arm-trusted-firmware/bl31/bl31_main.c
thagon01-arm ed8f06ddda feat(fvp): capture timestamps in bl stages
When ENABLE_RUNTIME_INSTRUMENTATION flag is set timestamps are captured
and output to the fvp console at various boot stages using the PMF
library (which are based on aarch timers).

Timestamps are captured at entry and exit points for Bl1, Bl2
and, Bl3 respectively.

Change-Id: I7c0c502e5dbf73d711700b2fe0085ca3eb9346d2
Signed-off-by: Thaddeus Serna <Thaddeus.Gonzalez-Serna@arm.com>
2023-09-07 23:38:43 +02:00

303 lines
9.6 KiB
C

/*
* Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <bl31/bl31.h>
#include <bl31/ehf.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <common/feat_detect.h>
#include <common/runtime_svc.h>
#include <drivers/console.h>
#include <lib/bootmarker_capture.h>
#include <lib/el3_runtime/context_mgmt.h>
#include <lib/pmf/pmf.h>
#include <lib/runtime_instr.h>
#include <plat/common/platform.h>
#include <services/std_svc.h>
#if ENABLE_RUNTIME_INSTRUMENTATION
PMF_REGISTER_SERVICE_SMC(rt_instr_svc, PMF_RT_INSTR_SVC_ID,
RT_INSTR_TOTAL_IDS, PMF_STORE_ENABLE)
#endif
#if ENABLE_RUNTIME_INSTRUMENTATION
PMF_REGISTER_SERVICE(bl_svc, PMF_RT_INSTR_SVC_ID,
BL_TOTAL_IDS, PMF_DUMP_ENABLE)
#endif
/*******************************************************************************
* This function pointer is used to initialise the BL32 image. It's initialized
* by SPD calling bl31_register_bl32_init after setting up all things necessary
* for SP execution. In cases where both SPD and SP are absent, or when SPD
* finds it impossible to execute SP, this pointer is left as NULL
******************************************************************************/
static int32_t (*bl32_init)(void);
/*****************************************************************************
* Function used to initialise RMM if RME is enabled
*****************************************************************************/
#if ENABLE_RME
static int32_t (*rmm_init)(void);
#endif
/*******************************************************************************
* Variable to indicate whether next image to execute after BL31 is BL33
* (non-secure & default) or BL32 (secure).
******************************************************************************/
static uint32_t next_image_type = NON_SECURE;
#ifdef SUPPORT_UNKNOWN_MPID
/*
* Flag to know whether an unsupported MPID has been detected. To avoid having it
* landing on the .bss section, it is initialized to a non-zero value, this way
* we avoid potential WAW hazards during system bring up.
* */
volatile uint32_t unsupported_mpid_flag = 1;
#endif
/*
* Implement the ARM Standard Service function to get arguments for a
* particular service.
*/
uintptr_t get_arm_std_svc_args(unsigned int svc_mask)
{
/* Setup the arguments for PSCI Library */
DEFINE_STATIC_PSCI_LIB_ARGS_V1(psci_args, bl31_warm_entrypoint);
/* PSCI is the only ARM Standard Service implemented */
assert(svc_mask == PSCI_FID_MASK);
return (uintptr_t)&psci_args;
}
/*******************************************************************************
* Simple function to initialise all BL31 helper libraries.
******************************************************************************/
void __init bl31_lib_init(void)
{
cm_init();
}
/*******************************************************************************
* Setup function for BL31.
******************************************************************************/
void bl31_setup(u_register_t arg0, u_register_t arg1, u_register_t arg2,
u_register_t arg3)
{
/* Perform early platform-specific setup */
bl31_early_platform_setup2(arg0, arg1, arg2, arg3);
/* Perform late platform-specific setup */
bl31_plat_arch_setup();
#if CTX_INCLUDE_PAUTH_REGS
/*
* Assert that the ARMv8.3-PAuth registers are present or an access
* fault will be triggered when they are being saved or restored.
*/
assert(is_armv8_3_pauth_present());
#endif /* CTX_INCLUDE_PAUTH_REGS */
}
/*******************************************************************************
* BL31 is responsible for setting up the runtime services for the primary cpu
* before passing control to the bootloader or an Operating System. This
* function calls runtime_svc_init() which initializes all registered runtime
* services. The run time services would setup enough context for the core to
* switch to the next exception level. When this function returns, the core will
* switch to the programmed exception level via an ERET.
******************************************************************************/
void bl31_main(void)
{
/* Init registers that never change for the lifetime of TF-A */
cm_manage_extensions_el3();
NOTICE("BL31: %s\n", version_string);
NOTICE("BL31: %s\n", build_message);
#if FEATURE_DETECTION
/* Detect if features enabled during compilation are supported by PE. */
detect_arch_features();
#endif /* FEATURE_DETECTION */
#if ENABLE_RUNTIME_INSTRUMENTATION
PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_ENTRY, PMF_CACHE_MAINT);
#endif
#ifdef SUPPORT_UNKNOWN_MPID
if (unsupported_mpid_flag == 0) {
NOTICE("Unsupported MPID detected!\n");
}
#endif
/* Perform platform setup in BL31 */
bl31_platform_setup();
/* Initialise helper libraries */
bl31_lib_init();
#if EL3_EXCEPTION_HANDLING
INFO("BL31: Initialising Exception Handling Framework\n");
ehf_init();
#endif
/* Initialize the runtime services e.g. psci. */
INFO("BL31: Initializing runtime services\n");
runtime_svc_init();
/*
* All the cold boot actions on the primary cpu are done. We now need to
* decide which is the next image and how to execute it.
* If the SPD runtime service is present, it would want to pass control
* to BL32 first in S-EL1. In that case, SPD would have registered a
* function to initialize bl32 where it takes responsibility of entering
* S-EL1 and returning control back to bl31_main. Similarly, if RME is
* enabled and a function is registered to initialize RMM, control is
* transferred to RMM in R-EL2. After RMM initialization, control is
* returned back to bl31_main. Once this is done we can prepare entry
* into BL33 as normal.
*/
/*
* If SPD had registered an init hook, invoke it.
*/
if (bl32_init != NULL) {
INFO("BL31: Initializing BL32\n");
console_flush();
int32_t rc = (*bl32_init)();
if (rc == 0) {
WARN("BL31: BL32 initialization failed\n");
}
}
/*
* If RME is enabled and init hook is registered, initialize RMM
* in R-EL2.
*/
#if ENABLE_RME
if (rmm_init != NULL) {
INFO("BL31: Initializing RMM\n");
console_flush();
int32_t rc = (*rmm_init)();
if (rc == 0) {
WARN("BL31: RMM initialization failed\n");
}
}
#endif
/*
* We are ready to enter the next EL. Prepare entry into the image
* corresponding to the desired security state after the next ERET.
*/
bl31_prepare_next_image_entry();
console_flush();
/*
* Perform any platform specific runtime setup prior to cold boot exit
* from BL31
*/
bl31_plat_runtime_setup();
#if ENABLE_RUNTIME_INSTRUMENTATION
PMF_CAPTURE_TIMESTAMP(bl_svc, BL31_EXIT, PMF_CACHE_MAINT);
console_flush();
#endif
}
/*******************************************************************************
* Accessor functions to help runtime services decide which image should be
* executed after BL31. This is BL33 or the non-secure bootloader image by
* default but the Secure payload dispatcher could override this by requesting
* an entry into BL32 (Secure payload) first. If it does so then it should use
* the same API to program an entry into BL33 once BL32 initialisation is
* complete.
******************************************************************************/
void bl31_set_next_image_type(uint32_t security_state)
{
assert(sec_state_is_valid(security_state));
next_image_type = security_state;
}
uint32_t bl31_get_next_image_type(void)
{
return next_image_type;
}
/*******************************************************************************
* This function programs EL3 registers and performs other setup to enable entry
* into the next image after BL31 at the next ERET.
******************************************************************************/
void __init bl31_prepare_next_image_entry(void)
{
entry_point_info_t *next_image_info;
uint32_t image_type;
#if CTX_INCLUDE_AARCH32_REGS
/*
* Ensure that the build flag to save AArch32 system registers in CPU
* context is not set for AArch64-only platforms.
*/
if (el_implemented(1) == EL_IMPL_A64ONLY) {
ERROR("EL1 supports AArch64-only. Please set build flag "
"CTX_INCLUDE_AARCH32_REGS = 0\n");
panic();
}
#endif
/* Determine which image to execute next */
image_type = bl31_get_next_image_type();
/* Program EL3 registers to enable entry into the next EL */
next_image_info = bl31_plat_get_next_image_ep_info(image_type);
assert(next_image_info != NULL);
assert(image_type == GET_SECURITY_STATE(next_image_info->h.attr));
INFO("BL31: Preparing for EL3 exit to %s world\n",
(image_type == SECURE) ? "secure" : "normal");
print_entry_point_info(next_image_info);
cm_init_my_context(next_image_info);
/*
* If we are entering the Non-secure world, use
* 'cm_prepare_el3_exit_ns' to exit.
*/
if (image_type == NON_SECURE) {
cm_prepare_el3_exit_ns();
} else {
cm_prepare_el3_exit(image_type);
}
}
/*******************************************************************************
* This function initializes the pointer to BL32 init function. This is expected
* to be called by the SPD after it finishes all its initialization
******************************************************************************/
void bl31_register_bl32_init(int32_t (*func)(void))
{
bl32_init = func;
}
#if ENABLE_RME
/*******************************************************************************
* This function initializes the pointer to RMM init function. This is expected
* to be called by the RMMD after it finishes all its initialization
******************************************************************************/
void bl31_register_rmm_init(int32_t (*func)(void))
{
rmm_init = func;
}
#endif