mtd: rawnand: omap_gpmc: Fix BCH6/16 HW based correction

The BCH detection hardware can generate ECC bytes for multiple
sectors in one go. Use that feature.

correct() only corrects one sector at a time so we need to call it
repeatedly for each sector.

Signed-off-by: Roger Quadros <rogerq@kernel.org>
Reviewed-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Michael Trimarchi <michael@amarulasolutions.com>
Signed-off-by: Dario Binacchi <dario.binacchi@amarulasolutions.com>
Link: https://lore.kernel.org/all/20221220102203.52398-2-rogerq@kernel.org
This commit is contained in:
Roger Quadros 2022-12-20 12:21:56 +02:00 committed by Dario Binacchi
parent a95410696d
commit 04fcd25873

View file

@ -27,6 +27,9 @@
#define BADBLOCK_MARKER_LENGTH 2 #define BADBLOCK_MARKER_LENGTH 2
#define SECTOR_BYTES 512 #define SECTOR_BYTES 512
#define ECCSIZE0_SHIFT 12
#define ECCSIZE1_SHIFT 22
#define ECC1RESULTSIZE 0x1
#define ECCCLEAR (0x1 << 8) #define ECCCLEAR (0x1 << 8)
#define ECCRESULTREG1 (0x1 << 0) #define ECCRESULTREG1 (0x1 << 0)
/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
@ -189,69 +192,32 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
struct nand_chip *nand = mtd_to_nand(mtd); struct nand_chip *nand = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(nand); struct omap_nand_info *info = nand_get_controller_data(nand);
unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0; unsigned int dev_width = (nand->options & NAND_BUSWIDTH_16) ? 1 : 0;
unsigned int ecc_algo = 0; u32 val;
unsigned int bch_type = 0;
unsigned int eccsize1 = 0x00, eccsize0 = 0x00, bch_wrapmode = 0x00;
u32 ecc_size_config_val = 0;
u32 ecc_config_val = 0;
int cs = info->cs;
/* configure GPMC for specific ecc-scheme */
switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_SW:
return;
case OMAP_ECC_HAM1_CODE_HW:
ecc_algo = 0x0;
bch_type = 0x0;
bch_wrapmode = 0x00;
eccsize0 = 0xFF;
eccsize1 = 0xFF;
break;
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
case OMAP_ECC_BCH8_CODE_HW:
ecc_algo = 0x1;
bch_type = 0x1;
if (mode == NAND_ECC_WRITE) {
bch_wrapmode = 0x01;
eccsize0 = 0; /* extra bits in nibbles per sector */
eccsize1 = 28; /* OOB bits in nibbles per sector */
} else {
bch_wrapmode = 0x01;
eccsize0 = 26; /* ECC bits in nibbles per sector */
eccsize1 = 2; /* non-ECC bits in nibbles per sector */
}
break;
case OMAP_ECC_BCH16_CODE_HW:
ecc_algo = 0x1;
bch_type = 0x2;
if (mode == NAND_ECC_WRITE) {
bch_wrapmode = 0x01;
eccsize0 = 0; /* extra bits in nibbles per sector */
eccsize1 = 52; /* OOB bits in nibbles per sector */
} else {
bch_wrapmode = 0x01;
eccsize0 = 52; /* ECC bits in nibbles per sector */
eccsize1 = 0; /* non-ECC bits in nibbles per sector */
}
break;
default:
return;
}
/* Clear ecc and enable bits */ /* Clear ecc and enable bits */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
/* Configure ecc size for BCH */
ecc_size_config_val = (eccsize1 << 22) | (eccsize0 << 12);
writel(ecc_size_config_val, &gpmc_cfg->ecc_size_config);
/* Configure device details for BCH engine */ /* program ecc and result sizes */
ecc_config_val = ((ecc_algo << 16) | /* HAM1 | BCHx */ val = ((((nand->ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) |
(bch_type << 12) | /* BCH4/BCH8/BCH16 */ ECC1RESULTSIZE);
(bch_wrapmode << 8) | /* wrap mode */ writel(val, &gpmc_cfg->ecc_size_config);
(dev_width << 7) | /* bus width */
(0x0 << 4) | /* number of sectors */ switch (mode) {
(cs << 1) | /* ECC CS */ case NAND_ECC_READ:
(0x1)); /* enable ECC */ case NAND_ECC_WRITE:
writel(ecc_config_val, &gpmc_cfg->ecc_config); writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
break;
case NAND_ECC_READSYN:
writel(ECCCLEAR, &gpmc_cfg->ecc_control);
break;
default:
printf("%s: error: unrecognized Mode[%d]!\n", __func__, mode);
break;
}
/* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
val = (dev_width << 7) | (info->cs << 1) | (0x1);
writel(val, &gpmc_cfg->ecc_config);
} }
/* /*
@ -270,6 +236,124 @@ static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode)
*/ */
static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
uint8_t *ecc_code) uint8_t *ecc_code)
{
u32 val;
val = readl(&gpmc_cfg->ecc1_result);
ecc_code[0] = val & 0xFF;
ecc_code[1] = (val >> 16) & 0xFF;
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
return 0;
}
/* GPMC ecc engine settings for read */
#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
/* GPMC ecc engine settings for write */
#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
/**
* omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
* @mtd: MTD device structure
* @mode: Read/Write mode
*
* When using BCH with SW correction (i.e. no ELM), sector size is set
* to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode
* for both reading and writing with:
* eccsize0 = 0 (no additional protected byte in spare area)
* eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
*/
static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd,
int mode)
{
unsigned int bch_type;
unsigned int dev_width, nsectors;
struct nand_chip *chip = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(chip);
u32 val, wr_mode;
unsigned int ecc_size1, ecc_size0;
/* GPMC configurations for calculating ECC */
switch (info->ecc_scheme) {
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
bch_type = 1;
nsectors = 1;
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
break;
case OMAP_ECC_BCH8_CODE_HW:
bch_type = 1;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = BCH_WRAPMODE_1;
ecc_size0 = BCH8R_ECC_SIZE0;
ecc_size1 = BCH8R_ECC_SIZE1;
} else {
wr_mode = BCH_WRAPMODE_6;
ecc_size0 = BCH_ECC_SIZE0;
ecc_size1 = BCH_ECC_SIZE1;
}
break;
case OMAP_ECC_BCH16_CODE_HW:
bch_type = 0x2;
nsectors = chip->ecc.steps;
if (mode == NAND_ECC_READ) {
wr_mode = 0x01;
ecc_size0 = 52; /* ECC bits in nibbles per sector */
ecc_size1 = 0; /* non-ECC bits in nibbles per sector */
} else {
wr_mode = 0x01;
ecc_size0 = 0; /* extra bits in nibbles per sector */
ecc_size1 = 52; /* OOB bits in nibbles per sector */
}
break;
default:
return;
}
writel(ECCRESULTREG1, &gpmc_cfg->ecc_control);
/* Configure ecc size for BCH */
val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT);
writel(val, &gpmc_cfg->ecc_size_config);
dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
/* BCH configuration */
val = ((1 << 16) | /* enable BCH */
(bch_type << 12) | /* BCH4/BCH8/BCH16 */
(wr_mode << 8) | /* wrap mode */
(dev_width << 7) | /* bus width */
(((nsectors - 1) & 0x7) << 4) | /* number of sectors */
(info->cs << 1) | /* ECC CS */
(0x1)); /* enable ECC */
writel(val, &gpmc_cfg->ecc_config);
/* Clear ecc and enable bits */
writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control);
}
/**
* _omap_calculate_ecc_bch - Generate BCH ECC bytes for one sector
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
* @sector: The sector number (for a multi sector page)
*
* Support calculating of BCH4/8/16 ECC vectors for one sector
* within a page. Sector number is in @sector.
*/
static int _omap_calculate_ecc_bch(struct mtd_info *mtd, const u8 *dat,
u8 *ecc_code, int sector)
{ {
struct nand_chip *chip = mtd_to_nand(mtd); struct nand_chip *chip = mtd_to_nand(mtd);
struct omap_nand_info *info = nand_get_controller_data(chip); struct omap_nand_info *info = nand_get_controller_data(chip);
@ -278,17 +362,11 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
int8_t i = 0, j; int8_t i = 0, j;
switch (info->ecc_scheme) { switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_HW:
val = readl(&gpmc_cfg->ecc1_result);
ecc_code[0] = val & 0xFF;
ecc_code[1] = (val >> 16) & 0xFF;
ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0);
break;
#ifdef CONFIG_BCH #ifdef CONFIG_BCH
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
#endif #endif
case OMAP_ECC_BCH8_CODE_HW: case OMAP_ECC_BCH8_CODE_HW:
ptr = &gpmc_cfg->bch_result_0_3[0].bch_result_x[3]; ptr = &gpmc_cfg->bch_result_0_3[sector].bch_result_x[3];
val = readl(ptr); val = readl(ptr);
ecc_code[i++] = (val >> 0) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
ptr--; ptr--;
@ -300,23 +378,24 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
ecc_code[i++] = (val >> 0) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
ptr--; ptr--;
} }
break; break;
case OMAP_ECC_BCH16_CODE_HW: case OMAP_ECC_BCH16_CODE_HW:
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[2]); val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[2]);
ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF;
ecc_code[i++] = (val >> 0) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[1]); val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[1]);
ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 24) & 0xFF;
ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF;
ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF;
ecc_code[i++] = (val >> 0) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
val = readl(&gpmc_cfg->bch_result_4_6[0].bch_result_x[0]); val = readl(&gpmc_cfg->bch_result_4_6[sector].bch_result_x[0]);
ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 24) & 0xFF;
ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF;
ecc_code[i++] = (val >> 8) & 0xFF; ecc_code[i++] = (val >> 8) & 0xFF;
ecc_code[i++] = (val >> 0) & 0xFF; ecc_code[i++] = (val >> 0) & 0xFF;
for (j = 3; j >= 0; j--) { for (j = 3; j >= 0; j--) {
val = readl(&gpmc_cfg->bch_result_0_3[0].bch_result_x[j] val = readl(&gpmc_cfg->bch_result_0_3[sector].bch_result_x[j]
); );
ecc_code[i++] = (val >> 24) & 0xFF; ecc_code[i++] = (val >> 24) & 0xFF;
ecc_code[i++] = (val >> 16) & 0xFF; ecc_code[i++] = (val >> 16) & 0xFF;
@ -329,18 +408,18 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
} }
/* ECC scheme specific syndrome customizations */ /* ECC scheme specific syndrome customizations */
switch (info->ecc_scheme) { switch (info->ecc_scheme) {
case OMAP_ECC_HAM1_CODE_HW:
break;
#ifdef CONFIG_BCH #ifdef CONFIG_BCH
case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW:
/* Add constant polynomial to remainder, so that
* ECC of blank pages results in 0x0 on reading back
*/
for (i = 0; i < chip->ecc.bytes; i++) for (i = 0; i < chip->ecc.bytes; i++)
*(ecc_code + i) = *(ecc_code + i) ^ ecc_code[i] ^= bch8_polynomial[i];
bch8_polynomial[i];
break; break;
#endif #endif
case OMAP_ECC_BCH8_CODE_HW: case OMAP_ECC_BCH8_CODE_HW:
ecc_code[chip->ecc.bytes - 1] = 0x00; /* Set 14th ECC byte as 0x0 for ROM compatibility */
ecc_code[chip->ecc.bytes - 1] = 0x0;
break; break;
case OMAP_ECC_BCH16_CODE_HW: case OMAP_ECC_BCH16_CODE_HW:
break; break;
@ -350,6 +429,22 @@ static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat,
return 0; return 0;
} }
/**
* omap_calculate_ecc_bch - ECC generator for 1 sector
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Support calculating of BCH4/8/16 ECC vectors for one sector. This is used
* when SW based correction is required as ECC is required for one sector
* at a time.
*/
static int __maybe_unused omap_calculate_ecc_bch(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc)
{
return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0);
}
static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) static inline void omap_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{ {
struct nand_chip *chip = mtd_to_nand(mtd); struct nand_chip *chip = mtd_to_nand(mtd);
@ -474,6 +569,35 @@ static void omap_nand_read_prefetch(struct mtd_info *mtd, uint8_t *buf, int len)
#endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */ #endif /* CONFIG_NAND_OMAP_GPMC_PREFETCH */
#ifdef CONFIG_NAND_OMAP_ELM #ifdef CONFIG_NAND_OMAP_ELM
/**
* omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors
* @mtd: MTD device structure
* @dat: The pointer to data on which ecc is computed
* @ecc_code: The ecc_code buffer
*
* Support calculating of BCH4/8/16 ecc vectors for the entire page in one go.
*/
static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd,
const u_char *dat, u_char *ecc_calc)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int eccbytes = chip->ecc.bytes;
unsigned long nsectors;
int i, ret;
nsectors = ((readl(&gpmc_cfg->ecc_config) >> 4) & 0x7) + 1;
for (i = 0; i < nsectors; i++) {
ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i);
if (ret)
return ret;
ecc_calc += eccbytes;
}
return 0;
}
/* /*
* omap_reverse_list - re-orders list elements in reverse order [internal] * omap_reverse_list - re-orders list elements in reverse order [internal]
* @list: pointer to start of list * @list: pointer to start of list
@ -626,52 +750,49 @@ static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip,
{ {
int i, eccsize = chip->ecc.size; int i, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes; int eccbytes = chip->ecc.bytes;
int ecctotal = chip->ecc.total;
int eccsteps = chip->ecc.steps; int eccsteps = chip->ecc.steps;
uint8_t *p = buf; uint8_t *p = buf;
uint8_t *ecc_calc = chip->buffers->ecccalc; uint8_t *ecc_calc = chip->buffers->ecccalc;
uint8_t *ecc_code = chip->buffers->ecccode; uint8_t *ecc_code = chip->buffers->ecccode;
uint32_t *eccpos = chip->ecc.layout->eccpos; uint32_t *eccpos = chip->ecc.layout->eccpos;
uint8_t *oob = chip->oob_poi; uint8_t *oob = chip->oob_poi;
uint32_t data_pos;
uint32_t oob_pos; uint32_t oob_pos;
data_pos = 0;
/* oob area start */ /* oob area start */
oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0]; oob_pos = (eccsize * eccsteps) + chip->ecc.layout->eccpos[0];
oob += chip->ecc.layout->eccpos[0]; oob += chip->ecc.layout->eccpos[0];
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize, /* Enable ECC engine */
oob += eccbytes) {
chip->ecc.hwctl(mtd, NAND_ECC_READ); chip->ecc.hwctl(mtd, NAND_ECC_READ);
/* read data */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_pos, -1);
chip->read_buf(mtd, p, eccsize);
/* read respective ecc from oob area */ /* read entire page */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, 0, -1);
chip->read_buf(mtd, buf, mtd->writesize);
/* read all ecc bytes from oob area */
chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1); chip->cmdfunc(mtd, NAND_CMD_RNDOUT, oob_pos, -1);
chip->read_buf(mtd, oob, eccbytes); chip->read_buf(mtd, oob, ecctotal);
/* read syndrome */
chip->ecc.calculate(mtd, p, &ecc_calc[i]);
data_pos += eccsize; /* Calculate ecc bytes */
oob_pos += eccbytes; omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc);
}
for (i = 0; i < chip->ecc.total; i++) for (i = 0; i < chip->ecc.total; i++)
ecc_code[i] = chip->oob_poi[eccpos[i]]; ecc_code[i] = chip->oob_poi[eccpos[i]];
/* error detect & correct */
eccsteps = chip->ecc.steps; eccsteps = chip->ecc.steps;
p = buf; p = buf;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
int stat; int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat < 0) if (stat < 0)
mtd->ecc_stats.failed++; mtd->ecc_stats.failed++;
else else
mtd->ecc_stats.corrected += stat; mtd->ecc_stats.corrected += stat;
} }
return 0; return 0;
} }
#endif /* CONFIG_NAND_OMAP_ELM */ #endif /* CONFIG_NAND_OMAP_ELM */
@ -819,9 +940,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
nand->ecc.strength = 8; nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES; nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 13; nand->ecc.bytes = 13;
nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.hwctl = omap_enable_hwecc_bch;
nand->ecc.correct = omap_correct_data_bch_sw; nand->ecc.correct = omap_correct_data_bch_sw;
nand->ecc.calculate = omap_calculate_ecc; nand->ecc.calculate = omap_calculate_ecc_bch;
/* define ecc-layout */ /* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps; ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH; ecclayout->eccpos[0] = BADBLOCK_MARKER_LENGTH;
@ -860,9 +981,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
nand->ecc.strength = 8; nand->ecc.strength = 8;
nand->ecc.size = SECTOR_BYTES; nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 14; nand->ecc.bytes = 14;
nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.hwctl = omap_enable_hwecc_bch;
nand->ecc.correct = omap_correct_data_bch; nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc; nand->ecc.calculate = omap_calculate_ecc_bch;
nand->ecc.read_page = omap_read_page_bch; nand->ecc.read_page = omap_read_page_bch;
/* define ecc-layout */ /* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps; ecclayout->eccbytes = nand->ecc.bytes * eccsteps;
@ -893,9 +1014,9 @@ static int omap_select_ecc_scheme(struct nand_chip *nand,
nand->ecc.size = SECTOR_BYTES; nand->ecc.size = SECTOR_BYTES;
nand->ecc.bytes = 26; nand->ecc.bytes = 26;
nand->ecc.strength = 16; nand->ecc.strength = 16;
nand->ecc.hwctl = omap_enable_hwecc; nand->ecc.hwctl = omap_enable_hwecc_bch;
nand->ecc.correct = omap_correct_data_bch; nand->ecc.correct = omap_correct_data_bch;
nand->ecc.calculate = omap_calculate_ecc; nand->ecc.calculate = omap_calculate_ecc_bch;
nand->ecc.read_page = omap_read_page_bch; nand->ecc.read_page = omap_read_page_bch;
/* define ecc-layout */ /* define ecc-layout */
ecclayout->eccbytes = nand->ecc.bytes * eccsteps; ecclayout->eccbytes = nand->ecc.bytes * eccsteps;