ARM: mvebu: a38x: sync ddr training code with upstream

This syncs drivers/ddr/marvell/a38x/ with the mv_ddr-armada-17.10 branch
of https://github.com/MarvellEmbeddedProcessors/mv-ddr-marvell.git.

The upstream code is incorporated omitting the ddr4 and apn806 and
folding the nested a38x directory up one level. After that a
semi-automated step is used to drop unused features with unifdef

  find drivers/ddr/marvell/a38x/ -name '*.[ch]' | \
    xargs unifdef -m -UMV_DDR -UMV_DDR_ATF -UCONFIG_DDR4 \
		-UCONFIG_APN806 -UCONFIG_MC_STATIC \
		-UCONFIG_MC_STATIC_PRINT -UCONFIG_PHY_STATIC \
		-UCONFIG_64BIT

INTER_REGS_BASE is updated to be defined as SOC_REGS_PHY_BASE.

Some now empty files are removed and the ternary license is replaced
with a SPDX GPL-2.0+ identifier.

Signed-off-by: Chris Packham <judge.packham@gmail.com>
Signed-off-by: Stefan Roese <sr@denx.de>
This commit is contained in:
Chris Packham 2018-05-10 13:28:29 +12:00 committed by Stefan Roese
parent 00a7767766
commit 2b4ffbf6b4
56 changed files with 7952 additions and 5147 deletions

View file

@ -3,239 +3,30 @@
* Copyright (C) Marvell International Ltd. and its affiliates
*/
#include <common.h>
#include <i2c.h>
#include <spl.h>
#include <asm/io.h>
#include <asm/arch/cpu.h>
#include <asm/arch/soc.h>
#include "ddr3_init.h"
#include "mv_ddr_common.h"
#include "../../../../arch/arm/mach-mvebu/serdes/a38x/sys_env_lib.h"
static struct dlb_config ddr3_dlb_config_table[] = {
{REG_STATIC_DRAM_DLB_CONTROL, 0x2000005c},
{DLB_BUS_OPTIMIZATION_WEIGHTS_REG, 0x00880000},
{DLB_AGING_REGISTER, 0x0f7f007f},
{DLB_EVICTION_CONTROL_REG, 0x0000129f},
{DLB_EVICTION_TIMERS_REGISTER_REG, 0x00ff0000},
{DLB_BUS_WEIGHTS_DIFF_CS, 0x04030802},
{DLB_BUS_WEIGHTS_DIFF_BG, 0x00000a02},
{DLB_BUS_WEIGHTS_SAME_BG, 0x09000a01},
{DLB_BUS_WEIGHTS_RD_WR, 0x00020005},
{DLB_BUS_WEIGHTS_ATTR_SYS_PRIO, 0x00060f10},
{DLB_MAIN_QUEUE_MAP, 0x00000543},
{DLB_LINE_SPLIT, 0x00000000},
{DLB_USER_COMMAND_REG, 0x00000000},
{0x0, 0x0}
};
static struct dlb_config ddr3_dlb_config_table_a0[] = {
{REG_STATIC_DRAM_DLB_CONTROL, 0x2000005c},
{DLB_BUS_OPTIMIZATION_WEIGHTS_REG, 0x00880000},
{DLB_AGING_REGISTER, 0x0f7f007f},
{DLB_EVICTION_CONTROL_REG, 0x0000129f},
{DLB_EVICTION_TIMERS_REGISTER_REG, 0x00ff0000},
{DLB_BUS_WEIGHTS_DIFF_CS, 0x04030802},
{DLB_BUS_WEIGHTS_DIFF_BG, 0x00000a02},
{DLB_BUS_WEIGHTS_SAME_BG, 0x09000a01},
{DLB_BUS_WEIGHTS_RD_WR, 0x00020005},
{DLB_BUS_WEIGHTS_ATTR_SYS_PRIO, 0x00060f10},
{DLB_MAIN_QUEUE_MAP, 0x00000543},
{DLB_LINE_SPLIT, 0x00000000},
{DLB_USER_COMMAND_REG, 0x00000000},
{0x0, 0x0}
};
#if defined(CONFIG_ARMADA_38X)
struct dram_modes {
char *mode_name;
u8 cpu_freq;
u8 fab_freq;
u8 chip_id;
u8 chip_board_rev;
struct reg_data *regs;
};
struct dram_modes ddr_modes[] = {
};
#endif /* defined(CONFIG_ARMADA_38X) */
/* Translates topology map definitions to real memory size in bits */
/*
* Translates topology map definitions to real memory size in bits
* (per values in ddr3_training_ip_def.h)
*/
u32 mem_size[] = {
ADDR_SIZE_512MB, ADDR_SIZE_1GB, ADDR_SIZE_2GB, ADDR_SIZE_4GB,
ADDR_SIZE_512MB,
ADDR_SIZE_1GB,
ADDR_SIZE_2GB,
ADDR_SIZE_4GB,
ADDR_SIZE_8GB
};
static char *ddr_type = "DDR3";
/*
* Set 1 to use dynamic DUNIT configuration,
* set 0 (supported for A380 and AC3) to configure DUNIT in values set by
* ddr3_tip_init_specific_reg_config
* generic_init_controller controls D-unit configuration:
* '1' - dynamic D-unit configuration,
*/
u8 generic_init_controller = 1;
static int ddr3_hws_tune_training_params(u8 dev_num);
/* device revision */
#define DEV_VERSION_ID_REG 0x1823c
#define REVISON_ID_OFFS 8
#define REVISON_ID_MASK 0xf00
/* A38x revisions */
#define MV_88F68XX_Z1_ID 0x0
#define MV_88F68XX_A0_ID 0x4
/* A39x revisions */
#define MV_88F69XX_Z1_ID 0x2
/*
* sys_env_dlb_config_ptr_get
*
* DESCRIPTION: defines pointer to to DLB COnfiguration table
*
* INPUT: none
*
* OUTPUT: pointer to DLB COnfiguration table
*
* RETURN:
* returns pointer to DLB COnfiguration table
*/
struct dlb_config *sys_env_dlb_config_ptr_get(void)
{
#ifdef CONFIG_ARMADA_39X
return &ddr3_dlb_config_table_a0[0];
#else
if (sys_env_device_rev_get() == MV_88F68XX_A0_ID)
return &ddr3_dlb_config_table_a0[0];
else
return &ddr3_dlb_config_table[0];
#endif
}
/*
* sys_env_get_cs_ena_from_reg
*
* DESCRIPTION: Get bit mask of enabled CS
*
* INPUT: None
*
* OUTPUT: None
*
* RETURN:
* Bit mask of enabled CS, 1 if only CS0 enabled,
* 3 if both CS0 and CS1 enabled
*/
u32 sys_env_get_cs_ena_from_reg(void)
{
return reg_read(REG_DDR3_RANK_CTRL_ADDR) &
REG_DDR3_RANK_CTRL_CS_ENA_MASK;
}
static void ddr3_restore_and_set_final_windows(u32 *win)
{
u32 win_ctrl_reg, num_of_win_regs;
u32 cs_ena = sys_env_get_cs_ena_from_reg();
u32 ui;
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
num_of_win_regs = 16;
/* Return XBAR windows 4-7 or 16-19 init configuration */
for (ui = 0; ui < num_of_win_regs; ui++)
reg_write((win_ctrl_reg + 0x4 * ui), win[ui]);
printf("%s Training Sequence - Switching XBAR Window to FastPath Window\n",
ddr_type);
#if defined DYNAMIC_CS_SIZE_CONFIG
if (ddr3_fast_path_dynamic_cs_size_config(cs_ena) != MV_OK)
printf("ddr3_fast_path_dynamic_cs_size_config FAILED\n");
#else
u32 reg, cs;
reg = 0x1fffffe1;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
reg |= (cs << 2);
break;
}
}
/* Open fast path Window to - 0.5G */
reg_write(REG_FASTPATH_WIN_0_CTRL_ADDR, reg);
#endif
}
static int ddr3_save_and_set_training_windows(u32 *win)
{
u32 cs_ena;
u32 reg, tmp_count, cs, ui;
u32 win_ctrl_reg, win_base_reg, win_remap_reg;
u32 num_of_win_regs, win_jump_index;
win_ctrl_reg = REG_XBAR_WIN_4_CTRL_ADDR;
win_base_reg = REG_XBAR_WIN_4_BASE_ADDR;
win_remap_reg = REG_XBAR_WIN_4_REMAP_ADDR;
win_jump_index = 0x10;
num_of_win_regs = 16;
struct hws_topology_map *tm = ddr3_get_topology_map();
#ifdef DISABLE_L2_FILTERING_DURING_DDR_TRAINING
/*
* Disable L2 filtering during DDR training
* (when Cross Bar window is open)
*/
reg_write(ADDRESS_FILTERING_END_REGISTER, 0);
#endif
cs_ena = tm->interface_params[0].as_bus_params[0].cs_bitmask;
/* Close XBAR Window 19 - Not needed */
/* {0x000200e8} - Open Mbus Window - 2G */
reg_write(REG_XBAR_WIN_19_CTRL_ADDR, 0);
/* Save XBAR Windows 4-19 init configurations */
for (ui = 0; ui < num_of_win_regs; ui++)
win[ui] = reg_read(win_ctrl_reg + 0x4 * ui);
/* Open XBAR Windows 4-7 or 16-19 for other CS */
reg = 0;
tmp_count = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
switch (cs) {
case 0:
reg = 0x0e00;
break;
case 1:
reg = 0x0d00;
break;
case 2:
reg = 0x0b00;
break;
case 3:
reg = 0x0700;
break;
}
reg |= (1 << 0);
reg |= (SDRAM_CS_SIZE & 0xffff0000);
reg_write(win_ctrl_reg + win_jump_index * tmp_count,
reg);
reg = (((SDRAM_CS_SIZE + 1) * (tmp_count)) &
0xffff0000);
reg_write(win_base_reg + win_jump_index * tmp_count,
reg);
if (win_remap_reg <= REG_XBAR_WIN_7_REMAP_ADDR)
reg_write(win_remap_reg +
win_jump_index * tmp_count, 0);
tmp_count++;
}
}
return MV_OK;
}
static int mv_ddr_training_params_set(u8 dev_num);
/*
* Name: ddr3_init - Main DDR3 Init function
@ -246,464 +37,182 @@ static int ddr3_save_and_set_training_windows(u32 *win)
*/
int ddr3_init(void)
{
u32 reg = 0;
u32 soc_num;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 octets_per_if_num;
int status;
u32 win[16];
int is_manual_cal_done;
/* SoC/Board special Initializtions */
/* Get version from internal library */
ddr3_print_version();
/* Print mv_ddr version */
mv_ddr_ver_print();
/*Add sub_version string */
DEBUG_INIT_C("", SUB_VERSION, 1);
mv_ddr_pre_training_fixup();
/* Switching CPU to MRVL ID */
soc_num = (reg_read(REG_SAMPLE_RESET_HIGH_ADDR) & SAR1_CPU_CORE_MASK) >>
SAR1_CPU_CORE_OFFSET;
switch (soc_num) {
case 0x3:
case 0x1:
reg_bit_set(CPU_CONFIGURATION_REG(1), CPU_MRVL_ID_OFFSET);
case 0x0:
reg_bit_set(CPU_CONFIGURATION_REG(0), CPU_MRVL_ID_OFFSET);
default:
break;
/* SoC/Board special initializations */
mv_ddr_pre_training_soc_config(ddr_type);
/* Set log level for training library */
mv_ddr_user_log_level_set(DEBUG_BLOCK_ALL);
mv_ddr_early_init();
if (mv_ddr_topology_map_update() == NULL) {
printf("mv_ddr: failed to update topology\n");
return MV_FAIL;
}
/*
* Set DRAM Reset Mask in case detected GPIO indication of wakeup from
* suspend i.e the DRAM values will not be overwritten / reset when
* waking from suspend
*/
if (sys_env_suspend_wakeup_check() ==
SUSPEND_WAKEUP_ENABLED_GPIO_DETECTED) {
reg_bit_set(REG_SDRAM_INIT_CTRL_ADDR,
1 << REG_SDRAM_INIT_RESET_MASK_OFFS);
}
if (mv_ddr_early_init2() != MV_OK)
return MV_FAIL;
/*
* Stage 0 - Set board configuration
*/
/* Check if DRAM is already initialized */
if (reg_read(REG_BOOTROM_ROUTINE_ADDR) &
(1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS)) {
printf("%s Training Sequence - 2nd boot - Skip\n", ddr_type);
return MV_OK;
}
/*
* Stage 1 - Dunit Setup
*/
/* Fix read ready phases for all SOC in reg 0x15c8 */
reg = reg_read(REG_TRAINING_DEBUG_3_ADDR);
reg &= ~(REG_TRAINING_DEBUG_3_MASK);
reg |= 0x4; /* Phase 0 */
reg &= ~(REG_TRAINING_DEBUG_3_MASK << REG_TRAINING_DEBUG_3_OFFS);
reg |= (0x4 << (1 * REG_TRAINING_DEBUG_3_OFFS)); /* Phase 1 */
reg &= ~(REG_TRAINING_DEBUG_3_MASK << (3 * REG_TRAINING_DEBUG_3_OFFS));
reg |= (0x6 << (3 * REG_TRAINING_DEBUG_3_OFFS)); /* Phase 3 */
reg &= ~(REG_TRAINING_DEBUG_3_MASK << (4 * REG_TRAINING_DEBUG_3_OFFS));
reg |= (0x6 << (4 * REG_TRAINING_DEBUG_3_OFFS));
reg &= ~(REG_TRAINING_DEBUG_3_MASK << (5 * REG_TRAINING_DEBUG_3_OFFS));
reg |= (0x6 << (5 * REG_TRAINING_DEBUG_3_OFFS));
reg_write(REG_TRAINING_DEBUG_3_ADDR, reg);
/*
* Axi_bresp_mode[8] = Compliant,
* Axi_addr_decode_cntrl[11] = Internal,
* Axi_data_bus_width[0] = 128bit
* */
/* 0x14a8 - AXI Control Register */
reg_write(REG_DRAM_AXI_CTRL_ADDR, 0);
/*
* Stage 2 - Training Values Setup
*/
/* Set X-BAR windows for the training sequence */
ddr3_save_and_set_training_windows(win);
/* Tune training algo paramteres */
status = ddr3_hws_tune_training_params(0);
/* Set training algorithm's parameters */
status = mv_ddr_training_params_set(0);
if (MV_OK != status)
return status;
/* Set log level for training lib */
ddr3_hws_set_log_level(DEBUG_BLOCK_ALL, DEBUG_LEVEL_ERROR);
/* Start New Training IP */
status = ddr3_hws_hw_training();
mv_ddr_mc_config();
is_manual_cal_done = mv_ddr_manual_cal_do();
mv_ddr_mc_init();
if (!is_manual_cal_done) {
}
status = ddr3_silicon_post_init();
if (MV_OK != status) {
printf("DDR3 Post Init - FAILED 0x%x\n", status);
return status;
}
/* PHY initialization (Training) */
status = hws_ddr3_tip_run_alg(0, ALGO_TYPE_DYNAMIC);
if (MV_OK != status) {
printf("%s Training Sequence - FAILED\n", ddr_type);
return status;
}
/*
* Stage 3 - Finish
*/
/* Restore and set windows */
ddr3_restore_and_set_final_windows(win);
/* Update DRAM init indication in bootROM register */
reg = reg_read(REG_BOOTROM_ROUTINE_ADDR);
reg_write(REG_BOOTROM_ROUTINE_ADDR,
reg | (1 << REG_BOOTROM_ROUTINE_DRAM_INIT_OFFS));
/* DLB config */
ddr3_new_tip_dlb_config();
#if defined(ECC_SUPPORT)
if (ddr3_if_ecc_enabled())
ddr3_new_tip_ecc_scrub();
#if defined(CONFIG_PHY_STATIC_PRINT)
mv_ddr_phy_static_print();
#endif
printf("%s Training Sequence - Ended Successfully\n", ddr_type);
/* Post MC/PHY initializations */
mv_ddr_post_training_soc_config(ddr_type);
mv_ddr_post_training_fixup();
octets_per_if_num = ddr3_tip_dev_attr_get(0, MV_ATTR_OCTET_PER_INTERFACE);
if (ddr3_if_ecc_enabled()) {
if (MV_DDR_IS_64BIT_DRAM_MODE(tm->bus_act_mask) ||
MV_DDR_IS_32BIT_IN_64BIT_DRAM_MODE(tm->bus_act_mask, octets_per_if_num))
mv_ddr_mem_scrubbing();
else
ddr3_new_tip_ecc_scrub();
}
printf("mv_ddr: completed successfully\n");
return MV_OK;
}
/*
* Name: ddr3_get_cpu_freq
* Desc: read S@R and return CPU frequency
* Args:
* Notes:
* Returns: required value
*/
u32 ddr3_get_cpu_freq(void)
uint64_t mv_ddr_get_memory_size_per_cs_in_bits(void)
{
return ddr3_tip_get_init_freq();
}
uint64_t memory_size_per_cs;
/*
* Name: ddr3_get_fab_opt
* Desc: read S@R and return CPU frequency
* Args:
* Notes:
* Returns: required value
*/
u32 ddr3_get_fab_opt(void)
{
return 0; /* No fabric */
}
u32 bus_cnt, num_of_active_bus = 0;
u32 num_of_sub_phys_per_ddr_unit = 0;
/*
* Name: ddr3_get_static_m_cValue - Init Memory controller with
* static parameters
* Desc: Use this routine to init the controller without the HW training
* procedure.
* User must provide compatible header file with registers data.
* Args: None.
* Notes:
* Returns: None.
*/
u32 ddr3_get_static_mc_value(u32 reg_addr, u32 offset1, u32 mask1,
u32 offset2, u32 mask2)
{
u32 reg, temp;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
reg = reg_read(reg_addr);
u32 octets_per_if_num = ddr3_tip_dev_attr_get(DEV_NUM_0, MV_ATTR_OCTET_PER_INTERFACE);
temp = (reg >> offset1) & mask1;
if (mask2)
temp |= (reg >> offset2) & mask2;
return temp;
}
/*
* Name: ddr3_get_static_ddr_mode - Init Memory controller with
* static parameters
* Desc: Use this routine to init the controller without the HW training
* procedure.
* User must provide compatible header file with registers data.
* Args: None.
* Notes:
* Returns: None.
*/
u32 ddr3_get_static_ddr_mode(void)
{
u32 chip_board_rev, i;
u32 size;
/* Valid only for A380 only, MSYS using dynamic controller config */
#ifdef CONFIG_CUSTOMER_BOARD_SUPPORT
/*
* Customer boards select DDR mode according to
* board ID & Sample@Reset
*/
chip_board_rev = mv_board_id_get();
#else
/* Marvell boards select DDR mode according to Sample@Reset only */
chip_board_rev = MARVELL_BOARD;
#endif
size = ARRAY_SIZE(ddr_modes);
for (i = 0; i < size; i++) {
if ((ddr3_get_cpu_freq() == ddr_modes[i].cpu_freq) &&
(ddr3_get_fab_opt() == ddr_modes[i].fab_freq) &&
(chip_board_rev == ddr_modes[i].chip_board_rev))
return i;
/* count the number of active bus */
for (bus_cnt = 0; bus_cnt < octets_per_if_num - 1/* ignore ecc octet */; bus_cnt++) {
VALIDATE_BUS_ACTIVE(tm->bus_act_mask, bus_cnt);
num_of_active_bus++;
}
DEBUG_INIT_S("\n*** Error: ddr3_get_static_ddr_mode: No match for requested DDR mode. ***\n\n");
/* calculate number of sub-phys per ddr unit */
if (tm->interface_params[0].bus_width/* supports only single interface */ == MV_DDR_DEV_WIDTH_16BIT)
num_of_sub_phys_per_ddr_unit = TWO_SUB_PHYS;
if (tm->interface_params[0].bus_width/* supports only single interface */ == MV_DDR_DEV_WIDTH_8BIT)
num_of_sub_phys_per_ddr_unit = SINGLE_SUB_PHY;
return 0;
/* calculate dram size per cs */
memory_size_per_cs = (uint64_t)mem_size[tm->interface_params[0].memory_size] * (uint64_t)num_of_active_bus
/ (uint64_t)num_of_sub_phys_per_ddr_unit * (uint64_t)MV_DDR_NUM_BITS_IN_BYTE;
return memory_size_per_cs;
}
/******************************************************************************
* Name: ddr3_get_cs_num_from_reg
* Desc:
* Args:
* Notes:
* Returns:
*/
u32 ddr3_get_cs_num_from_reg(void)
uint64_t mv_ddr_get_total_memory_size_in_bits(void)
{
u32 cs_ena = sys_env_get_cs_ena_from_reg();
u32 cs_count = 0;
u32 cs;
uint64_t total_memory_size = 0;
uint64_t memory_size_per_cs = 0;
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs))
cs_count++;
}
/* get the number of cs */
u32 max_cs = ddr3_tip_max_cs_get(DEV_NUM_0);
return cs_count;
memory_size_per_cs = mv_ddr_get_memory_size_per_cs_in_bits();
total_memory_size = (uint64_t)max_cs * memory_size_per_cs;
return total_memory_size;
}
void get_target_freq(u32 freq_mode, u32 *ddr_freq, u32 *hclk_ps)
int ddr3_if_ecc_enabled(void)
{
u32 tmp, hclk = 200;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
switch (freq_mode) {
case 4:
tmp = 1; /* DDR_400; */
hclk = 200;
break;
case 0x8:
tmp = 1; /* DDR_666; */
hclk = 333;
break;
case 0xc:
tmp = 1; /* DDR_800; */
hclk = 400;
break;
default:
*ddr_freq = 0;
*hclk_ps = 0;
break;
}
*ddr_freq = tmp; /* DDR freq define */
*hclk_ps = 1000000 / hclk; /* values are 1/HCLK in ps */
return;
}
void ddr3_new_tip_dlb_config(void)
{
u32 reg, i = 0;
struct dlb_config *config_table_ptr = sys_env_dlb_config_ptr_get();
/* Write the configuration */
while (config_table_ptr[i].reg_addr != 0) {
reg_write(config_table_ptr[i].reg_addr,
config_table_ptr[i].reg_data);
i++;
}
/* Enable DLB */
reg = reg_read(REG_STATIC_DRAM_DLB_CONTROL);
reg |= DLB_ENABLE | DLB_WRITE_COALESING | DLB_AXI_PREFETCH_EN |
DLB_MBUS_PREFETCH_EN | PREFETCH_N_LN_SZ_TR;
reg_write(REG_STATIC_DRAM_DLB_CONTROL, reg);
}
int ddr3_fast_path_dynamic_cs_size_config(u32 cs_ena)
{
u32 reg, cs;
u32 mem_total_size = 0;
u32 cs_mem_size = 0;
u32 mem_total_size_c, cs_mem_size_c;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
u32 physical_mem_size;
u32 max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE;
struct hws_topology_map *tm = ddr3_get_topology_map();
#endif
/* Open fast path windows */
for (cs = 0; cs < MAX_CS; cs++) {
if (cs_ena & (1 << cs)) {
/* get CS size */
if (ddr3_calc_mem_cs_size(cs, &cs_mem_size) != MV_OK)
return MV_FAIL;
#ifdef DEVICE_MAX_DRAM_ADDRESS_SIZE
/*
* if number of address pins doesn't allow to use max
* mem size that is defined in topology
* mem size is defined by DEVICE_MAX_DRAM_ADDRESS_SIZE
*/
physical_mem_size = mem_size
[tm->interface_params[0].memory_size];
if (ddr3_get_device_width(cs) == 16) {
/*
* 16bit mem device can be twice more - no need
* in less significant pin
*/
max_mem_size = DEVICE_MAX_DRAM_ADDRESS_SIZE * 2;
}
if (physical_mem_size > max_mem_size) {
cs_mem_size = max_mem_size *
(ddr3_get_bus_width() /
ddr3_get_device_width(cs));
printf("Updated Physical Mem size is from 0x%x to %x\n",
physical_mem_size,
DEVICE_MAX_DRAM_ADDRESS_SIZE);
}
#endif
/* set fast path window control for the cs */
reg = 0xffffe1;
reg |= (cs << 2);
reg |= (cs_mem_size - 1) & 0xffff0000;
/*Open fast path Window */
reg_write(REG_FASTPATH_WIN_CTRL_ADDR(cs), reg);
/* Set fast path window base address for the cs */
reg = ((cs_mem_size) * cs) & 0xffff0000;
/* Set base address */
reg_write(REG_FASTPATH_WIN_BASE_ADDR(cs), reg);
/*
* Since memory size may be bigger than 4G the summ may
* be more than 32 bit word,
* so to estimate the result divide mem_total_size and
* cs_mem_size by 0x10000 (it is equal to >> 16)
*/
mem_total_size_c = mem_total_size >> 16;
cs_mem_size_c = cs_mem_size >> 16;
/* if the sum less than 2 G - calculate the value */
if (mem_total_size_c + cs_mem_size_c < 0x10000)
mem_total_size += cs_mem_size;
else /* put max possible size */
mem_total_size = L2_FILTER_FOR_MAX_MEMORY_SIZE;
}
}
/* Set L2 filtering to Max Memory size */
reg_write(ADDRESS_FILTERING_END_REGISTER, mem_total_size);
return MV_OK;
}
u32 ddr3_get_bus_width(void)
{
u32 bus_width;
bus_width = (reg_read(REG_SDRAM_CONFIG_ADDR) & 0x8000) >>
REG_SDRAM_CONFIG_WIDTH_OFFS;
return (bus_width == 0) ? 16 : 32;
}
u32 ddr3_get_device_width(u32 cs)
{
u32 device_width;
device_width = (reg_read(REG_SDRAM_ADDRESS_CTRL_ADDR) &
(0x3 << (REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS * cs))) >>
(REG_SDRAM_ADDRESS_CTRL_STRUCT_OFFS * cs);
return (device_width == 0) ? 8 : 16;
}
static int ddr3_get_device_size(u32 cs)
{
u32 device_size_low, device_size_high, device_size;
u32 data, cs_low_offset, cs_high_offset;
cs_low_offset = REG_SDRAM_ADDRESS_SIZE_OFFS + cs * 4;
cs_high_offset = REG_SDRAM_ADDRESS_SIZE_OFFS +
REG_SDRAM_ADDRESS_SIZE_HIGH_OFFS + cs;
data = reg_read(REG_SDRAM_ADDRESS_CTRL_ADDR);
device_size_low = (data >> cs_low_offset) & 0x3;
device_size_high = (data >> cs_high_offset) & 0x1;
device_size = device_size_low | (device_size_high << 2);
switch (device_size) {
case 0:
return 2048;
case 2:
return 512;
case 3:
return 1024;
case 4:
return 4096;
case 5:
return 8192;
case 1:
default:
DEBUG_INIT_C("Error: Wrong device size of Cs: ", cs, 1);
/*
* Small value will give wrong emem size in
* ddr3_calc_mem_cs_size
*/
if (DDR3_IS_ECC_PUP4_MODE(tm->bus_act_mask) ||
DDR3_IS_ECC_PUP3_MODE(tm->bus_act_mask) ||
DDR3_IS_ECC_PUP8_MODE(tm->bus_act_mask))
return 1;
else
return 0;
}
}
int ddr3_calc_mem_cs_size(u32 cs, u32 *cs_size)
{
int cs_mem_size;
/* Calculate in GiB */
cs_mem_size = ((ddr3_get_bus_width() / ddr3_get_device_width(cs)) *
ddr3_get_device_size(cs)) / 8;
/*
* Multiple controller bus width, 2x for 64 bit
* (SoC controller may be 32 or 64 bit,
* so bit 15 in 0x1400, that means if whole bus used or only half,
* have a differnt meaning
*/
cs_mem_size *= DDR_CONTROLLER_BUS_WIDTH_MULTIPLIER;
if (!cs_mem_size || (cs_mem_size == 64) || (cs_mem_size == 4096)) {
DEBUG_INIT_C("Error: Wrong Memory size of Cs: ", cs, 1);
return MV_BAD_VALUE;
}
*cs_size = cs_mem_size << 20;
return MV_OK;
}
/*
* Name: ddr3_hws_tune_training_params
* Name: mv_ddr_training_params_set
* Desc:
* Args:
* Notes: Tune internal training params
* Notes: sets internal training params
* Returns:
*/
static int ddr3_hws_tune_training_params(u8 dev_num)
static int mv_ddr_training_params_set(u8 dev_num)
{
struct tune_train_params params;
int status;
struct mv_ddr_topology_map *tm = mv_ddr_topology_map_get();
u32 if_id;
u32 cs_num;
CHECK_STATUS(ddr3_tip_get_first_active_if
(dev_num, tm->if_act_mask,
&if_id));
CHECK_STATUS(calc_cs_num(dev_num, if_id, &cs_num));
/* NOTE: do not remove any field initilization */
params.ck_delay = TUNE_TRAINING_PARAMS_CK_DELAY;
params.ck_delay_16 = TUNE_TRAINING_PARAMS_CK_DELAY_16;
params.p_finger = TUNE_TRAINING_PARAMS_PFINGER;
params.n_finger = TUNE_TRAINING_PARAMS_NFINGER;
params.phy_reg3_val = TUNE_TRAINING_PARAMS_PHYREG3VAL;
params.g_zpri_data = TUNE_TRAINING_PARAMS_PRI_DATA;
params.g_znri_data = TUNE_TRAINING_PARAMS_NRI_DATA;
params.g_zpri_ctrl = TUNE_TRAINING_PARAMS_PRI_CTRL;
params.g_znri_ctrl = TUNE_TRAINING_PARAMS_NRI_CTRL;
params.g_znodt_data = TUNE_TRAINING_PARAMS_N_ODT_DATA;
params.g_zpodt_ctrl = TUNE_TRAINING_PARAMS_P_ODT_CTRL;
params.g_znodt_ctrl = TUNE_TRAINING_PARAMS_N_ODT_CTRL;
params.g_zpodt_data = TUNE_TRAINING_PARAMS_P_ODT_DATA;
params.g_dic = TUNE_TRAINING_PARAMS_DIC;
params.g_rtt_nom = TUNE_TRAINING_PARAMS_RTT_NOM;
if (cs_num == 1) {
params.g_rtt_wr = TUNE_TRAINING_PARAMS_RTT_WR_1CS;
params.g_odt_config = TUNE_TRAINING_PARAMS_ODT_CONFIG_1CS;
} else {
params.g_rtt_wr = TUNE_TRAINING_PARAMS_RTT_WR_2CS;
params.g_odt_config = TUNE_TRAINING_PARAMS_ODT_CONFIG_2CS;
}
status = ddr3_tip_tune_training_params(dev_num, &params);
if (MV_OK != status) {