (op->data.dir == SPI_MEM_DATA_IN) atmel_qspi_write(icr, aq, QSPI_RICR); else atmel_qspi_write(icr, aq, QSPI_WICR); } else { if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR; atmel_qspi_write(icr, aq, QSPI_ICR); } atmel_qspi_write(ifr, aq, QSPI_IFR); return 0; } static int atmel_qspi_transfer(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 offset) { u32 sr, imr; /* Skip to the final steps if there is no data */ if (op->data.nbytes) { /* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */ (void)atmel_qspi_read(aq, QSPI_IFR); /* Send/Receive data */ if (op->data.dir == SPI_MEM_DATA_IN) memcpy_fromio(op->data.buf.in, aq->mem + offset, op->data.nbytes); else memcpy_toio(aq->mem + offset, op->data.buf.out, op->data.nbytes); /* Release the chip-select */ atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR); } /* Poll INSTruction End and Chip Select Rise flags. */ imr = QSPI_SR_INSTRE | QSPI_SR_CSR; return readl_poll_timeout(aq->regs + QSPI_SR, sr, (sr & imr) == imr, ATMEL_QSPI_TIMEOUT); } static int atmel_qspi_sama7g5_set_cfg(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 *offset) { u32 iar, icr, ifr; int mode, ret; iar = 0; icr = FIELD_PREP(QSPI_ICR_INST_MASK_SAMA7G5, op->cmd.opcode); ifr = QSPI_IFR_INSTEN; mode = atmel_qspi_sama7g5_find_mode(op); if (mode < 0) return mode; ifr |= atmel_qspi_sama7g5_modes[mode].config; if (op->dummy.buswidth && op->dummy.nbytes) { if (op->addr.dtr && op->dummy.dtr && op->data.dtr) ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 / (2 * op->dummy.buswidth)); else ifr |= QSPI_IFR_NBDUM(op->dummy.nbytes * 8 / op->dummy.buswidth); } if (op->addr.buswidth && op->addr.nbytes) { ifr |= FIELD_PREP(QSPI_IFR_ADDRL_SAMA7G5, op->addr.nbytes - 1) | QSPI_IFR_ADDREN; iar = FIELD_PREP(QSPI_IAR_ADDR, op->addr.val); } if (op->addr.dtr && op->dummy.dtr && op->data.dtr) { ifr |= QSPI_IFR_DDREN; if (op->cmd.dtr) ifr |= QSPI_IFR_DDRCMDEN; ifr |= QSPI_IFR_DQSEN; } if (op->cmd.buswidth == 8 || op->addr.buswidth == 8 || op->data.buswidth == 8) ifr |= FIELD_PREP(QSPI_IFR_PROTTYP, QSPI_IFR_PROTTYP_OCTAFLASH); /* offset of the data access in the QSPI memory space */ *offset = iar; /* Set data enable */ if (op->data.nbytes) { ifr |= QSPI_IFR_DATAEN; if (op->addr.nbytes) ifr |= QSPI_IFR_TFRTYP_MEM; } ret = atmel_qspi_set_serial_memory_mode(aq, true); if (ret < 0) return ret; /* Clear pending interrupts */ (void)atmel_qspi_read(aq, QSPI_SR); /* Set QSPI Instruction Frame registers */ if (op->addr.nbytes && !op->data.nbytes) atmel_qspi_write(iar, aq, QSPI_IAR); if (op->data.dir == SPI_MEM_DATA_IN) { atmel_qspi_write(icr, aq, QSPI_RICR); } else { atmel_qspi_write(icr, aq, QSPI_WICR); if (op->data.nbytes) atmel_qspi_write(FIELD_PREP(QSPI_WRACNT_NBWRA, op->data.nbytes), aq, QSPI_WRACNT); } atmel_qspi_write(ifr, aq, QSPI_IFR); return atmel_qspi_update_config(aq); } static int atmel_qspi_sama7g5_transfer(struct atmel_qspi *aq, const struct spi_mem_op *op, u32 offset) { int err; u32 val; if (!op->data.nbytes) { /* Start the transfer. */ err = atmel_qspi_reg_sync(aq); if (err) return err; atmel_qspi_write(QSPI_CR_STTFR, aq, QSPI_CR); return readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_CSRA, ATMEL_QSPI_TIMEOUT); } /* Send/Receive data. */ if (op->data.dir == SPI_MEM_DATA_IN) { memcpy_fromio(op->data.buf.in, aq->mem + offset, op->data.nbytes); if (op->addr.nbytes) { err = readl_poll_timeout(aq->regs + QSPI_SR2, val, !(val & QSPI_SR2_RBUSY), ATMEL_QSPI_SYNC_TIMEOUT); if (err) return err; } } else { memcpy_toio(aq->mem + offset, op->data.buf.out, op->data.nbytes); err = readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_LWRA, ATMEL_QSPI_TIMEOUT); if (err) return err; } /* Release the chip-select. */ err = atmel_qspi_reg_sync(aq); if (err) return err; atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR); return readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_CSRA, ATMEL_QSPI_TIMEOUT); } static int atmel_qspi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op) { struct atmel_qspi *aq = dev_get_priv(slave->dev->parent); u32 offset; int err; /* * Check if the address exceeds the MMIO window size. An improvement * would be to add support for regular SPI mode and fall back to it * when the flash memories overrun the controller's memory space. */ if (op->addr.val + op->data.nbytes > aq->mmap_size) return -ENOTSUPP; if (op->addr.nbytes > 4) return -EOPNOTSUPP; err = aq->ops->set_cfg(aq, op, &offset); if (err) return err; return aq->ops->transfer(aq, op, offset); } static int atmel_qspi_set_pad_calibration(struct udevice *bus, uint hz) { struct atmel_qspi *aq = dev_get_priv(bus); u32 status, val; int i, ret; u8 pclk_div = 0; for (i = 0; i < ATMEL_QSPI_PCAL_ARRAY_SIZE; i++) { if (aq->bus_clk_rate <= pcal[i].pclk_rate) { pclk_div = pcal[i].pclk_div; break; } } /* * Use the biggest divider in case the peripheral clock exceeds * 200MHZ. */ if (aq->bus_clk_rate > pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_rate) pclk_div = pcal[ATMEL_QSPI_PCAL_ARRAY_SIZE - 1].pclk_div; /* Disable QSPI while configuring the pad calibration. */ status = atmel_qspi_read(aq, QSPI_SR2); if (status & QSPI_SR2_QSPIENS) { ret = atmel_qspi_reg_sync(aq); if (ret) return ret; atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR); } /* * The analog circuitry is not shut down at the end of the calibration * and the start-up time is only required for the first calibration * sequence, thus increasing performance. Set the delay between the Pad * calibration analog circuitry and the calibration request to 2us. */ atmel_qspi_write(QSPI_PCALCFG_AAON | FIELD_PREP(QSPI_PCALCFG_CLKDIV, pclk_div) | FIELD_PREP(QSPI_PCALCFG_CALCNT, 2 * (aq->bus_clk_rate / 1000000)), aq, QSPI_PCALCFG); /* DLL On + start calibration. */ atmel_qspi_write(QSPI_CR_DLLON | QSPI_CR_STPCAL, aq, QSPI_CR); ret = readl_poll_timeout(aq->regs + QSPI_SR2, val, (val & QSPI_SR2_DLOCK) && !(val & QSPI_SR2_CALBSY), ATMEL_QSPI_TIMEOUT); /* Refresh analogic blocks every 1 ms.*/ atmel_qspi_write(FIELD_PREP(QSPI_REFRESH_DELAY_COUNTER, hz / 1000), aq, QSPI_REFRESH); return ret; } static int atmel_qspi_set_gclk(struct udevice *bus, uint hz) { struct atmel_qspi *aq = dev_get_priv(bus); struct clk gclk; u32 status, val; int ret; /* Disable DLL before setting GCLK */ status = atmel_qspi_read(aq, QSPI_SR2); if (status & QSPI_SR2_DLOCK) { atmel_qspi_write(QSPI_CR_DLLOFF, aq, QSPI_CR); ret = readl_poll_timeout(aq->regs + QSPI_SR2, val, !(val & QSPI_SR2_DLOCK), ATMEL_QSPI_TIMEOUT); if (ret) return ret; } if (hz > QSPI_DLLCFG_THRESHOLD_FREQ) atmel_qspi_write(QSPI_DLLCFG_RANGE, aq, QSPI_DLLCFG); else atmel_qspi_write(0, aq, QSPI_DLLCFG); ret = clk_get_by_name(bus, "gclk", &gclk); if (ret) { dev_err(bus, "Missing QSPI generic clock\n"); return ret; } ret = clk_disable(&gclk); if (ret) dev_err(bus, "Failed to disable QSPI generic clock\n"); ret = clk_set_rate(&gclk, hz); if (ret < 0) { dev_err(bus, "Failed to set generic clock rate.\n"); return ret; } ret = clk_enable(&gclk); if (ret) dev_err(bus, "Failed to enable QSPI generic clock\n"); return ret; } static int atmel_qspi_sama7g5_set_speed(struct udevice *bus, uint hz) { struct atmel_qspi *aq = dev_get_priv(bus); u32 val; int ret; ret = atmel_qspi_set_gclk(bus, hz); if (ret) return ret; if (aq->caps->octal) { ret = atmel_qspi_set_pad_calibration(bus, hz); if (ret) return ret; } else { atmel_qspi_write(QSPI_CR_DLLON, aq, QSPI_CR); ret = readl_poll_timeout(aq->regs + QSPI_SR2, val, val & QSPI_SR2_DLOCK, ATMEL_QSPI_TIMEOUT); } /* Set the QSPI controller by default in Serial Memory Mode */ aq->mr |= QSPI_MR_DQSDLYEN; ret = atmel_qspi_set_serial_memory_mode(aq, true); if (ret < 0) return ret; /* Enable the QSPI controller. */ ret = atmel_qspi_reg_sync(aq); if (ret) return ret; atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR); ret = readl_poll_timeout(aq->regs + QSPI_SR2, val, val & QSPI_SR2_QSPIENS, ATMEL_QSPI_SYNC_TIMEOUT); if (ret) return ret; if (aq->caps->octal) ret = readl_poll_timeout(aq->regs + QSPI_SR, val, val & QSPI_SR_RFRSHD, ATMEL_QSPI_TIMEOUT); atmel_qspi_write(FIELD_PREP(QSPI_TOUT_TCNTM, QSPI_TOUT_MAX), aq, QSPI_TOUT); return ret; } static int atmel_qspi_claim_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_qspi *aq = dev_get_priv(bus); int ret; aq->mr &= ~QSPI_MR_CSMODE_MASK; aq->mr |= QSPI_MR_CSMODE_LASTXFER | QSPI_MR_WDRBT; atmel_qspi_write(aq->mr, aq, QSPI_MR); ret = atmel_qspi_set_serial_memory_mode(aq, false); if (ret) return log_ret(ret); /* de-assert all chip selects */ if (IS_ENABLED(CONFIG_DM_GPIO)) { for (int i = 0; i < ARRAY_SIZE(aq->cs_gpios); i++) { if (dm_gpio_is_valid(&aq->cs_gpios[i])) dm_gpio_set_value(&aq->cs_gpios[i], 0); } } atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR); return 0; } static int atmel_qspi_release_bus(struct udevice *dev) { struct udevice *bus = dev_get_parent(dev); struct atmel_qspi *aq = dev_get_priv(bus); /* de-assert all chip selects */ if (IS_ENABLED(CONFIG_DM_GPIO)) { for (int i = 0; i < ARRAY_SIZE(aq->cs_gpios); i++) { if (dm_gpio_is_valid(&aq->cs_gpios[i])) dm_gpio_set_value(&aq->cs_gpios[i], 0); } } atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR); return 0; } static int atmel_qspi_set_cs(struct udevice *dev, int value) { struct udevice *bus = dev_get_parent(dev); struct atmel_qspi *aq = dev_get_priv(bus); int cs = spi_chip_select(dev); if (IS_ENABLED(CONFIG_DM_GPIO)) { if (!dm_gpio_is_valid(&aq->cs_gpios[cs])) return log_ret(-ENOENT); return dm_gpio_set_value(&aq->cs_gpios[cs], value); } else { return -ENOENT; } } static int atmel_qspi_xfer(struct udevice *dev, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct udevice *bus = dev_get_parent(dev); struct atmel_qspi *aq = dev_get_priv(bus); unsigned int len, len_rx, len_tx; const u8 *txp = dout; u8 *rxp = din; u32 reg; int ret; if (bitlen == 0) goto out; if (bitlen % 8) { flags |= SPI_XFER_END; goto out; } len = bitlen / 8; if (flags & SPI_XFER_BEGIN) { ret = atmel_qspi_set_cs(dev, 1); if (ret) return log_ret(ret); reg = atmel_qspi_read(aq, QSPI_RD); } for (len_tx = 0, len_rx = 0; len_rx < len; ) { u32 status = atmel_qspi_read(aq, QSPI_SR); u8 value; if (status & QSPI_SR_OVRES) return log_ret(-1); if (len_tx < len && (status & QSPI_SR_TDRE)) { if (txp) value = *txp++; else value = 0; atmel_qspi_write(value, aq, QSPI_TD); len_tx++; } if (status & QSPI_SR_RDRF) { value = atmel_qspi_read(aq, QSPI_RD); if (rxp) *rxp++ = value; len_rx++; } } out: if (flags & SPI_XFER_END) { readl_poll_timeout(aq->regs + QSPI_SR, reg, reg & QSPI_SR_TXEMPTY, ATMEL_QSPI_TIMEOUT); atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR); ret = atmel_qspi_set_cs(dev, 0); if (ret) return log_ret(ret); } return 0; } static int atmel_qspi_set_speed(struct udevice *bus, uint hz) { struct atmel_qspi *aq = dev_get_priv(bus); u32 scr, scbr, mask, new_value; if (aq->caps->has_gclk) return atmel_qspi_sama7g5_set_speed(bus, hz); /* Compute the QSPI baudrate */ dev_dbg(bus, "bus_clk_rate: %lu, hz: %u\n", aq->bus_clk_rate, hz); scbr = DIV_ROUND_UP(aq->bus_clk_rate, hz); if (scbr > 0) scbr--; new_value = QSPI_SCR_SCBR(scbr); mask = QSPI_SCR_SCBR_MASK; scr = atmel_qspi_read(aq, QSPI_SCR); if ((scr & mask) == new_value) return 0; scr = (scr & ~mask) | new_value; atmel_qspi_write(scr, aq, QSPI_SCR); return 0; } static int atmel_qspi_set_mode(struct udevice *bus, uint mode) { struct atmel_qspi *aq = dev_get_priv(bus); u32 scr, mask, new_value = 0; if (mode & SPI_CPOL) new_value = QSPI_SCR_CPOL; if (mode & SPI_CPHA) new_value = QSPI_SCR_CPHA; mask = QSPI_SCR_CPOL | QSPI_SCR_CPHA; scr = atmel_qspi_read(aq, QSPI_SCR); if ((scr & mask) == new_value) return 0; scr = (scr & ~mask) | new_value; atmel_qspi_write(scr, aq, QSPI_SCR); if (aq->caps->has_gclk) return atmel_qspi_update_config(aq); return 0; } static int atmel_qspi_enable_clk(struct udevice *dev) { struct atmel_qspi *aq = dev_get_priv(dev); struct clk pclk, qspick, gclk; int ret; ret = clk_get_by_name(dev, "pclk", &pclk); if (ret) ret = clk_get_by_index(dev, 0, &pclk); if (ret) { dev_err(dev, "Missing QSPI peripheral clock\n"); return ret; } ret = clk_enable(&pclk); if (ret) { dev_err(dev, "Failed to enable QSPI peripheral clock\n"); return ret; } if (aq->caps->has_qspick) { /* Get the QSPI system clock */ ret = clk_get_by_name(dev, "qspick", &qspick); if (ret) { dev_err(dev, "Missing QSPI peripheral clock\n"); return ret; } ret = clk_enable(&qspick); if (ret) dev_err(dev, "Failed to enable QSPI system clock\n"); } else if (aq->caps->has_gclk) { ret = clk_get_by_name(dev, "gclk", &gclk); if (ret) { dev_err(dev, "Missing QSPI generic clock\n"); return ret; } ret = clk_enable(&gclk); if (ret) dev_err(dev, "Failed to enable QSPI system clock\n"); } aq->bus_clk_rate = clk_get_rate(&pclk); if (!aq->bus_clk_rate) return -EINVAL; return ret; } static int atmel_qspi_init(struct atmel_qspi *aq) { int ret; if (aq->caps->has_gclk) { ret = atmel_qspi_reg_sync(aq); if (ret) return ret; atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR); return 0; } /* Reset the QSPI controller */ atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR); /* Enable the QSPI controller */ atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR); return 0; } static const struct atmel_qspi_priv_ops atmel_qspi_priv_ops = { .set_cfg = atmel_qspi_set_cfg, .transfer = atmel_qspi_transfer, }; static const struct atmel_qspi_priv_ops atmel_qspi_sama7g5_priv_ops = { .set_cfg = atmel_qspi_sama7g5_set_cfg, .transfer = atmel_qspi_sama7g5_transfer, }; static int atmel_qspi_probe(struct udevice *dev) { struct atmel_qspi *aq = dev_get_priv(dev); struct resource res; int ret; aq->caps = (struct atmel_qspi_caps *)dev_get_driver_data(dev); if (!aq->caps) { dev_err(dev, "Could not retrieve QSPI caps\n"); return log_ret(-EINVAL); }; if (aq->caps->has_gclk) aq->ops = &atmel_qspi_sama7g5_priv_ops; else aq->ops = &atmel_qspi_priv_ops; if (IS_ENABLED(CONFIG_DM_GPIO)) { ret = gpio_request_list_by_name(dev, "cs-gpios", aq->cs_gpios, ARRAY_SIZE(aq->cs_gpios), 0); if (ret < 0) { pr_err("Can't get %s gpios! Error: %d", dev->name, ret); return log_ret(ret); } for (int i = 0; i < ARRAY_SIZE(aq->cs_gpios); i++) { if (!dm_gpio_is_valid(&aq->cs_gpios[i])) continue; dm_gpio_set_dir_flags(&aq->cs_gpios[i], GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE); } } /* Map the registers */ ret = dev_read_resource_byname(dev, "qspi_base", &res); if (ret) { dev_err(dev, "missing registers\n"); return log_ret(ret); } aq->regs = devm_ioremap(dev, res.start, resource_size(&res)); if (IS_ERR(aq->regs)) return log_ret(PTR_ERR(aq->regs)); /* Map the AHB memory */ ret = dev_read_resource_byname(dev, "qspi_mmap", &res); if (ret) { dev_err(dev, "missing AHB memory\n"); return log_ret(ret); } aq->mem = devm_ioremap(dev, res.start, resource_size(&res)); if (IS_ERR(aq->mem)) return log_ret(PTR_ERR(aq->mem)); aq->mmap_size = resource_size(&res); ret = atmel_qspi_enable_clk(dev); if (ret) return log_ret(ret); aq->dev = dev; return log_ret(atmel_qspi_init(aq)); } static const struct spi_controller_mem_ops atmel_qspi_mem_ops = { .supports_op = atmel_qspi_supports_op, .exec_op = atmel_qspi_exec_op, }; static const struct dm_spi_ops atmel_qspi_ops = { .claim_bus = atmel_qspi_claim_bus, .release_bus = atmel_qspi_release_bus, .xfer = atmel_qspi_xfer, .mem_ops = &atmel_qspi_mem_ops, .set_speed = atmel_qspi_set_speed, .set_mode = atmel_qspi_set_mode, }; static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {}; static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = { .has_qspick = true, .has_ricr = true, }; static const struct atmel_qspi_caps atmel_sama7g5_ospi_caps = { .has_gclk = true, .octal = true, }; static const struct atmel_qspi_caps atmel_sama7g5_qspi_caps = { .has_gclk = true, }; static const struct udevice_id atmel_qspi_ids[] = { { .compatible = "atmel,sama5d2-qspi", .data = (ulong)&atmel_sama5d2_qspi_caps, }, { .compatible = "microchip,sam9x60-qspi", .data = (ulong)&atmel_sam9x60_qspi_caps, }, { .compatible = "microchip,sama7g5-ospi", .data = (ulong)&atmel_sama7g5_ospi_caps, }, { .compatible = "microchip,sama7g5-qspi", .data = (ulong)&atmel_sama7g5_qspi_caps, }, { /* sentinel */ } }; U_BOOT_DRIVER(atmel_qspi) = { .name = "atmel_qspi", .id = UCLASS_SPI, .of_match = atmel_qspi_ids, .ops = &atmel_qspi_ops, .priv_auto = sizeof(struct atmel_qspi), .probe = atmel_qspi_probe, };