arm-trusted-firmware/plat/arm/common/arm_bl2_setup.c
Harrison Mutai ada4e59d16 feat(arm): migrate heap info to fw handoff
Mbed-TLS requires platforms to allocate it a heap for it's own internal
usage. This heap is typically between shared by BL1 and BL2 to conserve
memory.The base address and size of the heap are conveyed from BL1 to
BL2 through the config TB_FW_CONFIG.

This slightly awkward approach necessitates declaring a placeholder node
in the DTS. At runtime, this node is populated with the actual values of
the heap information. Instead, since this is dynamic information, and
simple to represent through C structures, transmit it to later stages
using the firmware handoff framework.

With this migration, remove references to TB_FW_CONFIG when firmware
handoff is enabled, as it is no longer needed. The setup code now relies
solely on TL structures to configure the TB firmware

Change-Id: Iff00dc742924a055b8bd304f15eec03ce3c6d1ef
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
2024-12-18 14:48:24 +00:00

335 lines
9 KiB
C

/*
* Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <platform_def.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <drivers/generic_delay_timer.h>
#include <drivers/partition/partition.h>
#include <lib/fconf/fconf.h>
#include <lib/fconf/fconf_dyn_cfg_getter.h>
#include <lib/gpt_rme/gpt_rme.h>
#if TRANSFER_LIST
#include <lib/transfer_list.h>
#endif
#ifdef SPD_opteed
#include <lib/optee_utils.h>
#endif
#include <lib/utils.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
/* Data structure which holds the extents of the trusted SRAM for BL2 */
static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);
/* Base address of fw_config received from BL1 */
static uintptr_t config_base __unused;
/*
* Check that BL2_BASE is above ARM_FW_CONFIG_LIMIT. This reserved page is
* for `meminfo_t` data structure and fw_configs passed from BL1.
*/
#if TRANSFER_LIST
CASSERT(BL2_BASE >= PLAT_ARM_EL3_FW_HANDOFF_BASE + PLAT_ARM_FW_HANDOFF_SIZE,
assert_bl2_base_overflows);
#elif !RESET_TO_BL2
CASSERT(BL2_BASE >= ARM_FW_CONFIG_LIMIT, assert_bl2_base_overflows);
#endif /* TRANSFER_LIST */
/* Weak definitions may be overridden in specific ARM standard platform */
#pragma weak bl2_early_platform_setup2
#pragma weak bl2_platform_setup
#pragma weak bl2_plat_arch_setup
#pragma weak bl2_plat_sec_mem_layout
#if ENABLE_RME
#define MAP_BL2_TOTAL MAP_REGION_FLAT( \
bl2_tzram_layout.total_base, \
bl2_tzram_layout.total_size, \
MT_MEMORY | MT_RW | MT_ROOT)
#else
#define MAP_BL2_TOTAL MAP_REGION_FLAT( \
bl2_tzram_layout.total_base, \
bl2_tzram_layout.total_size, \
MT_MEMORY | MT_RW | MT_SECURE)
#endif /* ENABLE_RME */
#pragma weak arm_bl2_plat_handle_post_image_load
struct transfer_list_header *secure_tl __unused;
/*******************************************************************************
* BL1 has passed the extents of the trusted SRAM that should be visible to BL2
* in x0. This memory layout is sitting at the base of the free trusted SRAM.
* Copy it to a safe location before its reclaimed by later BL2 functionality.
******************************************************************************/
void arm_bl2_early_platform_setup(uintptr_t fw_config,
struct meminfo *mem_layout)
{
struct transfer_list_entry *te __unused;
int __maybe_unused ret;
/* Initialize the console to provide early debug support */
arm_console_boot_init();
#if TRANSFER_LIST
// TODO: modify the prototype of this function fw_config != bl2_tl
secure_tl = (struct transfer_list_header *)fw_config;
te = transfer_list_find(secure_tl, TL_TAG_SRAM_LAYOUT64);
assert(te != NULL);
bl2_tzram_layout = *(meminfo_t *)transfer_list_entry_data(te);
transfer_list_rem(secure_tl, te);
#else
config_base = fw_config;
/* Setup the BL2 memory layout */
bl2_tzram_layout = *mem_layout;
#endif
/* Initialise the IO layer and register platform IO devices */
plat_arm_io_setup();
/* Load partition table */
#if ARM_GPT_SUPPORT
ret = gpt_partition_init();
if (ret != 0) {
ERROR("GPT partition initialisation failed!\n");
panic();
}
#endif /* ARM_GPT_SUPPORT */
}
void bl2_early_platform_setup2(u_register_t arg0, u_register_t arg1, u_register_t arg2, u_register_t arg3)
{
arm_bl2_early_platform_setup((uintptr_t)arg0, (meminfo_t *)arg1);
generic_delay_timer_init();
}
/*
* Perform BL2 preload setup. Currently we initialise the dynamic
* configuration here.
*/
void bl2_plat_preload_setup(void)
{
#if TRANSFER_LIST
/* Assume the secure TL hasn't been initialised if BL2 is running at EL3. */
#if RESET_TO_BL2
secure_tl = transfer_list_ensure((void *)PLAT_ARM_EL3_FW_HANDOFF_BASE,
PLAT_ARM_FW_HANDOFF_SIZE);
if (secure_tl == NULL) {
ERROR("Secure transfer list initialisation failed!\n");
panic();
}
#endif
arm_transfer_list_dyn_cfg_init(secure_tl);
#else
#if ARM_FW_CONFIG_LOAD_ENABLE
arm_bl2_el3_plat_config_load();
#endif /* ARM_FW_CONFIG_LOAD_ENABLE */
arm_bl2_dyn_cfg_init();
#endif
#if ARM_GPT_SUPPORT && !PSA_FWU_SUPPORT
/* Always use the FIP from bank 0 */
arm_set_fip_addr(0U);
#endif /* ARM_GPT_SUPPORT && !PSA_FWU_SUPPORT */
}
/*
* Perform ARM standard platform setup.
*/
void arm_bl2_platform_setup(void)
{
#if !ENABLE_RME
/* Initialize the secure environment */
plat_arm_security_setup();
#endif
#if defined(PLAT_ARM_MEM_PROT_ADDR)
arm_nor_psci_do_static_mem_protect();
#endif
}
void bl2_platform_setup(void)
{
arm_bl2_platform_setup();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here.
* When RME is enabled the secure environment is initialised before
* initialising and enabling Granule Protection.
* This function initialises the MMU in a quick and dirty way.
******************************************************************************/
void arm_bl2_plat_arch_setup(void)
{
#if USE_COHERENT_MEM
/* Ensure ARM platforms don't use coherent memory in BL2. */
assert((BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE) == 0U);
#endif
const mmap_region_t bl_regions[] = {
MAP_BL2_TOTAL,
ARM_MAP_BL_RO,
#if USE_ROMLIB
ARM_MAP_ROMLIB_CODE,
ARM_MAP_ROMLIB_DATA,
#endif
#if !TRANSFER_LIST
ARM_MAP_BL_CONFIG_REGION,
#endif /* TRANSFER_LIST */
#if ENABLE_RME
ARM_MAP_L0_GPT_REGION,
#endif
{ 0 }
};
#if ENABLE_RME
/* Initialise the secure environment */
plat_arm_security_setup();
#endif
setup_page_tables(bl_regions, plat_arm_get_mmap());
#ifdef __aarch64__
#if ENABLE_RME
/* BL2 runs in EL3 when RME enabled. */
assert(is_feat_rme_present());
enable_mmu_el3(0);
/* Initialise and enable granule protection after MMU. */
arm_gpt_setup();
#else
enable_mmu_el1(0);
#endif
#else
enable_mmu_svc_mon(0);
#endif
arm_setup_romlib();
}
void bl2_plat_arch_setup(void)
{
const struct dyn_cfg_dtb_info_t *tb_fw_config_info __unused;
struct transfer_list_entry *te __unused;
arm_bl2_plat_arch_setup();
#if TRANSFER_LIST
#if CRYPTO_SUPPORT
te = arm_transfer_list_set_heap_info(secure_tl);
transfer_list_rem(secure_tl, te);
#endif /* CRYPTO_SUPPORT */
#else
/* Fill the properties struct with the info from the config dtb */
fconf_populate("FW_CONFIG", config_base);
/* TB_FW_CONFIG was also loaded by BL1 */
tb_fw_config_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TB_FW_CONFIG_ID);
assert(tb_fw_config_info != NULL);
fconf_populate("TB_FW", tb_fw_config_info->config_addr);
#endif /* TRANSFER_LIST */
}
int arm_bl2_handle_post_image_load(unsigned int image_id)
{
int err = 0;
bl_mem_params_node_t *bl_mem_params = get_bl_mem_params_node(image_id);
#ifdef SPD_opteed
bl_mem_params_node_t *pager_mem_params = NULL;
bl_mem_params_node_t *paged_mem_params = NULL;
#endif
assert(bl_mem_params != NULL);
switch (image_id) {
#ifdef __aarch64__
case BL32_IMAGE_ID:
#ifdef SPD_opteed
pager_mem_params = get_bl_mem_params_node(BL32_EXTRA1_IMAGE_ID);
assert(pager_mem_params);
paged_mem_params = get_bl_mem_params_node(BL32_EXTRA2_IMAGE_ID);
assert(paged_mem_params);
err = parse_optee_header(&bl_mem_params->ep_info,
&pager_mem_params->image_info,
&paged_mem_params->image_info);
if (err != 0) {
WARN("OPTEE header parse error.\n");
}
#endif
bl_mem_params->ep_info.spsr = arm_get_spsr_for_bl32_entry();
break;
#endif
case BL33_IMAGE_ID:
/* BL33 expects to receive the primary CPU MPID (through r0) */
bl_mem_params->ep_info.args.arg0 = 0xffff & read_mpidr();
bl_mem_params->ep_info.spsr = arm_get_spsr_for_bl33_entry();
break;
#ifdef SCP_BL2_BASE
case SCP_BL2_IMAGE_ID:
/* The subsequent handling of SCP_BL2 is platform specific */
err = plat_arm_bl2_handle_scp_bl2(&bl_mem_params->image_info);
if (err) {
WARN("Failure in platform-specific handling of SCP_BL2 image.\n");
}
break;
#endif
default:
/* Do nothing in default case */
break;
}
return err;
}
/*******************************************************************************
* This function can be used by the platforms to update/use image
* information for given `image_id`.
******************************************************************************/
int arm_bl2_plat_handle_post_image_load(unsigned int image_id)
{
#if defined(SPD_spmd) && BL2_ENABLE_SP_LOAD
/* For Secure Partitions we don't need post processing */
if ((image_id >= (MAX_NUMBER_IDS - MAX_SP_IDS)) &&
(image_id < MAX_NUMBER_IDS)) {
return 0;
}
#endif
#if TRANSFER_LIST
if (image_id == HW_CONFIG_ID) {
/* Refresh the now stale checksum following loading of HW_CONFIG into the TL. */
transfer_list_update_checksum(secure_tl);
}
#endif /* TRANSFER_LIST */
return arm_bl2_handle_post_image_load(image_id);
}
void arm_bl2_setup_next_ep_info(bl_mem_params_node_t *next_param_node)
{
entry_point_info_t *ep __unused;
ep = transfer_list_set_handoff_args(secure_tl,
&next_param_node->ep_info);
assert(ep != NULL);
arm_transfer_list_populate_ep_info(next_param_node, secure_tl);
}