nand: Extend nand_(read|write)_skip_bad with *actual and limit parameters

We make these two functions take a size_t pointer to how much space
was used on NAND to read or write the buffer (when reads/writes happen)
so that bad blocks can be accounted for.  We also make them take an
loff_t limit on how much data can be read or written.  This means that
we can now catch the case of when writing to a partition would exceed
the partition size due to bad blocks.  To do this we also need to make
check_skip_len count not just complete blocks used but partial ones as
well.  All callers of nand_(read|write)_skip_bad are adjusted to call
these with the most sensible limits available.

The changes were started by Pantelis and finished by Tom.

Signed-off-by: Pantelis Antoniou <panto@antoniou-consulting.com>
Signed-off-by: Tom Rini <trini@ti.com>
This commit is contained in:
Tom Rini 2013-03-14 05:32:50 +00:00 committed by Marek Vasut
parent a24c3155db
commit c39d6a0ea5
5 changed files with 97 additions and 33 deletions

View file

@ -416,11 +416,13 @@ int nand_unlock(struct mtd_info *mtd, loff_t start, size_t length,
* @param nand NAND device
* @param offset offset in flash
* @param length image length
* @param used length of flash needed for the requested length
* @return 0 if the image fits and there are no bad blocks
* 1 if the image fits, but there are bad blocks
* -1 if the image does not fit
*/
static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length,
size_t *used)
{
size_t len_excl_bad = 0;
int ret = 0;
@ -442,8 +444,13 @@ static int check_skip_len(nand_info_t *nand, loff_t offset, size_t length)
ret = 1;
offset += block_len;
*used += block_len;
}
/* If the length is not a multiple of block_len, adjust. */
if (len_excl_bad > length)
*used -= (len_excl_bad - length);
return ret;
}
@ -476,23 +483,36 @@ static size_t drop_ffs(const nand_info_t *nand, const u_char *buf,
* Write image to NAND flash.
* Blocks that are marked bad are skipped and the is written to the next
* block instead as long as the image is short enough to fit even after
* skipping the bad blocks.
* skipping the bad blocks. Due to bad blocks we may not be able to
* perform the requested write. In the case where the write would
* extend beyond the end of the NAND device, both length and actual (if
* not NULL) are set to 0. In the case where the write would extend
* beyond the limit we are passed, length is set to 0 and actual is set
* to the required length.
*
* @param nand NAND device
* @param offset offset in flash
* @param length buffer length
* @param actual set to size required to write length worth of
* buffer or 0 on error, if not NULL
* @param lim maximum size that actual may be in order to not
* exceed the buffer
* @param buffer buffer to read from
* @param flags flags modifying the behaviour of the write to NAND
* @return 0 in case of success
*/
int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
u_char *buffer, int flags)
size_t *actual, loff_t lim, u_char *buffer, int flags)
{
int rval = 0, blocksize;
size_t left_to_write = *length;
size_t used_for_write = 0;
u_char *p_buffer = buffer;
int need_skip;
if (actual)
*actual = 0;
#ifdef CONFIG_CMD_NAND_YAFFS
if (flags & WITH_YAFFS_OOB) {
if (flags & ~WITH_YAFFS_OOB)
@ -529,13 +549,23 @@ int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
return -EINVAL;
}
need_skip = check_skip_len(nand, offset, *length);
need_skip = check_skip_len(nand, offset, *length, &used_for_write);
if (actual)
*actual = used_for_write;
if (need_skip < 0) {
printf("Attempt to write outside the flash area\n");
*length = 0;
return -EINVAL;
}
if (used_for_write > lim) {
puts("Size of write exceeds partition or device limit\n");
*length = 0;
return -EFBIG;
}
if (!need_skip && !(flags & WITH_DROP_FFS)) {
rval = nand_write(nand, offset, length, buffer);
if (rval == 0)
@ -626,36 +656,58 @@ int nand_write_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
*
* Read image from NAND flash.
* Blocks that are marked bad are skipped and the next block is read
* instead as long as the image is short enough to fit even after skipping the
* bad blocks.
* instead as long as the image is short enough to fit even after
* skipping the bad blocks. Due to bad blocks we may not be able to
* perform the requested read. In the case where the read would extend
* beyond the end of the NAND device, both length and actual (if not
* NULL) are set to 0. In the case where the read would extend beyond
* the limit we are passed, length is set to 0 and actual is set to the
* required length.
*
* @param nand NAND device
* @param offset offset in flash
* @param length buffer length, on return holds number of read bytes
* @param actual set to size required to read length worth of buffer or 0
* on error, if not NULL
* @param lim maximum size that actual may be in order to not exceed the
* buffer
* @param buffer buffer to write to
* @return 0 in case of success
*/
int nand_read_skip_bad(nand_info_t *nand, loff_t offset, size_t *length,
u_char *buffer)
size_t *actual, loff_t lim, u_char *buffer)
{
int rval;
size_t left_to_read = *length;
size_t used_for_read = 0;
u_char *p_buffer = buffer;
int need_skip;
if ((offset & (nand->writesize - 1)) != 0) {
printf("Attempt to read non page-aligned data\n");
*length = 0;
if (actual)
*actual = 0;
return -EINVAL;
}
need_skip = check_skip_len(nand, offset, *length);
need_skip = check_skip_len(nand, offset, *length, &used_for_read);
if (actual)
*actual = used_for_read;
if (need_skip < 0) {
printf("Attempt to read outside the flash area\n");
*length = 0;
return -EINVAL;
}
if (used_for_read > lim) {
puts("Size of read exceeds partition or device limit\n");
*length = 0;
return -EFBIG;
}
if (!need_skip) {
rval = nand_read(nand, offset, length, buffer);
if (!rval || rval == -EUCLEAN)