mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-17 01:54:22 +00:00

Document the API in separate platform interrupt controller API document. Change-Id: If18f208e10a8a243f5c59d226fcf48e985941949 Co-authored-by: Yousuf A <yousuf.sait@arm.com> Signed-off-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
780 lines
26 KiB
C
780 lines
26 KiB
C
/*
|
|
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <debug.h>
|
|
#include <gicv3.h>
|
|
#include "gicv3_private.h"
|
|
|
|
const gicv3_driver_data_t *gicv3_driver_data;
|
|
static unsigned int gicv2_compat;
|
|
|
|
/*
|
|
* Redistributor power operations are weakly bound so that they can be
|
|
* overridden
|
|
*/
|
|
#pragma weak gicv3_rdistif_off
|
|
#pragma weak gicv3_rdistif_on
|
|
|
|
|
|
/* Helper macros to save and restore GICD registers to and from the context */
|
|
#define RESTORE_GICD_REGS(base, ctx, intr_num, reg, REG) \
|
|
do { \
|
|
for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
|
|
int_id += (1 << REG##_SHIFT)) { \
|
|
gicd_write_##reg(base, int_id, \
|
|
ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT]); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define SAVE_GICD_REGS(base, ctx, intr_num, reg, REG) \
|
|
do { \
|
|
for (unsigned int int_id = MIN_SPI_ID; int_id < intr_num; \
|
|
int_id += (1 << REG##_SHIFT)) { \
|
|
ctx->gicd_##reg[(int_id - MIN_SPI_ID) >> REG##_SHIFT] =\
|
|
gicd_read_##reg(base, int_id); \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the ARM GICv3 driver in EL3 with provided platform
|
|
* inputs.
|
|
******************************************************************************/
|
|
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
|
|
{
|
|
unsigned int gic_version;
|
|
|
|
assert(plat_driver_data);
|
|
assert(plat_driver_data->gicd_base);
|
|
assert(plat_driver_data->gicr_base);
|
|
assert(plat_driver_data->rdistif_num);
|
|
assert(plat_driver_data->rdistif_base_addrs);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/*
|
|
* The platform should provide a list of at least one type of
|
|
* interrupts
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array ||
|
|
plat_driver_data->g1s_interrupt_array);
|
|
|
|
/*
|
|
* If there are no interrupts of a particular type, then the number of
|
|
* interrupts of that type should be 0 and vice-versa.
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array ?
|
|
plat_driver_data->g0_interrupt_num :
|
|
plat_driver_data->g0_interrupt_num == 0);
|
|
assert(plat_driver_data->g1s_interrupt_array ?
|
|
plat_driver_data->g1s_interrupt_num :
|
|
plat_driver_data->g1s_interrupt_num == 0);
|
|
|
|
/* Check for system register support */
|
|
#ifdef AARCH32
|
|
assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
|
|
#else
|
|
assert(read_id_aa64pfr0_el1() &
|
|
(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
|
|
#endif /* AARCH32 */
|
|
|
|
/* The GIC version should be 3.0 */
|
|
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
|
|
gic_version >>= PIDR2_ARCH_REV_SHIFT;
|
|
gic_version &= PIDR2_ARCH_REV_MASK;
|
|
assert(gic_version == ARCH_REV_GICV3);
|
|
|
|
/*
|
|
* Find out whether the GIC supports the GICv2 compatibility mode. The
|
|
* ARE_S bit resets to 0 if supported
|
|
*/
|
|
gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
|
|
gicv2_compat >>= CTLR_ARE_S_SHIFT;
|
|
gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
|
|
|
|
/*
|
|
* Find the base address of each implemented Redistributor interface.
|
|
* The number of interfaces should be equal to the number of CPUs in the
|
|
* system. The memory for saving these addresses has to be allocated by
|
|
* the platform port
|
|
*/
|
|
gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
|
|
plat_driver_data->rdistif_num,
|
|
plat_driver_data->gicr_base,
|
|
plat_driver_data->mpidr_to_core_pos);
|
|
|
|
gicv3_driver_data = plat_driver_data;
|
|
|
|
/*
|
|
* The GIC driver data is initialized by the primary CPU with caches
|
|
* enabled. When the secondary CPU boots up, it initializes the
|
|
* GICC/GICR interface with the caches disabled. Hence flush the
|
|
* driver data to ensure coherency. This is not required if the
|
|
* platform has HW_ASSISTED_COHERENCY enabled.
|
|
*/
|
|
#if !HW_ASSISTED_COHERENCY
|
|
flush_dcache_range((uintptr_t) &gicv3_driver_data,
|
|
sizeof(gicv3_driver_data));
|
|
flush_dcache_range((uintptr_t) gicv3_driver_data,
|
|
sizeof(*gicv3_driver_data));
|
|
#endif
|
|
|
|
INFO("GICv3 %s legacy support detected."
|
|
" ARM GICV3 driver initialized in EL3\n",
|
|
gicv2_compat ? "with" : "without");
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the GIC distributor interface based upon the data
|
|
* provided by the platform while initialising the driver.
|
|
******************************************************************************/
|
|
void gicv3_distif_init(void)
|
|
{
|
|
unsigned int bitmap = 0;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(gicv3_driver_data->gicd_base);
|
|
assert(gicv3_driver_data->g1s_interrupt_array ||
|
|
gicv3_driver_data->g0_interrupt_array);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/*
|
|
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
|
|
* the ARE_S bit. The Distributor might generate a system error
|
|
* otherwise.
|
|
*/
|
|
gicd_clr_ctlr(gicv3_driver_data->gicd_base,
|
|
CTLR_ENABLE_G0_BIT |
|
|
CTLR_ENABLE_G1S_BIT |
|
|
CTLR_ENABLE_G1NS_BIT,
|
|
RWP_TRUE);
|
|
|
|
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
|
|
gicd_set_ctlr(gicv3_driver_data->gicd_base,
|
|
CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
|
|
|
|
/* Set the default attribute of all SPIs */
|
|
gicv3_spis_configure_defaults(gicv3_driver_data->gicd_base);
|
|
|
|
/* Configure the G1S SPIs */
|
|
if (gicv3_driver_data->g1s_interrupt_array) {
|
|
gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
|
|
gicv3_driver_data->g1s_interrupt_num,
|
|
gicv3_driver_data->g1s_interrupt_array,
|
|
INTR_GROUP1S);
|
|
bitmap |= CTLR_ENABLE_G1S_BIT;
|
|
}
|
|
|
|
/* Configure the G0 SPIs */
|
|
if (gicv3_driver_data->g0_interrupt_array) {
|
|
gicv3_secure_spis_configure(gicv3_driver_data->gicd_base,
|
|
gicv3_driver_data->g0_interrupt_num,
|
|
gicv3_driver_data->g0_interrupt_array,
|
|
INTR_GROUP0);
|
|
bitmap |= CTLR_ENABLE_G0_BIT;
|
|
}
|
|
|
|
/* Enable the secure SPIs now that they have been configured */
|
|
gicd_set_ctlr(gicv3_driver_data->gicd_base, bitmap, RWP_TRUE);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the GIC Redistributor interface of the calling CPU
|
|
* (identified by the 'proc_num' parameter) based upon the data provided by the
|
|
* platform while initialising the driver.
|
|
******************************************************************************/
|
|
void gicv3_rdistif_init(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
assert(gicv3_driver_data->gicd_base);
|
|
assert(gicd_read_ctlr(gicv3_driver_data->gicd_base) & CTLR_ARE_S_BIT);
|
|
assert(gicv3_driver_data->g1s_interrupt_array ||
|
|
gicv3_driver_data->g0_interrupt_array);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Power on redistributor */
|
|
gicv3_rdistif_on(proc_num);
|
|
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
|
|
/* Set the default attribute of all SGIs and PPIs */
|
|
gicv3_ppi_sgi_configure_defaults(gicr_base);
|
|
|
|
/* Configure the G1S SGIs/PPIs */
|
|
if (gicv3_driver_data->g1s_interrupt_array) {
|
|
gicv3_secure_ppi_sgi_configure(gicr_base,
|
|
gicv3_driver_data->g1s_interrupt_num,
|
|
gicv3_driver_data->g1s_interrupt_array,
|
|
INTR_GROUP1S);
|
|
}
|
|
|
|
/* Configure the G0 SGIs/PPIs */
|
|
if (gicv3_driver_data->g0_interrupt_array) {
|
|
gicv3_secure_ppi_sgi_configure(gicr_base,
|
|
gicv3_driver_data->g0_interrupt_num,
|
|
gicv3_driver_data->g0_interrupt_array,
|
|
INTR_GROUP0);
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Functions to perform power operations on GIC Redistributor
|
|
******************************************************************************/
|
|
void gicv3_rdistif_off(unsigned int proc_num)
|
|
{
|
|
return;
|
|
}
|
|
|
|
void gicv3_rdistif_on(unsigned int proc_num)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function enables the GIC CPU interface of the calling CPU using only
|
|
* system register accesses.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_enable(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
unsigned int scr_el3;
|
|
unsigned int icc_sre_el3;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Mark the connected core as awake */
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
gicv3_rdistif_mark_core_awake(gicr_base);
|
|
|
|
/* Disable the legacy interrupt bypass */
|
|
icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
|
|
|
|
/*
|
|
* Enable system register access for EL3 and allow lower exception
|
|
* levels to configure the same for themselves. If the legacy mode is
|
|
* not supported, the SRE bit is RAO/WI
|
|
*/
|
|
icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
|
|
write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
|
|
|
|
scr_el3 = read_scr_el3();
|
|
|
|
/*
|
|
* Switch to NS state to write Non secure ICC_SRE_EL1 and
|
|
* ICC_SRE_EL2 registers.
|
|
*/
|
|
write_scr_el3(scr_el3 | SCR_NS_BIT);
|
|
isb();
|
|
|
|
write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
|
|
write_icc_sre_el1(ICC_SRE_SRE_BIT);
|
|
isb();
|
|
|
|
/* Switch to secure state. */
|
|
write_scr_el3(scr_el3 & (~SCR_NS_BIT));
|
|
isb();
|
|
|
|
/* Program the idle priority in the PMR */
|
|
write_icc_pmr_el1(GIC_PRI_MASK);
|
|
|
|
/* Enable Group0 interrupts */
|
|
write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
|
|
|
|
/* Enable Group1 Secure interrupts */
|
|
write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
|
|
IGRPEN1_EL3_ENABLE_G1S_BIT);
|
|
|
|
/* Write the secure ICC_SRE_EL1 register */
|
|
write_icc_sre_el1(ICC_SRE_SRE_BIT);
|
|
isb();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function disables the GIC CPU interface of the calling CPU using
|
|
* only system register accesses.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_disable(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Disable legacy interrupt bypass */
|
|
write_icc_sre_el3(read_icc_sre_el3() |
|
|
(ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
|
|
|
|
/* Disable Group0 interrupts */
|
|
write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
|
|
~IGRPEN1_EL1_ENABLE_G0_BIT);
|
|
|
|
/* Disable Group1 Secure and Non-Secure interrupts */
|
|
write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
|
|
~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
|
|
IGRPEN1_EL3_ENABLE_G1S_BIT));
|
|
|
|
/* Synchronise accesses to group enable registers */
|
|
isb();
|
|
|
|
/* Mark the connected core as asleep */
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
gicv3_rdistif_mark_core_asleep(gicr_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface.
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_pending_interrupt_id(void)
|
|
{
|
|
unsigned int id;
|
|
|
|
assert(IS_IN_EL3());
|
|
id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
|
|
|
|
/*
|
|
* If the ID is special identifier corresponding to G1S or G1NS
|
|
* interrupt, then read the highest pending group 1 interrupt.
|
|
*/
|
|
if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
|
|
return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
|
|
|
|
return id;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. The return values can be one of the following :
|
|
* PENDING_G1S_INTID : The interrupt type is secure Group 1.
|
|
* PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
|
|
* 0 - 1019 : The interrupt type is secure Group 0.
|
|
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
|
|
* sufficient priority to be signaled
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_pending_interrupt_type(void)
|
|
{
|
|
assert(IS_IN_EL3());
|
|
return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1 Secure / Non Secure. The return value can be one of the
|
|
* following :
|
|
* INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt
|
|
* INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
|
|
* INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
|
|
* interrupt.
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_interrupt_type(unsigned int id,
|
|
unsigned int proc_num)
|
|
{
|
|
unsigned int igroup, grpmodr;
|
|
uintptr_t gicr_base;
|
|
|
|
assert(IS_IN_EL3());
|
|
assert(gicv3_driver_data);
|
|
|
|
/* Ensure the parameters are valid */
|
|
assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
|
|
/* All LPI interrupts are Group 1 non secure */
|
|
if (id >= MIN_LPI_ID)
|
|
return INTR_GROUP1NS;
|
|
|
|
if (id < MIN_SPI_ID) {
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
igroup = gicr_get_igroupr0(gicr_base, id);
|
|
grpmodr = gicr_get_igrpmodr0(gicr_base, id);
|
|
} else {
|
|
assert(gicv3_driver_data->gicd_base);
|
|
igroup = gicd_get_igroupr(gicv3_driver_data->gicd_base, id);
|
|
grpmodr = gicd_get_igrpmodr(gicv3_driver_data->gicd_base, id);
|
|
}
|
|
|
|
/*
|
|
* If the IGROUP bit is set, then it is a Group 1 Non secure
|
|
* interrupt
|
|
*/
|
|
if (igroup)
|
|
return INTR_GROUP1NS;
|
|
|
|
/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
|
|
if (grpmodr)
|
|
return INTR_GROUP1S;
|
|
|
|
/* Else it is a Group 0 Secure interrupt */
|
|
return INTR_GROUP0;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to save and disable the GIC ITS register context. The power
|
|
* management of GIC ITS is implementation-defined and this function doesn't
|
|
* save any memory structures required to support ITS. As the sequence to save
|
|
* this state is implementation defined, it should be executed in platform
|
|
* specific code. Calling this function alone and then powering down the GIC and
|
|
* ITS without implementing the aforementioned platform specific code will
|
|
* corrupt the ITS state.
|
|
*
|
|
* This function must be invoked after the GIC CPU interface is disabled.
|
|
*****************************************************************************/
|
|
void gicv3_its_save_disable(uintptr_t gits_base, gicv3_its_ctx_t * const its_ctx)
|
|
{
|
|
int i;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(IS_IN_EL3());
|
|
assert(its_ctx);
|
|
assert(gits_base);
|
|
|
|
its_ctx->gits_ctlr = gits_read_ctlr(gits_base);
|
|
|
|
/* Disable the ITS */
|
|
gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
|
|
(~GITS_CTLR_ENABLED_BIT));
|
|
|
|
/* Wait for quiescent state */
|
|
gits_wait_for_quiescent_bit(gits_base);
|
|
|
|
its_ctx->gits_cbaser = gits_read_cbaser(gits_base);
|
|
its_ctx->gits_cwriter = gits_read_cwriter(gits_base);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
|
|
its_ctx->gits_baser[i] = gits_read_baser(gits_base, i);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to restore the GIC ITS register context. The power
|
|
* management of GIC ITS is implementation defined and this function doesn't
|
|
* restore any memory structures required to support ITS. The assumption is
|
|
* that these structures are in memory and are retained during system suspend.
|
|
*
|
|
* This must be invoked before the GIC CPU interface is enabled.
|
|
*****************************************************************************/
|
|
void gicv3_its_restore(uintptr_t gits_base, const gicv3_its_ctx_t * const its_ctx)
|
|
{
|
|
int i;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(IS_IN_EL3());
|
|
assert(its_ctx);
|
|
assert(gits_base);
|
|
|
|
/* Assert that the GITS is disabled and quiescent */
|
|
assert((gits_read_ctlr(gits_base) & GITS_CTLR_ENABLED_BIT) == 0);
|
|
assert((gits_read_ctlr(gits_base) & GITS_CTLR_QUIESCENT_BIT) != 0);
|
|
|
|
gits_write_cbaser(gits_base, its_ctx->gits_cbaser);
|
|
gits_write_cwriter(gits_base, its_ctx->gits_cwriter);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(its_ctx->gits_baser); i++)
|
|
gits_write_baser(gits_base, i, its_ctx->gits_baser[i]);
|
|
|
|
/* Restore the ITS CTLR but leave the ITS disabled */
|
|
gits_write_ctlr(gits_base, its_ctx->gits_ctlr &
|
|
(~GITS_CTLR_ENABLED_BIT));
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to save the GIC Redistributor register context. This function
|
|
* must be invoked after CPU interface disable and prior to Distributor save.
|
|
*****************************************************************************/
|
|
void gicv3_rdistif_save(unsigned int proc_num, gicv3_redist_ctx_t * const rdist_ctx)
|
|
{
|
|
uintptr_t gicr_base;
|
|
unsigned int int_id;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
assert(IS_IN_EL3());
|
|
assert(rdist_ctx);
|
|
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
|
|
/*
|
|
* Wait for any write to GICR_CTLR to complete before trying to save any
|
|
* state.
|
|
*/
|
|
gicr_wait_for_pending_write(gicr_base);
|
|
|
|
rdist_ctx->gicr_ctlr = gicr_read_ctlr(gicr_base);
|
|
|
|
rdist_ctx->gicr_propbaser = gicr_read_propbaser(gicr_base);
|
|
rdist_ctx->gicr_pendbaser = gicr_read_pendbaser(gicr_base);
|
|
|
|
rdist_ctx->gicr_igroupr0 = gicr_read_igroupr0(gicr_base);
|
|
rdist_ctx->gicr_isenabler0 = gicr_read_isenabler0(gicr_base);
|
|
rdist_ctx->gicr_ispendr0 = gicr_read_ispendr0(gicr_base);
|
|
rdist_ctx->gicr_isactiver0 = gicr_read_isactiver0(gicr_base);
|
|
rdist_ctx->gicr_icfgr0 = gicr_read_icfgr0(gicr_base);
|
|
rdist_ctx->gicr_icfgr1 = gicr_read_icfgr1(gicr_base);
|
|
rdist_ctx->gicr_igrpmodr0 = gicr_read_igrpmodr0(gicr_base);
|
|
rdist_ctx->gicr_nsacr = gicr_read_nsacr(gicr_base);
|
|
for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
|
|
int_id += (1 << IPRIORITYR_SHIFT)) {
|
|
rdist_ctx->gicr_ipriorityr[(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT] =
|
|
gicr_read_ipriorityr(gicr_base, int_id);
|
|
}
|
|
|
|
|
|
/*
|
|
* Call the pre-save hook that implements the IMP DEF sequence that may
|
|
* be required on some GIC implementations. As this may need to access
|
|
* the Redistributor registers, we pass it proc_num.
|
|
*/
|
|
gicv3_distif_pre_save(proc_num);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to restore the GIC Redistributor register context. We disable
|
|
* LPI and per-cpu interrupts before we start restore of the Redistributor.
|
|
* This function must be invoked after Distributor restore but prior to
|
|
* CPU interface enable. The pending and active interrupts are restored
|
|
* after the interrupts are fully configured and enabled.
|
|
*****************************************************************************/
|
|
void gicv3_rdistif_init_restore(unsigned int proc_num,
|
|
const gicv3_redist_ctx_t * const rdist_ctx)
|
|
{
|
|
uintptr_t gicr_base;
|
|
unsigned int int_id;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(proc_num < gicv3_driver_data->rdistif_num);
|
|
assert(gicv3_driver_data->rdistif_base_addrs);
|
|
assert(IS_IN_EL3());
|
|
assert(rdist_ctx);
|
|
|
|
gicr_base = gicv3_driver_data->rdistif_base_addrs[proc_num];
|
|
|
|
/* Power on redistributor */
|
|
gicv3_rdistif_on(proc_num);
|
|
|
|
/*
|
|
* Call the post-restore hook that implements the IMP DEF sequence that
|
|
* may be required on some GIC implementations. As this may need to
|
|
* access the Redistributor registers, we pass it proc_num.
|
|
*/
|
|
gicv3_distif_post_restore(proc_num);
|
|
|
|
/*
|
|
* Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
|
|
* more scalable approach as it avoids clearing the enable bits in the
|
|
* GICD_CTLR
|
|
*/
|
|
gicr_write_icenabler0(gicr_base, ~0);
|
|
/* Wait for pending writes to GICR_ICENABLER */
|
|
gicr_wait_for_pending_write(gicr_base);
|
|
|
|
/*
|
|
* Disable the LPIs to avoid unpredictable behavior when writing to
|
|
* GICR_PROPBASER and GICR_PENDBASER.
|
|
*/
|
|
gicr_write_ctlr(gicr_base,
|
|
rdist_ctx->gicr_ctlr & ~(GICR_CTLR_EN_LPIS_BIT));
|
|
|
|
/* Restore registers' content */
|
|
gicr_write_propbaser(gicr_base, rdist_ctx->gicr_propbaser);
|
|
gicr_write_pendbaser(gicr_base, rdist_ctx->gicr_pendbaser);
|
|
|
|
gicr_write_igroupr0(gicr_base, rdist_ctx->gicr_igroupr0);
|
|
|
|
for (int_id = MIN_SGI_ID; int_id < TOTAL_PCPU_INTR_NUM;
|
|
int_id += (1 << IPRIORITYR_SHIFT)) {
|
|
gicr_write_ipriorityr(gicr_base, int_id,
|
|
rdist_ctx->gicr_ipriorityr[
|
|
(int_id - MIN_SGI_ID) >> IPRIORITYR_SHIFT]);
|
|
}
|
|
|
|
gicr_write_icfgr0(gicr_base, rdist_ctx->gicr_icfgr0);
|
|
gicr_write_icfgr1(gicr_base, rdist_ctx->gicr_icfgr1);
|
|
gicr_write_igrpmodr0(gicr_base, rdist_ctx->gicr_igrpmodr0);
|
|
gicr_write_nsacr(gicr_base, rdist_ctx->gicr_nsacr);
|
|
|
|
/* Restore after group and priorities are set */
|
|
gicr_write_ispendr0(gicr_base, rdist_ctx->gicr_ispendr0);
|
|
gicr_write_isactiver0(gicr_base, rdist_ctx->gicr_isactiver0);
|
|
|
|
/*
|
|
* Wait for all writes to the Distributor to complete before enabling
|
|
* the SGI and PPIs.
|
|
*/
|
|
gicr_wait_for_upstream_pending_write(gicr_base);
|
|
gicr_write_isenabler0(gicr_base, rdist_ctx->gicr_isenabler0);
|
|
|
|
/*
|
|
* Restore GICR_CTLR.Enable_LPIs bit and wait for pending writes in case
|
|
* the first write to GICR_CTLR was still in flight (this write only
|
|
* restores GICR_CTLR.Enable_LPIs and no waiting is required for this
|
|
* bit).
|
|
*/
|
|
gicr_write_ctlr(gicr_base, rdist_ctx->gicr_ctlr);
|
|
gicr_wait_for_pending_write(gicr_base);
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to save the GIC Distributor register context. This function
|
|
* must be invoked after CPU interface disable and Redistributor save.
|
|
*****************************************************************************/
|
|
void gicv3_distif_save(gicv3_dist_ctx_t * const dist_ctx)
|
|
{
|
|
unsigned int num_ints;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(gicv3_driver_data->gicd_base);
|
|
assert(IS_IN_EL3());
|
|
assert(dist_ctx);
|
|
|
|
uintptr_t gicd_base = gicv3_driver_data->gicd_base;
|
|
|
|
num_ints = gicd_read_typer(gicd_base);
|
|
num_ints &= TYPER_IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1) << 5;
|
|
|
|
assert(num_ints <= MAX_SPI_ID + 1);
|
|
|
|
/* Wait for pending write to complete */
|
|
gicd_wait_for_pending_write(gicd_base);
|
|
|
|
/* Save the GICD_CTLR */
|
|
dist_ctx->gicd_ctlr = gicd_read_ctlr(gicd_base);
|
|
|
|
/* Save GICD_IGROUPR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
|
|
|
|
/* Save GICD_ISENABLER for INT_IDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
|
|
|
|
/* Save GICD_ISPENDR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
|
|
|
|
/* Save GICD_ISACTIVER for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
|
|
|
|
/* Save GICD_IPRIORITYR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
|
|
|
|
/* Save GICD_ICFGR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
|
|
|
|
/* Save GICD_IGRPMODR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
|
|
|
|
/* Save GICD_NSACR for INTIDs 32 - 1020 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
|
|
|
|
/* Save GICD_IROUTER for INTIDs 32 - 1024 */
|
|
SAVE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
|
|
|
|
/*
|
|
* GICD_ITARGETSR<n> and GICD_SPENDSGIR<n> are RAZ/WI when
|
|
* GICD_CTLR.ARE_(S|NS) bits are set which is the case for our GICv3
|
|
* driver.
|
|
*/
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Function to restore the GIC Distributor register context. We disable G0, G1S
|
|
* and G1NS interrupt groups before we start restore of the Distributor. This
|
|
* function must be invoked prior to Redistributor restore and CPU interface
|
|
* enable. The pending and active interrupts are restored after the interrupts
|
|
* are fully configured and enabled.
|
|
*****************************************************************************/
|
|
void gicv3_distif_init_restore(const gicv3_dist_ctx_t * const dist_ctx)
|
|
{
|
|
unsigned int num_ints = 0;
|
|
|
|
assert(gicv3_driver_data);
|
|
assert(gicv3_driver_data->gicd_base);
|
|
assert(IS_IN_EL3());
|
|
assert(dist_ctx);
|
|
|
|
uintptr_t gicd_base = gicv3_driver_data->gicd_base;
|
|
|
|
/*
|
|
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
|
|
* the ARE_S bit. The Distributor might generate a system error
|
|
* otherwise.
|
|
*/
|
|
gicd_clr_ctlr(gicd_base,
|
|
CTLR_ENABLE_G0_BIT |
|
|
CTLR_ENABLE_G1S_BIT |
|
|
CTLR_ENABLE_G1NS_BIT,
|
|
RWP_TRUE);
|
|
|
|
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
|
|
gicd_set_ctlr(gicd_base, CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
|
|
|
|
num_ints = gicd_read_typer(gicd_base);
|
|
num_ints &= TYPER_IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1) << 5;
|
|
|
|
assert(num_ints <= MAX_SPI_ID + 1);
|
|
|
|
/* Restore GICD_IGROUPR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igroupr, IGROUPR);
|
|
|
|
/* Restore GICD_IPRIORITYR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ipriorityr, IPRIORITYR);
|
|
|
|
/* Restore GICD_ICFGR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, icfgr, ICFGR);
|
|
|
|
/* Restore GICD_IGRPMODR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, igrpmodr, IGRPMODR);
|
|
|
|
/* Restore GICD_NSACR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, nsacr, NSACR);
|
|
|
|
/* Restore GICD_IROUTER for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, irouter, IROUTER);
|
|
|
|
/*
|
|
* Restore ISENABLER, ISPENDR and ISACTIVER after the interrupts are
|
|
* configured.
|
|
*/
|
|
|
|
/* Restore GICD_ISENABLER for INT_IDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isenabler, ISENABLER);
|
|
|
|
/* Restore GICD_ISPENDR for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, ispendr, ISPENDR);
|
|
|
|
/* Restore GICD_ISACTIVER for INTIDs 32 - 1020 */
|
|
RESTORE_GICD_REGS(gicd_base, dist_ctx, num_ints, isactiver, ISACTIVER);
|
|
|
|
/* Restore the GICD_CTLR */
|
|
gicd_write_ctlr(gicd_base, dist_ctx->gicd_ctlr);
|
|
gicd_wait_for_pending_write(gicd_base);
|
|
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function gets the priority of the interrupt the processor is currently
|
|
* servicing.
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_running_priority(void)
|
|
{
|
|
return read_icc_rpr_el1();
|
|
}
|