mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-19 19:14:28 +00:00

Add support for initializing DRAM on RZ/G2M SoC. Signed-off-by: Biju Das <biju.das.jz@bp.renesas.com> Reviewed-by: Lad Prabhakar <prabhakar.mahadev-lad.rj@bp.renesas.com> Change-Id: I99f1a6971a061a44687af498d55306a93e4fc8f7
3700 lines
92 KiB
C
3700 lines
92 KiB
C
/*
|
|
* Copyright (c) 2021, Renesas Electronics Corporation. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <common/debug.h>
|
|
#include <lib/mmio.h>
|
|
|
|
#include "boot_init_dram.h"
|
|
#include "boot_init_dram_regdef.h"
|
|
#include "ddr_regdef.h"
|
|
#include "dram_sub_func.h"
|
|
#include "init_dram_tbl_g2m.h"
|
|
#include "micro_delay.h"
|
|
#include "rcar_def.h"
|
|
|
|
/* load board configuration */
|
|
#include "boot_init_dram_config.c"
|
|
|
|
#define DDR_BACKUPMODE
|
|
#define FATAL_MSG(x) NOTICE(x)
|
|
|
|
/* variables */
|
|
#ifdef RCAR_DDR_FIXED_LSI_TYPE
|
|
#ifndef RCAR_AUTO
|
|
#define RCAR_AUTO 99U
|
|
#define RZ_G2M 100U
|
|
|
|
#define RCAR_CUT_10 0U
|
|
#define RCAR_CUT_11 1U
|
|
#define RCAR_CUT_20 10U
|
|
#define RCAR_CUT_30 20U
|
|
#endif /* RCAR_AUTO */
|
|
#ifndef RCAR_LSI
|
|
#define RCAR_LSI RCAR_AUTO
|
|
#endif
|
|
|
|
#if (RCAR_LSI == RCAR_AUTO)
|
|
static uint32_t prr_product;
|
|
static uint32_t prr_cut;
|
|
#else /* RCAR_LSI == RCAR_AUTO */
|
|
#if (RCAR_LSI == RZ_G2M)
|
|
static const uint32_t prr_product = PRR_PRODUCT_M3;
|
|
#endif /* RCAR_LSI == RZ_G2M */
|
|
|
|
#ifndef RCAR_LSI_CUT
|
|
static uint32_t prr_cut;
|
|
#else /* RCAR_LSI_CUT */
|
|
#if (RCAR_LSI_CUT == RCAR_CUT_10)
|
|
static const uint32_t prr_cut = PRR_PRODUCT_10;
|
|
#elif(RCAR_LSI_CUT == RCAR_CUT_11)
|
|
static const uint32_t prr_cut = PRR_PRODUCT_11;
|
|
#elif(RCAR_LSI_CUT == RCAR_CUT_20)
|
|
static const uint32_t prr_cut = PRR_PRODUCT_20;
|
|
#elif(RCAR_LSI_CUT == RCAR_CUT_30)
|
|
static const uint32_t prr_cut = PRR_PRODUCT_30;
|
|
#endif /* RCAR_LSI_CUT == RCAR_CUT_10 */
|
|
#endif /* RCAR_LSI_CUT */
|
|
#endif /* RCAR_LSI == RCAR_AUTO */
|
|
#else /* RCAR_DDR_FIXED_LSI_TYPE */
|
|
static uint32_t prr_product;
|
|
static uint32_t prr_cut;
|
|
#endif /* RCAR_DDR_FIXED_LSI_TYPE */
|
|
|
|
static const uint32_t *p_ddr_regdef_tbl;
|
|
static uint32_t brd_clk;
|
|
static uint32_t brd_clkdiv;
|
|
static uint32_t brd_clkdiva;
|
|
static uint32_t ddr_mbps;
|
|
static uint32_t ddr_mbpsdiv;
|
|
static uint32_t ddr_tccd;
|
|
static uint32_t ddr_phycaslice;
|
|
static const struct _boardcnf *board_cnf;
|
|
static uint32_t ddr_phyvalid;
|
|
static uint32_t ddr_density[DRAM_CH_CNT][CS_CNT];
|
|
static uint32_t ch_have_this_cs[CS_CNT] __aligned(64);
|
|
static uint32_t rdqdm_dly[DRAM_CH_CNT][CSAB_CNT][SLICE_CNT * 2U][9U];
|
|
static uint32_t max_density;
|
|
static uint32_t ddr0800_mul;
|
|
static uint32_t ddr_mul;
|
|
static uint32_t DDR_PHY_SLICE_REGSET_OFS;
|
|
static uint32_t DDR_PHY_ADR_V_REGSET_OFS;
|
|
static uint32_t DDR_PHY_ADR_I_REGSET_OFS;
|
|
static uint32_t DDR_PHY_ADR_G_REGSET_OFS;
|
|
static uint32_t DDR_PI_REGSET_OFS;
|
|
static uint32_t DDR_PHY_SLICE_REGSET_SIZE;
|
|
static uint32_t DDR_PHY_ADR_V_REGSET_SIZE;
|
|
static uint32_t DDR_PHY_ADR_I_REGSET_SIZE;
|
|
static uint32_t DDR_PHY_ADR_G_REGSET_SIZE;
|
|
static uint32_t DDR_PI_REGSET_SIZE;
|
|
static uint32_t DDR_PHY_SLICE_REGSET_NUM;
|
|
static uint32_t DDR_PHY_ADR_V_REGSET_NUM;
|
|
static uint32_t DDR_PHY_ADR_I_REGSET_NUM;
|
|
static uint32_t DDR_PHY_ADR_G_REGSET_NUM;
|
|
static uint32_t DDR_PI_REGSET_NUM;
|
|
static uint32_t DDR_PHY_ADR_I_NUM;
|
|
#define DDR_PHY_REGSET_MAX 128
|
|
#define DDR_PI_REGSET_MAX 320
|
|
static uint32_t _cnf_DDR_PHY_SLICE_REGSET[DDR_PHY_REGSET_MAX];
|
|
static uint32_t _cnf_DDR_PHY_ADR_V_REGSET[DDR_PHY_REGSET_MAX];
|
|
static uint32_t _cnf_DDR_PHY_ADR_I_REGSET[DDR_PHY_REGSET_MAX];
|
|
static uint32_t _cnf_DDR_PHY_ADR_G_REGSET[DDR_PHY_REGSET_MAX];
|
|
static uint32_t _cnf_DDR_PI_REGSET[DDR_PI_REGSET_MAX];
|
|
static uint32_t pll3_mode;
|
|
static uint32_t loop_max;
|
|
#ifdef DDR_BACKUPMODE
|
|
uint32_t ddr_backup = DRAM_BOOT_STATUS_COLD;
|
|
/* #define DDR_BACKUPMODE_HALF */ /* for Half channel(ch0,1 only) */
|
|
#endif
|
|
|
|
#ifdef DDR_QOS_INIT_SETTING /* only for non qos_init */
|
|
#define OPERATING_FREQ (400U) /* Mhz */
|
|
#define BASE_SUB_SLOT_NUM (0x6U)
|
|
#define SUB_SLOT_CYCLE (0x7EU) /* 126 */
|
|
#define QOSWT_WTSET0_CYCLE \
|
|
((SUB_SLOT_CYCLE * BASE_SUB_SLOT_NUM * 1000U) / \
|
|
OPERATING_FREQ) /* unit:ns */
|
|
|
|
uint32_t get_refperiod(void)
|
|
{
|
|
return QOSWT_WTSET0_CYCLE;
|
|
}
|
|
#else /* DDR_QOS_INIT_SETTING */
|
|
extern uint32_t get_refperiod(void);
|
|
#endif /* DDR_QOS_INIT_SETTING */
|
|
|
|
#define _reg_PHY_RX_CAL_X_NUM 11U
|
|
static const uint32_t _reg_PHY_RX_CAL_X[_reg_PHY_RX_CAL_X_NUM] = {
|
|
_reg_PHY_RX_CAL_DQ0,
|
|
_reg_PHY_RX_CAL_DQ1,
|
|
_reg_PHY_RX_CAL_DQ2,
|
|
_reg_PHY_RX_CAL_DQ3,
|
|
_reg_PHY_RX_CAL_DQ4,
|
|
_reg_PHY_RX_CAL_DQ5,
|
|
_reg_PHY_RX_CAL_DQ6,
|
|
_reg_PHY_RX_CAL_DQ7,
|
|
_reg_PHY_RX_CAL_DM,
|
|
_reg_PHY_RX_CAL_DQS,
|
|
_reg_PHY_RX_CAL_FDBK
|
|
};
|
|
|
|
#define _reg_PHY_CLK_WRX_SLAVE_DELAY_NUM 10U
|
|
static const uint32_t _reg_PHY_CLK_WRX_SLAVE_DELAY
|
|
[_reg_PHY_CLK_WRX_SLAVE_DELAY_NUM] = {
|
|
_reg_PHY_CLK_WRDQ0_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ1_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ2_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ3_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ4_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ5_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ6_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQ7_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDM_SLAVE_DELAY,
|
|
_reg_PHY_CLK_WRDQS_SLAVE_DELAY
|
|
};
|
|
|
|
#define _reg_PHY_RDDQS_X_FALL_SLAVE_DELAY_NUM 9U
|
|
static const uint32_t _reg_PHY_RDDQS_X_FALL_SLAVE_DELAY
|
|
[_reg_PHY_RDDQS_X_FALL_SLAVE_DELAY_NUM] = {
|
|
_reg_PHY_RDDQS_DQ0_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ1_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ2_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ3_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ4_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ5_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ6_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ7_FALL_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DM_FALL_SLAVE_DELAY
|
|
};
|
|
|
|
#define _reg_PHY_RDDQS_X_RISE_SLAVE_DELAY_NUM 9U
|
|
static const uint32_t _reg_PHY_RDDQS_X_RISE_SLAVE_DELAY
|
|
[_reg_PHY_RDDQS_X_RISE_SLAVE_DELAY_NUM] = {
|
|
_reg_PHY_RDDQS_DQ0_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ1_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ2_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ3_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ4_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ5_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ6_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DQ7_RISE_SLAVE_DELAY,
|
|
_reg_PHY_RDDQS_DM_RISE_SLAVE_DELAY
|
|
};
|
|
|
|
#define _reg_PHY_PAD_TERM_X_NUM 8U
|
|
static const uint32_t _reg_PHY_PAD_TERM_X[_reg_PHY_PAD_TERM_X_NUM] = {
|
|
_reg_PHY_PAD_FDBK_TERM,
|
|
_reg_PHY_PAD_DATA_TERM,
|
|
_reg_PHY_PAD_DQS_TERM,
|
|
_reg_PHY_PAD_ADDR_TERM,
|
|
_reg_PHY_PAD_CLK_TERM,
|
|
_reg_PHY_PAD_CKE_TERM,
|
|
_reg_PHY_PAD_RST_TERM,
|
|
_reg_PHY_PAD_CS_TERM
|
|
};
|
|
|
|
#define _reg_PHY_CLK_CACS_SLAVE_DELAY_X_NUM 10U
|
|
static const uint32_t _reg_PHY_CLK_CACS_SLAVE_DELAY_X
|
|
[_reg_PHY_CLK_CACS_SLAVE_DELAY_X_NUM] = {
|
|
_reg_PHY_ADR0_CLK_WR_SLAVE_DELAY,
|
|
_reg_PHY_ADR1_CLK_WR_SLAVE_DELAY,
|
|
_reg_PHY_ADR2_CLK_WR_SLAVE_DELAY,
|
|
_reg_PHY_ADR3_CLK_WR_SLAVE_DELAY,
|
|
_reg_PHY_ADR4_CLK_WR_SLAVE_DELAY,
|
|
_reg_PHY_ADR5_CLK_WR_SLAVE_DELAY,
|
|
|
|
_reg_PHY_GRP_SLAVE_DELAY_0,
|
|
_reg_PHY_GRP_SLAVE_DELAY_1,
|
|
_reg_PHY_GRP_SLAVE_DELAY_2,
|
|
_reg_PHY_GRP_SLAVE_DELAY_3
|
|
};
|
|
|
|
/* Prototypes */
|
|
static inline uint32_t vch_nxt(uint32_t pos);
|
|
static void cpg_write_32(uint32_t a, uint32_t v);
|
|
static void pll3_control(uint32_t high);
|
|
static inline void dsb_sev(void);
|
|
static void wait_dbcmd(void);
|
|
static void send_dbcmd(uint32_t cmd);
|
|
static uint32_t reg_ddrphy_read(uint32_t phyno, uint32_t regadd);
|
|
static void reg_ddrphy_write(uint32_t phyno, uint32_t regadd, uint32_t regdata);
|
|
static void reg_ddrphy_write_a(uint32_t regadd, uint32_t regdata);
|
|
static inline uint32_t ddr_regdef(uint32_t _regdef);
|
|
static inline uint32_t ddr_regdef_adr(uint32_t _regdef);
|
|
static inline uint32_t ddr_regdef_lsb(uint32_t _regdef);
|
|
static void ddr_setval_s(uint32_t ch, uint32_t slice, uint32_t _regdef,
|
|
uint32_t val);
|
|
static uint32_t ddr_getval_s(uint32_t ch, uint32_t slice, uint32_t _regdef);
|
|
static void ddr_setval(uint32_t ch, uint32_t regdef, uint32_t val);
|
|
static void ddr_setval_ach_s(uint32_t slice, uint32_t regdef, uint32_t val);
|
|
static void ddr_setval_ach(uint32_t regdef, uint32_t val);
|
|
static void ddr_setval_ach_as(uint32_t regdef, uint32_t val);
|
|
static uint32_t ddr_getval(uint32_t ch, uint32_t regdef);
|
|
static uint32_t ddr_getval_ach(uint32_t regdef, uint32_t *p);
|
|
static uint32_t ddr_getval_ach_as(uint32_t regdef, uint32_t *p);
|
|
static void _tblcopy(uint32_t *to, const uint32_t *from, uint32_t size);
|
|
static void ddrtbl_setval(uint32_t *tbl, uint32_t _regdef, uint32_t val);
|
|
static uint32_t ddrtbl_getval(uint32_t *tbl, uint32_t _regdef);
|
|
static uint32_t ddrphy_regif_chk(void);
|
|
static inline void ddrphy_regif_idle(void);
|
|
static uint16_t _f_scale(uint32_t _ddr_mbps, uint32_t _ddr_mbpsdiv, uint32_t ps,
|
|
uint16_t cyc);
|
|
static void _f_scale_js2(uint32_t _ddr_mbps, uint32_t _ddr_mbpsdiv,
|
|
uint16_t *_js2);
|
|
static int16_t _f_scale_adj(int16_t ps);
|
|
static void ddrtbl_load(void);
|
|
static void ddr_config_sub(void);
|
|
static void ddr_config(void);
|
|
static void dbsc_regset(void);
|
|
static void dbsc_regset_post(void);
|
|
static uint32_t dfi_init_start(void);
|
|
static void change_lpddr4_en(uint32_t mode);
|
|
static uint32_t set_term_code(void);
|
|
static void ddr_register_set(void);
|
|
static inline uint32_t wait_freqchgreq(uint32_t assert);
|
|
static inline void set_freqchgack(uint32_t assert);
|
|
static inline void set_dfifrequency(uint32_t freq);
|
|
static uint32_t pll3_freq(uint32_t on);
|
|
static void update_dly(void);
|
|
static uint32_t pi_training_go(void);
|
|
static uint32_t init_ddr(void);
|
|
static uint32_t swlvl1(uint32_t ddr_csn, uint32_t reg_cs, uint32_t reg_kick);
|
|
static uint32_t wdqdm_man1(void);
|
|
static uint32_t wdqdm_man(void);
|
|
static uint32_t rdqdm_man1(void);
|
|
static uint32_t rdqdm_man(void);
|
|
|
|
static int32_t _find_change(uint64_t val, uint32_t dir);
|
|
static uint32_t _rx_offset_cal_updn(uint32_t code);
|
|
static uint32_t rx_offset_cal(void);
|
|
static uint32_t rx_offset_cal_hw(void);
|
|
static void adjust_wpath_latency(void);
|
|
|
|
struct ddrt_data {
|
|
int32_t init_temp; /* Initial Temperature (do) */
|
|
uint32_t init_cal[4U]; /* Initial io-code (4 is for G2H) */
|
|
uint32_t tcomp_cal[4U]; /* Temp. compensated io-code (4 is for G2H) */
|
|
};
|
|
|
|
static struct ddrt_data tcal;
|
|
|
|
static void pvtcode_update(void);
|
|
static void pvtcode_update2(void);
|
|
static void ddr_padcal_tcompensate_getinit(uint32_t override);
|
|
|
|
#ifndef DDR_FAST_INIT
|
|
static uint32_t rdqdm_le[DRAM_CH_CNT][CS_CNT][SLICE_CNT * 2U][9U];
|
|
static uint32_t rdqdm_te[DRAM_CH_CNT][CS_CNT][SLICE_CNT * 2U][9U];
|
|
static uint32_t rdqdm_nw[DRAM_CH_CNT][CS_CNT][SLICE_CNT * 2U][9U];
|
|
static uint32_t rdqdm_win[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
|
|
static uint32_t rdqdm_st[DRAM_CH_CNT][CS_CNT][SLICE_CNT * 2U];
|
|
static void rdqdm_clr1(uint32_t ch, uint32_t ddr_csn);
|
|
static uint32_t rdqdm_ana1(uint32_t ch, uint32_t ddr_csn);
|
|
|
|
static uint32_t wdqdm_le[DRAM_CH_CNT][CS_CNT][SLICE_CNT][9U];
|
|
static uint32_t wdqdm_te[DRAM_CH_CNT][CS_CNT][SLICE_CNT][9U];
|
|
static uint32_t wdqdm_dly[DRAM_CH_CNT][CS_CNT][SLICE_CNT][9U];
|
|
static uint32_t wdqdm_st[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
|
|
static uint32_t wdqdm_win[DRAM_CH_CNT][CS_CNT][SLICE_CNT];
|
|
static void wdqdm_clr1(uint32_t ch, uint32_t ddr_csn);
|
|
static uint32_t wdqdm_ana1(uint32_t ch, uint32_t ddr_csn);
|
|
#endif/* DDR_FAST_INIT */
|
|
|
|
/* macro for channel selection loop */
|
|
static inline uint32_t vch_nxt(uint32_t pos)
|
|
{
|
|
uint32_t posn;
|
|
|
|
for (posn = pos; posn < DRAM_CH_CNT; posn++) {
|
|
if ((ddr_phyvalid & (1U << posn)) != 0U) {
|
|
break;
|
|
}
|
|
}
|
|
return posn;
|
|
}
|
|
|
|
#define foreach_vch(ch) \
|
|
for (ch = vch_nxt(0U); ch < DRAM_CH_CNT; ch = vch_nxt(ch + 1U))
|
|
|
|
#define foreach_ech(ch) \
|
|
for (ch = 0U; ch < DRAM_CH_CNT; ch++)
|
|
|
|
/* Printing functions */
|
|
#define MSG_LF(...)
|
|
|
|
/* clock settings, reset control */
|
|
static void cpg_write_32(uint32_t a, uint32_t v)
|
|
{
|
|
mmio_write_32(CPG_CPGWPR, ~v);
|
|
mmio_write_32(a, v);
|
|
}
|
|
|
|
static void wait_for_pll3_status_bit_turned_on(void)
|
|
{
|
|
uint32_t data_l;
|
|
|
|
do {
|
|
data_l = mmio_read_32(CPG_PLLECR);
|
|
} while ((data_l & CPG_PLLECR_PLL3ST_BIT) == 0);
|
|
dsb_sev();
|
|
}
|
|
|
|
static void pll3_control(uint32_t high)
|
|
{
|
|
uint32_t data_l, data_div, data_mul, tmp_div;
|
|
|
|
if (high != 0U) {
|
|
tmp_div = 3999U * brd_clkdiv * (brd_clkdiva + 1U) /
|
|
(brd_clk * ddr_mul) / 2U;
|
|
data_mul = ((ddr_mul * tmp_div) - 1U) << 24U;
|
|
pll3_mode = 1U;
|
|
loop_max = 2U;
|
|
} else {
|
|
tmp_div = 3999U * brd_clkdiv * (brd_clkdiva + 1U) /
|
|
(brd_clk * ddr0800_mul) / 2U;
|
|
data_mul = ((ddr0800_mul * tmp_div) - 1U) << 24U;
|
|
pll3_mode = 0U;
|
|
loop_max = 8U;
|
|
}
|
|
|
|
switch (tmp_div) {
|
|
case 1:
|
|
data_div = 0U;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
data_div = tmp_div;
|
|
break;
|
|
default:
|
|
data_div = 6U;
|
|
data_mul = (data_mul * tmp_div) / 3U;
|
|
break;
|
|
}
|
|
data_mul = data_mul | (brd_clkdiva << 7);
|
|
|
|
/* PLL3 disable */
|
|
data_l = mmio_read_32(CPG_PLLECR) & ~CPG_PLLECR_PLL3E_BIT;
|
|
cpg_write_32(CPG_PLLECR, data_l);
|
|
dsb_sev();
|
|
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
/* PLL3 DIV resetting(Lowest value:3) */
|
|
data_l = 0x00030003U | (0xFF80FF80U & mmio_read_32(CPG_FRQCRD));
|
|
cpg_write_32(CPG_FRQCRD, data_l);
|
|
dsb_sev();
|
|
|
|
/* zb3 clk stop */
|
|
data_l = CPG_ZB3CKCR_ZB3ST_BIT | mmio_read_32(CPG_ZB3CKCR);
|
|
cpg_write_32(CPG_ZB3CKCR, data_l);
|
|
dsb_sev();
|
|
|
|
/* PLL3 enable */
|
|
data_l = CPG_PLLECR_PLL3E_BIT | mmio_read_32(CPG_PLLECR);
|
|
cpg_write_32(CPG_PLLECR, data_l);
|
|
dsb_sev();
|
|
|
|
wait_for_pll3_status_bit_turned_on();
|
|
|
|
/* PLL3 DIV resetting (Highest value:0) */
|
|
data_l = (0xFF80FF80U & mmio_read_32(CPG_FRQCRD));
|
|
cpg_write_32(CPG_FRQCRD, data_l);
|
|
dsb_sev();
|
|
|
|
/* DIV SET KICK */
|
|
data_l = CPG_FRQCRB_KICK_BIT | mmio_read_32(CPG_FRQCRB);
|
|
cpg_write_32(CPG_FRQCRB, data_l);
|
|
dsb_sev();
|
|
|
|
/* PLL3 multiplier set */
|
|
cpg_write_32(CPG_PLL3CR, data_mul);
|
|
dsb_sev();
|
|
|
|
wait_for_pll3_status_bit_turned_on();
|
|
|
|
/* PLL3 DIV resetting(Target value) */
|
|
data_l = (data_div << 16U) | data_div |
|
|
(mmio_read_32(CPG_FRQCRD) & 0xFF80FF80U);
|
|
cpg_write_32(CPG_FRQCRD, data_l);
|
|
dsb_sev();
|
|
|
|
/* DIV SET KICK */
|
|
data_l = CPG_FRQCRB_KICK_BIT | mmio_read_32(CPG_FRQCRB);
|
|
cpg_write_32(CPG_FRQCRB, data_l);
|
|
dsb_sev();
|
|
|
|
wait_for_pll3_status_bit_turned_on();
|
|
|
|
/* zb3 clk start */
|
|
data_l = (~CPG_ZB3CKCR_ZB3ST_BIT) & mmio_read_32(CPG_ZB3CKCR);
|
|
cpg_write_32(CPG_ZB3CKCR, data_l);
|
|
dsb_sev();
|
|
}
|
|
}
|
|
|
|
/* barrier */
|
|
static inline void dsb_sev(void)
|
|
{
|
|
__asm__ __volatile__("dsb sy");
|
|
}
|
|
|
|
/* DDR memory register access */
|
|
static void wait_dbcmd(void)
|
|
{
|
|
uint32_t data_l;
|
|
/* dummy read */
|
|
data_l = mmio_read_32(DBSC_DBCMD);
|
|
dsb_sev();
|
|
while (true) {
|
|
/* wait DBCMD 1=busy, 0=ready */
|
|
data_l = mmio_read_32(DBSC_DBWAIT);
|
|
dsb_sev();
|
|
if ((data_l & 0x00000001U) == 0x00U) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void send_dbcmd(uint32_t cmd)
|
|
{
|
|
/* dummy read */
|
|
wait_dbcmd();
|
|
mmio_write_32(DBSC_DBCMD, cmd);
|
|
dsb_sev();
|
|
}
|
|
|
|
static void dbwait_loop(uint32_t wait_loop)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0U; i < wait_loop; i++) {
|
|
wait_dbcmd();
|
|
}
|
|
}
|
|
|
|
/* DDRPHY register access (raw) */
|
|
static uint32_t reg_ddrphy_read(uint32_t phyno, uint32_t regadd)
|
|
{
|
|
uint32_t val;
|
|
uint32_t loop;
|
|
|
|
val = 0U;
|
|
mmio_write_32(DBSC_DBPDRGA(phyno), regadd);
|
|
dsb_sev();
|
|
|
|
while (mmio_read_32(DBSC_DBPDRGA(phyno)) != regadd) {
|
|
dsb_sev();
|
|
}
|
|
dsb_sev();
|
|
|
|
for (loop = 0U; loop < loop_max; loop++) {
|
|
val = mmio_read_32(DBSC_DBPDRGD(phyno));
|
|
dsb_sev();
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void reg_ddrphy_write(uint32_t phyno, uint32_t regadd, uint32_t regdata)
|
|
{
|
|
uint32_t loop;
|
|
|
|
mmio_write_32(DBSC_DBPDRGA(phyno), regadd);
|
|
dsb_sev();
|
|
for (loop = 0U; loop < loop_max; loop++) {
|
|
mmio_read_32(DBSC_DBPDRGA(phyno));
|
|
dsb_sev();
|
|
}
|
|
mmio_write_32(DBSC_DBPDRGD(phyno), regdata);
|
|
dsb_sev();
|
|
|
|
for (loop = 0U; loop < loop_max; loop++) {
|
|
mmio_read_32(DBSC_DBPDRGD(phyno));
|
|
dsb_sev();
|
|
}
|
|
}
|
|
|
|
static void reg_ddrphy_write_a(uint32_t regadd, uint32_t regdata)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t loop;
|
|
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDRGA(ch), regadd);
|
|
dsb_sev();
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDRGD(ch), regdata);
|
|
dsb_sev();
|
|
}
|
|
|
|
for (loop = 0U; loop < loop_max; loop++) {
|
|
mmio_read_32(DBSC_DBPDRGD(0));
|
|
dsb_sev();
|
|
}
|
|
}
|
|
|
|
static inline void ddrphy_regif_idle(void)
|
|
{
|
|
reg_ddrphy_read(0U, ddr_regdef_adr(_reg_PI_INT_STATUS));
|
|
dsb_sev();
|
|
}
|
|
|
|
/* DDRPHY register access (field modify) */
|
|
static inline uint32_t ddr_regdef(uint32_t _regdef)
|
|
{
|
|
return p_ddr_regdef_tbl[_regdef];
|
|
}
|
|
|
|
static inline uint32_t ddr_regdef_adr(uint32_t _regdef)
|
|
{
|
|
return DDR_REGDEF_ADR(p_ddr_regdef_tbl[_regdef]);
|
|
}
|
|
|
|
static inline uint32_t ddr_regdef_lsb(uint32_t _regdef)
|
|
{
|
|
return DDR_REGDEF_LSB(p_ddr_regdef_tbl[_regdef]);
|
|
}
|
|
|
|
static void ddr_setval_s(uint32_t ch, uint32_t slice, uint32_t _regdef,
|
|
uint32_t val)
|
|
{
|
|
uint32_t adr;
|
|
uint32_t lsb;
|
|
uint32_t len;
|
|
uint32_t msk;
|
|
uint32_t tmp;
|
|
uint32_t regdef;
|
|
|
|
regdef = ddr_regdef(_regdef);
|
|
adr = DDR_REGDEF_ADR(regdef) + 0x80U * slice;
|
|
len = DDR_REGDEF_LEN(regdef);
|
|
lsb = DDR_REGDEF_LSB(regdef);
|
|
if (len == 0x20U) {
|
|
msk = 0xffffffffU;
|
|
} else {
|
|
msk = ((1U << len) - 1U) << lsb;
|
|
}
|
|
|
|
tmp = reg_ddrphy_read(ch, adr);
|
|
tmp = (tmp & (~msk)) | ((val << lsb) & msk);
|
|
reg_ddrphy_write(ch, adr, tmp);
|
|
}
|
|
|
|
static uint32_t ddr_getval_s(uint32_t ch, uint32_t slice, uint32_t _regdef)
|
|
{
|
|
uint32_t adr;
|
|
uint32_t lsb;
|
|
uint32_t len;
|
|
uint32_t msk;
|
|
uint32_t tmp;
|
|
uint32_t regdef;
|
|
|
|
regdef = ddr_regdef(_regdef);
|
|
adr = DDR_REGDEF_ADR(regdef) + 0x80U * slice;
|
|
len = DDR_REGDEF_LEN(regdef);
|
|
lsb = DDR_REGDEF_LSB(regdef);
|
|
if (len == 0x20U) {
|
|
msk = 0xffffffffU;
|
|
} else {
|
|
msk = ((1U << len) - 1U);
|
|
}
|
|
|
|
tmp = reg_ddrphy_read(ch, adr);
|
|
tmp = (tmp >> lsb) & msk;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static void ddr_setval(uint32_t ch, uint32_t regdef, uint32_t val)
|
|
{
|
|
ddr_setval_s(ch, 0U, regdef, val);
|
|
}
|
|
|
|
static void ddr_setval_ach_s(uint32_t slice, uint32_t regdef, uint32_t val)
|
|
{
|
|
uint32_t ch;
|
|
|
|
foreach_vch(ch) {
|
|
ddr_setval_s(ch, slice, regdef, val);
|
|
}
|
|
}
|
|
|
|
static void ddr_setval_ach(uint32_t regdef, uint32_t val)
|
|
{
|
|
ddr_setval_ach_s(0U, regdef, val);
|
|
}
|
|
|
|
static void ddr_setval_ach_as(uint32_t regdef, uint32_t val)
|
|
{
|
|
uint32_t slice;
|
|
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
ddr_setval_ach_s(slice, regdef, val);
|
|
}
|
|
}
|
|
|
|
static uint32_t ddr_getval(uint32_t ch, uint32_t regdef)
|
|
{
|
|
return ddr_getval_s(ch, 0U, regdef);
|
|
}
|
|
|
|
static uint32_t ddr_getval_ach(uint32_t regdef, uint32_t *p)
|
|
{
|
|
uint32_t ch;
|
|
|
|
foreach_vch(ch) {
|
|
p[ch] = ddr_getval_s(ch, 0U, regdef);
|
|
}
|
|
return p[0U];
|
|
}
|
|
|
|
static uint32_t ddr_getval_ach_as(uint32_t regdef, uint32_t *p)
|
|
{
|
|
uint32_t ch, slice;
|
|
uint32_t *pp;
|
|
|
|
pp = p;
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
*pp++ = ddr_getval_s(ch, slice, regdef);
|
|
}
|
|
}
|
|
return p[0U];
|
|
}
|
|
|
|
/* handling functions for setting ddrphy value table */
|
|
static void _tblcopy(uint32_t *to, const uint32_t *from, uint32_t size)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0U; i < size; i++) {
|
|
to[i] = from[i];
|
|
}
|
|
}
|
|
|
|
static void ddrtbl_setval(uint32_t *tbl, uint32_t _regdef, uint32_t val)
|
|
{
|
|
uint32_t adr;
|
|
uint32_t lsb;
|
|
uint32_t len;
|
|
uint32_t msk;
|
|
uint32_t tmp;
|
|
uint32_t adrmsk;
|
|
uint32_t regdef;
|
|
|
|
regdef = ddr_regdef(_regdef);
|
|
adr = DDR_REGDEF_ADR(regdef);
|
|
len = DDR_REGDEF_LEN(regdef);
|
|
lsb = DDR_REGDEF_LSB(regdef);
|
|
if (len == 0x20U) {
|
|
msk = 0xffffffffU;
|
|
} else {
|
|
msk = ((1U << len) - 1U) << lsb;
|
|
}
|
|
|
|
if (adr < 0x400U) {
|
|
adrmsk = 0xffU;
|
|
} else {
|
|
adrmsk = 0x7fU;
|
|
}
|
|
|
|
tmp = tbl[adr & adrmsk];
|
|
tmp = (tmp & (~msk)) | ((val << lsb) & msk);
|
|
tbl[adr & adrmsk] = tmp;
|
|
}
|
|
|
|
static uint32_t ddrtbl_getval(uint32_t *tbl, uint32_t _regdef)
|
|
{
|
|
uint32_t adr;
|
|
uint32_t lsb;
|
|
uint32_t len;
|
|
uint32_t msk;
|
|
uint32_t tmp;
|
|
uint32_t adrmsk;
|
|
uint32_t regdef;
|
|
|
|
regdef = ddr_regdef(_regdef);
|
|
adr = DDR_REGDEF_ADR(regdef);
|
|
len = DDR_REGDEF_LEN(regdef);
|
|
lsb = DDR_REGDEF_LSB(regdef);
|
|
if (len == 0x20U) {
|
|
msk = 0xffffffffU;
|
|
} else {
|
|
msk = ((1U << len) - 1U);
|
|
}
|
|
|
|
if (adr < 0x400U) {
|
|
adrmsk = 0xffU;
|
|
} else {
|
|
adrmsk = 0x7fU;
|
|
}
|
|
|
|
tmp = tbl[adr & adrmsk];
|
|
tmp = (tmp >> lsb) & msk;
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/* DDRPHY register access handling */
|
|
static uint32_t ddrphy_regif_chk(void)
|
|
{
|
|
uint32_t tmp_ach[DRAM_CH_CNT];
|
|
uint32_t ch;
|
|
uint32_t err;
|
|
uint32_t PI_VERSION_CODE;
|
|
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
PI_VERSION_CODE = 0x2041U; /* G2M */
|
|
}
|
|
|
|
ddr_getval_ach(_reg_PI_VERSION, (uint32_t *)tmp_ach);
|
|
err = 0U;
|
|
foreach_vch(ch) {
|
|
if (tmp_ach[ch] != PI_VERSION_CODE) {
|
|
err = 1U;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* functions and parameters for timing setting */
|
|
struct _jedec_spec1 {
|
|
uint16_t fx3;
|
|
uint8_t rlwodbi;
|
|
uint8_t rlwdbi;
|
|
uint8_t WL;
|
|
uint8_t nwr;
|
|
uint8_t nrtp;
|
|
uint8_t odtlon;
|
|
uint8_t MR1;
|
|
uint8_t MR2;
|
|
};
|
|
|
|
#define JS1_USABLEC_SPEC_LO 2U
|
|
#define JS1_USABLEC_SPEC_HI 5U
|
|
#define JS1_FREQ_TBL_NUM 8
|
|
#define JS1_MR1(f) (0x04U | ((f) << 4U))
|
|
#define JS1_MR2(f) (0x00U | ((f) << 3U) | (f))
|
|
static const struct _jedec_spec1 js1[JS1_FREQ_TBL_NUM] = {
|
|
/* 533.333Mbps */
|
|
{ 800U, 6U, 6U, 4U, 6U, 8U, 0U, JS1_MR1(0U), JS1_MR2(0U) | 0x40U },
|
|
/* 1066.666Mbps */
|
|
{ 1600U, 10U, 12U, 8U, 10U, 8U, 0U, JS1_MR1(1U), JS1_MR2(1U) | 0x40U },
|
|
/* 1600.000Mbps */
|
|
{ 2400U, 14U, 16U, 12U, 16U, 8U, 6U, JS1_MR1(2U), JS1_MR2(2U) | 0x40U },
|
|
/* 2133.333Mbps */
|
|
{ 3200U, 20U, 22U, 10U, 20U, 8U, 4U, JS1_MR1(3U), JS1_MR2(3U) },
|
|
/* 2666.666Mbps */
|
|
{ 4000U, 24U, 28U, 12U, 24U, 10U, 4U, JS1_MR1(4U), JS1_MR2(4U) },
|
|
/* 3200.000Mbps */
|
|
{ 4800U, 28U, 32U, 14U, 30U, 12U, 6U, JS1_MR1(5U), JS1_MR2(5U) },
|
|
/* 3733.333Mbps */
|
|
{ 5600U, 32U, 36U, 16U, 34U, 14U, 6U, JS1_MR1(6U), JS1_MR2(6U) },
|
|
/* 4266.666Mbps */
|
|
{ 6400U, 36U, 40U, 18U, 40U, 16U, 8U, JS1_MR1(7U), JS1_MR2(7U) }
|
|
};
|
|
|
|
struct _jedec_spec2 {
|
|
uint16_t ps;
|
|
uint16_t cyc;
|
|
};
|
|
|
|
#define js2_tsr 0
|
|
#define js2_txp 1
|
|
#define js2_trtp 2
|
|
#define js2_trcd 3
|
|
#define js2_trppb 4
|
|
#define js2_trpab 5
|
|
#define js2_tras 6
|
|
#define js2_twr 7
|
|
#define js2_twtr 8
|
|
#define js2_trrd 9
|
|
#define js2_tppd 10
|
|
#define js2_tfaw 11
|
|
#define js2_tdqsck 12
|
|
#define js2_tckehcmd 13
|
|
#define js2_tckelcmd 14
|
|
#define js2_tckelpd 15
|
|
#define js2_tmrr 16
|
|
#define js2_tmrw 17
|
|
#define js2_tmrd 18
|
|
#define js2_tzqcalns 19
|
|
#define js2_tzqlat 20
|
|
#define js2_tiedly 21
|
|
#define js2_tODTon_min 22
|
|
#define JS2_TBLCNT 23
|
|
|
|
#define js2_trcpb (JS2_TBLCNT)
|
|
#define js2_trcab (JS2_TBLCNT + 1)
|
|
#define js2_trfcab (JS2_TBLCNT + 2)
|
|
#define JS2_CNT (JS2_TBLCNT + 3)
|
|
|
|
#ifndef JS2_DERATE
|
|
#define JS2_DERATE 0
|
|
#endif
|
|
static const struct _jedec_spec2 jedec_spec2[2][JS2_TBLCNT] = {
|
|
{
|
|
/* tSR */ { 15000, 3 },
|
|
/* tXP */ { 7500, 3 },
|
|
/* tRTP */ { 7500, 8 },
|
|
/* tRCD */ { 18000, 4 },
|
|
/* tRPpb */ { 18000, 3 },
|
|
/* tRPab */ { 21000, 3 },
|
|
/* tRAS */ { 42000, 3 },
|
|
/* tWR */ { 18000, 4 },
|
|
/* tWTR */ { 10000, 8 },
|
|
/* tRRD */ { 10000, 4 },
|
|
/* tPPD */ { 0, 0 },
|
|
/* tFAW */ { 40000, 0 },
|
|
/* tDQSCK */ { 3500, 0 },
|
|
/* tCKEHCMD */ { 7500, 3 },
|
|
/* tCKELCMD */ { 7500, 3 },
|
|
/* tCKELPD */ { 7500, 3 },
|
|
/* tMRR */ { 0, 8 },
|
|
/* tMRW */ { 10000, 10 },
|
|
/* tMRD */ { 14000, 10 },
|
|
/* tZQCALns */ { 1000 * 10, 0 },
|
|
/* tZQLAT */ { 30000, 10 },
|
|
/* tIEdly */ { 12500, 0 },
|
|
/* tODTon_min */{ 1500, 0 }
|
|
}, {
|
|
/* tSR */ { 15000, 3 },
|
|
/* tXP */ { 7500, 3 },
|
|
/* tRTP */ { 7500, 8 },
|
|
/* tRCD */ { 19875, 4 },
|
|
/* tRPpb */ { 19875, 3 },
|
|
/* tRPab */ { 22875, 3 },
|
|
/* tRAS */ { 43875, 3 },
|
|
/* tWR */ { 18000, 4 },
|
|
/* tWTR */ { 10000, 8 },
|
|
/* tRRD */ { 11875, 4 },
|
|
/* tPPD */ { 0, 0 },
|
|
/* tFAW */ { 40000, 0 },
|
|
/* tDQSCK */ { 3600, 0 },
|
|
/* tCKEHCMD */ { 7500, 3 },
|
|
/* tCKELCMD */ { 7500, 3 },
|
|
/* tCKELPD */ { 7500, 3 },
|
|
/* tMRR */ { 0, 8 },
|
|
/* tMRW */ { 10000, 10 },
|
|
/* tMRD */ { 14000, 10 },
|
|
/* tZQCALns */ { 1000 * 10, 0 },
|
|
/* tZQLAT */ { 30000, 10 },
|
|
/* tIEdly */ { 12500, 0 },
|
|
/* tODTon_min */{ 1500, 0 }
|
|
}
|
|
};
|
|
|
|
static const uint16_t jedec_spec2_trfc_ab[7] = {
|
|
/* 4Gb, 6Gb, 8Gb, 12Gb, 16Gb, 24Gb(non), 32Gb(non) */
|
|
130U, 180U, 180U, 280U, 280U, 560U, 560U
|
|
};
|
|
|
|
static uint32_t js1_ind;
|
|
static uint16_t js2[JS2_CNT];
|
|
static uint8_t RL;
|
|
static uint8_t WL;
|
|
|
|
static uint16_t _f_scale(uint32_t _ddr_mbps, uint32_t _ddr_mbpsdiv, uint32_t ps,
|
|
uint16_t cyc)
|
|
{
|
|
uint16_t ret = cyc;
|
|
uint32_t tmp;
|
|
uint32_t div;
|
|
|
|
tmp = (((uint32_t)(ps) + 9U) / 10U) * _ddr_mbps;
|
|
div = tmp / (200000U * _ddr_mbpsdiv);
|
|
if (tmp != (div * 200000U * _ddr_mbpsdiv)) {
|
|
div = div + 1U;
|
|
}
|
|
|
|
if (div > cyc) {
|
|
ret = (uint16_t)div;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void _f_scale_js2(uint32_t _ddr_mbps, uint32_t _ddr_mbpsdiv,
|
|
uint16_t *_js2)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < JS2_TBLCNT; i++) {
|
|
_js2[i] = _f_scale(_ddr_mbps, _ddr_mbpsdiv,
|
|
jedec_spec2[JS2_DERATE][i].ps,
|
|
jedec_spec2[JS2_DERATE][i].cyc);
|
|
}
|
|
|
|
_js2[js2_trcpb] = _js2[js2_tras] + _js2[js2_trppb];
|
|
_js2[js2_trcab] = _js2[js2_tras] + _js2[js2_trpab];
|
|
}
|
|
|
|
/* scaler for DELAY value */
|
|
static int16_t _f_scale_adj(int16_t ps)
|
|
{
|
|
int32_t tmp;
|
|
/*
|
|
* tmp = (int32_t)512 * ps * ddr_mbps /2 / ddr_mbpsdiv / 1000 / 1000;
|
|
* = ps * ddr_mbps /2 / ddr_mbpsdiv *512 / 8 / 8 / 125 / 125
|
|
* = ps * ddr_mbps / ddr_mbpsdiv *4 / 125 / 125
|
|
*/
|
|
tmp = (int32_t)4 * (int32_t)ps * (int32_t)ddr_mbps /
|
|
(int32_t)ddr_mbpsdiv;
|
|
tmp = (int32_t)tmp / (int32_t)15625;
|
|
|
|
return (int16_t)tmp;
|
|
}
|
|
|
|
static const uint32_t reg_pi_mr1_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR1_DATA_F0_0,
|
|
_reg_PI_MR1_DATA_F0_1,
|
|
_reg_PI_MR1_DATA_F0_2,
|
|
_reg_PI_MR1_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR1_DATA_F1_0,
|
|
_reg_PI_MR1_DATA_F1_1,
|
|
_reg_PI_MR1_DATA_F1_2,
|
|
_reg_PI_MR1_DATA_F1_3}
|
|
};
|
|
|
|
static const uint32_t reg_pi_mr2_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR2_DATA_F0_0,
|
|
_reg_PI_MR2_DATA_F0_1,
|
|
_reg_PI_MR2_DATA_F0_2,
|
|
_reg_PI_MR2_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR2_DATA_F1_0,
|
|
_reg_PI_MR2_DATA_F1_1,
|
|
_reg_PI_MR2_DATA_F1_2,
|
|
_reg_PI_MR2_DATA_F1_3}
|
|
};
|
|
|
|
static const uint32_t reg_pi_mr3_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR3_DATA_F0_0,
|
|
_reg_PI_MR3_DATA_F0_1,
|
|
_reg_PI_MR3_DATA_F0_2,
|
|
_reg_PI_MR3_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR3_DATA_F1_0,
|
|
_reg_PI_MR3_DATA_F1_1,
|
|
_reg_PI_MR3_DATA_F1_2,
|
|
_reg_PI_MR3_DATA_F1_3}
|
|
};
|
|
|
|
static const uint32_t reg_pi_mr11_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR11_DATA_F0_0,
|
|
_reg_PI_MR11_DATA_F0_1,
|
|
_reg_PI_MR11_DATA_F0_2,
|
|
_reg_PI_MR11_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR11_DATA_F1_0,
|
|
_reg_PI_MR11_DATA_F1_1,
|
|
_reg_PI_MR11_DATA_F1_2,
|
|
_reg_PI_MR11_DATA_F1_3}
|
|
};
|
|
|
|
static const uint32_t reg_pi_mr12_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR12_DATA_F0_0,
|
|
_reg_PI_MR12_DATA_F0_1,
|
|
_reg_PI_MR12_DATA_F0_2,
|
|
_reg_PI_MR12_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR12_DATA_F1_0,
|
|
_reg_PI_MR12_DATA_F1_1,
|
|
_reg_PI_MR12_DATA_F1_2,
|
|
_reg_PI_MR12_DATA_F1_3}
|
|
};
|
|
|
|
static const uint32_t reg_pi_mr14_data_fx_csx[2U][CSAB_CNT] = {
|
|
{
|
|
_reg_PI_MR14_DATA_F0_0,
|
|
_reg_PI_MR14_DATA_F0_1,
|
|
_reg_PI_MR14_DATA_F0_2,
|
|
_reg_PI_MR14_DATA_F0_3},
|
|
{
|
|
_reg_PI_MR14_DATA_F1_0,
|
|
_reg_PI_MR14_DATA_F1_1,
|
|
_reg_PI_MR14_DATA_F1_2,
|
|
_reg_PI_MR14_DATA_F1_3}
|
|
};
|
|
|
|
/*
|
|
* regif pll w/a ( REGIF G2M WA )
|
|
*/
|
|
static void regif_pll_wa(void)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t reg_ofs;
|
|
|
|
/* PLL setting for PHY : G2M */
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_PLL_WAIT),
|
|
(0x5064U <<
|
|
ddr_regdef_lsb(_reg_PHY_PLL_WAIT)));
|
|
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_PLL_CTRL),
|
|
(ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PLL_CTRL_TOP) << 16) |
|
|
ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PLL_CTRL));
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_PLL_CTRL_CA),
|
|
ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PLL_CTRL_CA));
|
|
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_LP4_BOOT_PLL_CTRL),
|
|
(ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_LP4_BOOT_PLL_CTRL_CA) << 16) |
|
|
ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_LP4_BOOT_PLL_CTRL));
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_LP4_BOOT_TOP_PLL_CTRL),
|
|
ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_LP4_BOOT_TOP_PLL_CTRL));
|
|
|
|
reg_ofs = ddr_regdef_adr(_reg_PHY_LPDDR3_CS) - DDR_PHY_ADR_G_REGSET_OFS;
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_LPDDR3_CS),
|
|
_cnf_DDR_PHY_ADR_G_REGSET[reg_ofs]);
|
|
|
|
/* protect register interface */
|
|
ddrphy_regif_idle();
|
|
pll3_control(0U);
|
|
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_DLL_RST_EN),
|
|
(0x01U << ddr_regdef_lsb(_reg_PHY_DLL_RST_EN)));
|
|
ddrphy_regif_idle();
|
|
|
|
/*
|
|
* init start
|
|
* dbdficnt0:
|
|
* dfi_dram_clk_disable=1
|
|
* dfi_frequency = 0
|
|
* freq_ratio = 01 (2:1)
|
|
* init_start =0
|
|
*/
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBDFICNT(ch), 0x00000F10U);
|
|
}
|
|
dsb_sev();
|
|
|
|
/*
|
|
* dbdficnt0:
|
|
* dfi_dram_clk_disable=1
|
|
* dfi_frequency = 0
|
|
* freq_ratio = 01 (2:1)
|
|
* init_start =1
|
|
*/
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBDFICNT(ch), 0x00000F11U);
|
|
}
|
|
dsb_sev();
|
|
|
|
foreach_ech(ch) {
|
|
if ((board_cnf->phyvalid & BIT(ch)) != 0U) {
|
|
while ((mmio_read_32(DBSC_PLL_LOCK(ch)) & 0x1fU) != 0x1fU) {
|
|
}
|
|
}
|
|
}
|
|
dsb_sev();
|
|
}
|
|
|
|
/* load table data into DDR registers */
|
|
static void ddrtbl_load(void)
|
|
{
|
|
uint32_t i;
|
|
uint32_t slice;
|
|
uint32_t csab;
|
|
uint32_t adr;
|
|
uint32_t data_l;
|
|
uint32_t tmp[3];
|
|
uint16_t dataS;
|
|
|
|
/*
|
|
* TIMING REGISTERS
|
|
* search jedec_spec1 index
|
|
*/
|
|
for (i = JS1_USABLEC_SPEC_LO; i < (uint32_t)JS1_FREQ_TBL_NUM - 1U; i++) {
|
|
if ((js1[i].fx3 * 2U * ddr_mbpsdiv >= ddr_mbps * 3U) != 0U) {
|
|
break;
|
|
}
|
|
}
|
|
if (i > JS1_USABLEC_SPEC_HI) {
|
|
js1_ind = JS1_USABLEC_SPEC_HI;
|
|
} else {
|
|
js1_ind = i;
|
|
}
|
|
|
|
if (board_cnf->dbi_en != 0U) {
|
|
RL = js1[js1_ind].rlwdbi;
|
|
} else {
|
|
RL = js1[js1_ind].rlwodbi;
|
|
}
|
|
|
|
WL = js1[js1_ind].WL;
|
|
|
|
/* calculate jedec_spec2 */
|
|
_f_scale_js2(ddr_mbps, ddr_mbpsdiv, js2);
|
|
|
|
/* PREPARE TBL */
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
/* G2M */
|
|
_tblcopy(_cnf_DDR_PHY_SLICE_REGSET,
|
|
DDR_PHY_SLICE_REGSET_G2M, DDR_PHY_SLICE_REGSET_NUM_G2M);
|
|
_tblcopy(_cnf_DDR_PHY_ADR_V_REGSET,
|
|
DDR_PHY_ADR_V_REGSET_G2M, DDR_PHY_ADR_V_REGSET_NUM_G2M);
|
|
_tblcopy(_cnf_DDR_PHY_ADR_I_REGSET,
|
|
DDR_PHY_ADR_I_REGSET_G2M, DDR_PHY_ADR_I_REGSET_NUM_G2M);
|
|
_tblcopy(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
DDR_PHY_ADR_G_REGSET_G2M, DDR_PHY_ADR_G_REGSET_NUM_G2M);
|
|
_tblcopy(_cnf_DDR_PI_REGSET,
|
|
DDR_PI_REGSET_G2M, DDR_PI_REGSET_NUM_G2M);
|
|
|
|
DDR_PHY_SLICE_REGSET_OFS = DDR_PHY_SLICE_REGSET_OFS_G2M;
|
|
DDR_PHY_ADR_V_REGSET_OFS = DDR_PHY_ADR_V_REGSET_OFS_G2M;
|
|
DDR_PHY_ADR_I_REGSET_OFS = DDR_PHY_ADR_I_REGSET_OFS_G2M;
|
|
DDR_PHY_ADR_G_REGSET_OFS = DDR_PHY_ADR_G_REGSET_OFS_G2M;
|
|
DDR_PI_REGSET_OFS = DDR_PI_REGSET_OFS_G2M;
|
|
DDR_PHY_SLICE_REGSET_SIZE = DDR_PHY_SLICE_REGSET_SIZE_G2M;
|
|
DDR_PHY_ADR_V_REGSET_SIZE = DDR_PHY_ADR_V_REGSET_SIZE_G2M;
|
|
DDR_PHY_ADR_I_REGSET_SIZE = DDR_PHY_ADR_I_REGSET_SIZE_G2M;
|
|
DDR_PHY_ADR_G_REGSET_SIZE = DDR_PHY_ADR_G_REGSET_SIZE_G2M;
|
|
DDR_PI_REGSET_SIZE = DDR_PI_REGSET_SIZE_G2M;
|
|
DDR_PHY_SLICE_REGSET_NUM = DDR_PHY_SLICE_REGSET_NUM_G2M;
|
|
DDR_PHY_ADR_V_REGSET_NUM = DDR_PHY_ADR_V_REGSET_NUM_G2M;
|
|
DDR_PHY_ADR_I_REGSET_NUM = DDR_PHY_ADR_I_REGSET_NUM_G2M;
|
|
DDR_PHY_ADR_G_REGSET_NUM = DDR_PHY_ADR_G_REGSET_NUM_G2M;
|
|
DDR_PI_REGSET_NUM = DDR_PI_REGSET_NUM_G2M;
|
|
|
|
DDR_PHY_ADR_I_NUM = 2U;
|
|
}
|
|
|
|
/* on fly gate adjust */
|
|
if ((prr_product == PRR_PRODUCT_M3) && (prr_cut == PRR_PRODUCT_10)) {
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_ON_FLY_GATE_ADJUST_EN, 0x00);
|
|
}
|
|
|
|
/* Adjust PI parameters */
|
|
#ifdef _def_LPDDR4_ODT
|
|
for (i = 0U; i < 2U; i++) {
|
|
for (csab = 0U; csab < CSAB_CNT; csab++) {
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr11_data_fx_csx[i][csab],
|
|
_def_LPDDR4_ODT);
|
|
}
|
|
}
|
|
#endif /* _def_LPDDR4_ODT */
|
|
|
|
#ifdef _def_LPDDR4_VREFCA
|
|
for (i = 0U; i < 2U; i++) {
|
|
for (csab = 0U; csab < CSAB_CNT; csab++) {
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr12_data_fx_csx[i][csab],
|
|
_def_LPDDR4_VREFCA);
|
|
}
|
|
}
|
|
#endif /* _def_LPDDR4_VREFCA */
|
|
|
|
if ((js2[js2_tiedly]) >= 0x0eU) {
|
|
dataS = 0x0eU;
|
|
} else {
|
|
dataS = js2[js2_tiedly];
|
|
}
|
|
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_RDDATA_EN_DLY, dataS);
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_RDDATA_EN_TSEL_DLY,
|
|
(dataS - 2U));
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET, _reg_PI_RDLAT_ADJ_F1, RL - dataS);
|
|
|
|
if (ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_WRITE_PATH_LAT_ADD) != 0U) {
|
|
data_l = WL - 1U;
|
|
} else {
|
|
data_l = WL;
|
|
}
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET, _reg_PI_WRLAT_ADJ_F1, data_l - 2U);
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET, _reg_PI_WRLAT_F1, data_l);
|
|
|
|
if (board_cnf->dbi_en != 0U) {
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_DBI_MODE,
|
|
0x01U);
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_WDQLVL_DATADM_MASK, 0x000U);
|
|
} else {
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_DBI_MODE,
|
|
0x00U);
|
|
ddrtbl_setval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_WDQLVL_DATADM_MASK, 0x100U);
|
|
}
|
|
|
|
tmp[0] = js1[js1_ind].MR1;
|
|
tmp[1] = js1[js1_ind].MR2;
|
|
data_l = ddrtbl_getval(_cnf_DDR_PI_REGSET, _reg_PI_MR3_DATA_F1_0);
|
|
if (board_cnf->dbi_en != 0U) {
|
|
tmp[2] = data_l | 0xc0U;
|
|
} else {
|
|
tmp[2] = data_l & (~0xc0U);
|
|
}
|
|
|
|
for (i = 0U; i < 2U; i++) {
|
|
for (csab = 0U; csab < CSAB_CNT; csab++) {
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr1_data_fx_csx[i][csab], tmp[0]);
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr2_data_fx_csx[i][csab], tmp[1]);
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr3_data_fx_csx[i][csab], tmp[2]);
|
|
}
|
|
}
|
|
|
|
/* DDRPHY INT START */
|
|
regif_pll_wa();
|
|
dbwait_loop(5U);
|
|
|
|
/* FREQ_SEL_MULTICAST & PER_CS_TRAINING_MULTICAST SET (for safety) */
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_FREQ_SEL_MULTICAST_EN),
|
|
BIT(ddr_regdef_lsb(_reg_PHY_FREQ_SEL_MULTICAST_EN)));
|
|
ddr_setval_ach_as(_reg_PHY_PER_CS_TRAINING_MULTICAST_EN, 0x01U);
|
|
|
|
/* SET DATA SLICE TABLE */
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
adr =
|
|
DDR_PHY_SLICE_REGSET_OFS +
|
|
DDR_PHY_SLICE_REGSET_SIZE * slice;
|
|
for (i = 0U; i < DDR_PHY_SLICE_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i,
|
|
_cnf_DDR_PHY_SLICE_REGSET[i]);
|
|
}
|
|
}
|
|
|
|
/* SET ADR SLICE TABLE */
|
|
adr = DDR_PHY_ADR_V_REGSET_OFS;
|
|
for (i = 0U; i < DDR_PHY_ADR_V_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i, _cnf_DDR_PHY_ADR_V_REGSET[i]);
|
|
}
|
|
|
|
if ((prr_product == PRR_PRODUCT_M3) &&
|
|
((0x00ffffffU & (uint32_t)((board_cnf->ch[0].ca_swap) >> 40U))
|
|
!= 0x00U)) {
|
|
adr = DDR_PHY_ADR_I_REGSET_OFS + DDR_PHY_ADR_I_REGSET_SIZE;
|
|
for (i = 0U; i < DDR_PHY_ADR_V_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i,
|
|
_cnf_DDR_PHY_ADR_V_REGSET[i]);
|
|
}
|
|
ddrtbl_setval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_ADR_DISABLE, 0x02);
|
|
DDR_PHY_ADR_I_NUM -= 1U;
|
|
ddr_phycaslice = 1U;
|
|
|
|
#ifndef _def_LPDDR4_ODT
|
|
for (i = 0U; i < 2U; i++) {
|
|
for (csab = 0U; csab < CSAB_CNT; csab++) {
|
|
ddrtbl_setval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr11_data_fx_csx[i][csab],
|
|
0x66);
|
|
}
|
|
}
|
|
#endif/* _def_LPDDR4_ODT */
|
|
} else {
|
|
ddr_phycaslice = 0U;
|
|
}
|
|
|
|
if (DDR_PHY_ADR_I_NUM > 0U) {
|
|
for (slice = 0U; slice < DDR_PHY_ADR_I_NUM; slice++) {
|
|
adr =
|
|
DDR_PHY_ADR_I_REGSET_OFS +
|
|
DDR_PHY_ADR_I_REGSET_SIZE * slice;
|
|
for (i = 0U; i < DDR_PHY_ADR_I_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i,
|
|
_cnf_DDR_PHY_ADR_I_REGSET
|
|
[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* SET ADRCTRL SLICE TABLE */
|
|
adr = DDR_PHY_ADR_G_REGSET_OFS;
|
|
for (i = 0U; i < DDR_PHY_ADR_G_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i, _cnf_DDR_PHY_ADR_G_REGSET[i]);
|
|
}
|
|
|
|
/* SET PI REGISTERS */
|
|
adr = DDR_PI_REGSET_OFS;
|
|
for (i = 0U; i < DDR_PI_REGSET_NUM; i++) {
|
|
reg_ddrphy_write_a(adr + i, _cnf_DDR_PI_REGSET[i]);
|
|
}
|
|
}
|
|
|
|
/* CONFIGURE DDR REGISTERS */
|
|
static void ddr_config_sub(void)
|
|
{
|
|
const uint32_t _par_CALVL_DEVICE_MAP = 1U;
|
|
uint8_t high_byte[SLICE_CNT];
|
|
uint32_t ch, slice;
|
|
uint32_t data_l;
|
|
uint32_t tmp;
|
|
uint32_t i;
|
|
|
|
foreach_vch(ch) {
|
|
/* BOARD SETTINGS (DQ,DM,VREF_DRIVING) */
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
high_byte[slice] =
|
|
(board_cnf->ch[ch].dqs_swap >> (4U * slice)) % 2U;
|
|
ddr_setval_s(ch, slice, _reg_PHY_DQ_DM_SWIZZLE0,
|
|
board_cnf->ch[ch].dq_swap[slice]);
|
|
ddr_setval_s(ch, slice, _reg_PHY_DQ_DM_SWIZZLE1,
|
|
board_cnf->ch[ch].dm_swap[slice]);
|
|
if (high_byte[slice] != 0U) {
|
|
/* HIGHER 16 BYTE */
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_CALVL_VREF_DRIVING_SLICE,
|
|
0x00);
|
|
} else {
|
|
/* LOWER 16 BYTE */
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_CALVL_VREF_DRIVING_SLICE,
|
|
0x01);
|
|
}
|
|
}
|
|
|
|
/* BOARD SETTINGS (CA,ADDR_SEL) */
|
|
data_l = (0x00ffffffU & (uint32_t)(board_cnf->ch[ch].ca_swap)) |
|
|
0x00888888U;
|
|
|
|
/* --- ADR_CALVL_SWIZZLE --- */
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE0_0, data_l);
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE1_0,
|
|
0x00000000);
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE0_1, data_l);
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE1_1,
|
|
0x00000000);
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_DEVICE_MAP,
|
|
_par_CALVL_DEVICE_MAP);
|
|
} else {
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE0, data_l);
|
|
ddr_setval(ch, _reg_PHY_ADR_CALVL_SWIZZLE1, 0x00000000);
|
|
ddr_setval(ch, _reg_PHY_CALVL_DEVICE_MAP,
|
|
_par_CALVL_DEVICE_MAP);
|
|
}
|
|
|
|
/* --- ADR_ADDR_SEL --- */
|
|
data_l = 0U;
|
|
tmp = board_cnf->ch[ch].ca_swap;
|
|
for (i = 0U; i < 6U; i++) {
|
|
data_l |= ((tmp & 0x0fU) << (i * 5U));
|
|
tmp = tmp >> 4;
|
|
}
|
|
ddr_setval(ch, _reg_PHY_ADR_ADDR_SEL, data_l);
|
|
if (ddr_phycaslice == 1U) {
|
|
/* ----------- adr slice2 swap ----------- */
|
|
tmp = (uint32_t)((board_cnf->ch[ch].ca_swap) >> 40);
|
|
data_l = (tmp & 0x00ffffffU) | 0x00888888U;
|
|
|
|
/* --- ADR_CALVL_SWIZZLE --- */
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE0_0,
|
|
data_l);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE1_0,
|
|
0x00000000);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE0_1,
|
|
data_l);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE1_1,
|
|
0x00000000);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_DEVICE_MAP,
|
|
_par_CALVL_DEVICE_MAP);
|
|
} else {
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE0,
|
|
data_l);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_ADR_CALVL_SWIZZLE1,
|
|
0x00000000);
|
|
ddr_setval_s(ch, 2,
|
|
_reg_PHY_CALVL_DEVICE_MAP,
|
|
_par_CALVL_DEVICE_MAP);
|
|
}
|
|
|
|
/* --- ADR_ADDR_SEL --- */
|
|
data_l = 0U;
|
|
for (i = 0U; i < 6U; i++) {
|
|
data_l |= ((tmp & 0x0fU) << (i * 5U));
|
|
tmp = tmp >> 4U;
|
|
}
|
|
|
|
ddr_setval_s(ch, 2, _reg_PHY_ADR_ADDR_SEL, data_l);
|
|
}
|
|
|
|
/* BOARD SETTINGS (BYTE_ORDER_SEL) */
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
/* --- DATA_BYTE_SWAP --- */
|
|
data_l = 0U;
|
|
tmp = board_cnf->ch[ch].dqs_swap;
|
|
for (i = 0U; i < 4U; i++) {
|
|
data_l |= ((tmp & 0x03U) << (i * 2U));
|
|
tmp = tmp >> 4U;
|
|
}
|
|
} else {
|
|
/* --- DATA_BYTE_SWAP --- */
|
|
data_l = board_cnf->ch[ch].dqs_swap;
|
|
ddr_setval(ch, _reg_PI_DATA_BYTE_SWAP_EN, 0x01);
|
|
ddr_setval(ch, _reg_PI_DATA_BYTE_SWAP_SLICE0,
|
|
(data_l) & 0x0fU);
|
|
ddr_setval(ch, _reg_PI_DATA_BYTE_SWAP_SLICE1,
|
|
(data_l >> 4U * 1U) & 0x0fU);
|
|
ddr_setval(ch, _reg_PI_DATA_BYTE_SWAP_SLICE2,
|
|
(data_l >> 4U * 2U) & 0x0fU);
|
|
ddr_setval(ch, _reg_PI_DATA_BYTE_SWAP_SLICE3,
|
|
(data_l >> 4U * 3U) & 0x0fU);
|
|
|
|
ddr_setval(ch, _reg_PHY_DATA_BYTE_ORDER_SEL_HIGH, 0x00U);
|
|
}
|
|
ddr_setval(ch, _reg_PHY_DATA_BYTE_ORDER_SEL, data_l);
|
|
}
|
|
}
|
|
|
|
static void ddr_config(void)
|
|
{
|
|
uint32_t num_cacs_dly = _reg_PHY_CLK_CACS_SLAVE_DELAY_X_NUM;
|
|
uint32_t reg_ofs, dly;
|
|
uint32_t ch, slice;
|
|
uint32_t data_l;
|
|
uint32_t tmp;
|
|
uint32_t i;
|
|
int8_t _adj;
|
|
int16_t adj;
|
|
uint32_t dq;
|
|
union {
|
|
uint32_t ui32[4];
|
|
uint8_t ui8[16];
|
|
} patt;
|
|
uint16_t patm;
|
|
|
|
/* configure ddrphy registers */
|
|
ddr_config_sub();
|
|
|
|
/* WDQ_USER_PATT */
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
patm = 0U;
|
|
for (i = 0U; i < 16U; i++) {
|
|
tmp = board_cnf->ch[ch].wdqlvl_patt[i];
|
|
patt.ui8[i] = tmp & 0xffU;
|
|
if ((tmp & 0x100U) != 0U) {
|
|
patm |= (1U << (uint16_t)i);
|
|
}
|
|
}
|
|
ddr_setval_s(ch, slice, _reg_PHY_USER_PATT0,
|
|
patt.ui32[0]);
|
|
ddr_setval_s(ch, slice, _reg_PHY_USER_PATT1,
|
|
patt.ui32[1]);
|
|
ddr_setval_s(ch, slice, _reg_PHY_USER_PATT2,
|
|
patt.ui32[2]);
|
|
ddr_setval_s(ch, slice, _reg_PHY_USER_PATT3,
|
|
patt.ui32[3]);
|
|
ddr_setval_s(ch, slice, _reg_PHY_USER_PATT4, patm);
|
|
}
|
|
}
|
|
|
|
/* CACS DLY */
|
|
data_l = board_cnf->cacs_dly + (uint32_t)_f_scale_adj(board_cnf->cacs_dly_adj);
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_FREQ_SEL_MULTICAST_EN), 0x00U);
|
|
foreach_vch(ch) {
|
|
for (i = 0U; i < num_cacs_dly - 4U; i++) {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].cacs_adj[i]);
|
|
dly = _reg_PHY_CLK_CACS_SLAVE_DELAY_X[i];
|
|
ddrtbl_setval(_cnf_DDR_PHY_ADR_V_REGSET, dly,
|
|
data_l + (uint32_t)adj);
|
|
reg_ofs = ddr_regdef_adr(dly) - DDR_PHY_ADR_V_REGSET_OFS;
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(dly),
|
|
_cnf_DDR_PHY_ADR_V_REGSET[reg_ofs]);
|
|
}
|
|
|
|
for (i = num_cacs_dly - 4U; i < num_cacs_dly; i++) {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].cacs_adj[i]);
|
|
dly = _reg_PHY_CLK_CACS_SLAVE_DELAY_X[i];
|
|
ddrtbl_setval(_cnf_DDR_PHY_ADR_G_REGSET, dly,
|
|
data_l + (uint32_t)adj);
|
|
reg_ofs = ddr_regdef_adr(dly) - DDR_PHY_ADR_G_REGSET_OFS;
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(dly),
|
|
_cnf_DDR_PHY_ADR_G_REGSET[reg_ofs]);
|
|
}
|
|
|
|
if (ddr_phycaslice == 1U) {
|
|
for (i = 0U; i < 6U; i++) {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].cacs_adj[i + num_cacs_dly]);
|
|
dly = _reg_PHY_CLK_CACS_SLAVE_DELAY_X[i];
|
|
ddrtbl_setval(_cnf_DDR_PHY_ADR_V_REGSET, dly,
|
|
data_l + (uint32_t)adj);
|
|
reg_ofs = ddr_regdef_adr(dly) - DDR_PHY_ADR_V_REGSET_OFS;
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(dly) + 0x0100U,
|
|
_cnf_DDR_PHY_ADR_V_REGSET[reg_ofs]);
|
|
}
|
|
}
|
|
}
|
|
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_FREQ_SEL_MULTICAST_EN),
|
|
BIT(ddr_regdef_lsb(_reg_PHY_FREQ_SEL_MULTICAST_EN)));
|
|
|
|
/* WDQDM DLY */
|
|
data_l = board_cnf->dqdm_dly_w;
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
for (i = 0U; i <= 8U; i++) {
|
|
dq = slice * 8U + (uint32_t)i;
|
|
if (i == 8U) {
|
|
_adj = board_cnf->ch[ch].dm_adj_w[slice];
|
|
} else {
|
|
_adj = board_cnf->ch[ch].dq_adj_w[dq];
|
|
}
|
|
adj = _f_scale_adj(_adj);
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_CLK_WRX_SLAVE_DELAY[i],
|
|
data_l + (uint32_t)adj);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* RDQDM DLY */
|
|
data_l = board_cnf->dqdm_dly_r;
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
for (i = 0U; i <= 8U; i++) {
|
|
dq = slice * 8U + (uint32_t)i;
|
|
if (i == 8U) {
|
|
_adj = board_cnf->ch[ch].dm_adj_r[slice];
|
|
} else {
|
|
_adj = board_cnf->ch[ch].dq_adj_r[dq];
|
|
}
|
|
adj = _f_scale_adj(_adj);
|
|
dly = _reg_PHY_RDDQS_X_FALL_SLAVE_DELAY[i];
|
|
ddr_setval_s(ch, slice, dly, data_l + (uint32_t)adj);
|
|
dly = _reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i];
|
|
ddr_setval_s(ch, slice, dly, data_l + (uint32_t)adj);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* DBSC register setting functions */
|
|
static void dbsc_regset_pre(void)
|
|
{
|
|
uint32_t ch, csab;
|
|
uint32_t data_l;
|
|
|
|
/* PRIMARY SETTINGS */
|
|
/* LPDDR4, BL=16, DFI interface */
|
|
mmio_write_32(DBSC_DBKIND, 0x0000000aU);
|
|
mmio_write_32(DBSC_DBBL, 0x00000002U);
|
|
mmio_write_32(DBSC_DBPHYCONF0, 0x00000001U);
|
|
|
|
/* FREQRATIO=2 */
|
|
mmio_write_32(DBSC_DBSYSCONF1, 0x00000002U);
|
|
|
|
/*
|
|
* DRAM SIZE REGISTER:
|
|
* set all ranks as density=0(4Gb) for PHY initialization
|
|
*/
|
|
foreach_vch(ch) {
|
|
for (csab = 0U; csab < 4U; csab++) {
|
|
mmio_write_32(DBSC_DBMEMCONF(ch, csab),
|
|
DBMEMCONF_REGD(0U));
|
|
}
|
|
}
|
|
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
data_l = 0xe4e4e4e4U;
|
|
foreach_ech(ch) {
|
|
if ((ddr_phyvalid & (1U << ch)) != 0U) {
|
|
data_l = (data_l & (~(0x000000FFU << (ch * 8U))))
|
|
| (((board_cnf->ch[ch].dqs_swap & 0x0003U)
|
|
| ((board_cnf->ch[ch].dqs_swap & 0x0030U) >> 2U)
|
|
| ((board_cnf->ch[ch].dqs_swap & 0x0300U) >> 4U)
|
|
| ((board_cnf->ch[ch].dqs_swap & 0x3000U) >> 6U))
|
|
<< (ch * 8U));
|
|
}
|
|
}
|
|
mmio_write_32(DBSC_DBBSWAP, data_l);
|
|
}
|
|
}
|
|
|
|
static void dbsc_regset(void)
|
|
{
|
|
int32_t i;
|
|
uint32_t ch;
|
|
uint32_t data_l;
|
|
uint32_t data_l2;
|
|
uint32_t wdql;
|
|
uint32_t dqenltncy;
|
|
uint32_t dql;
|
|
uint32_t dqienltncy;
|
|
uint32_t wrcslat;
|
|
uint32_t wrcsgap;
|
|
uint32_t rdcslat;
|
|
uint32_t rdcsgap;
|
|
uint32_t scfctst0_act_act;
|
|
uint32_t scfctst0_rda_act;
|
|
uint32_t scfctst0_wra_act;
|
|
uint32_t scfctst0_pre_act;
|
|
uint32_t scfctst1_rd_wr;
|
|
uint32_t scfctst1_wr_rd;
|
|
uint32_t scfctst1_act_rd_wr;
|
|
uint32_t scfctst1_asyncofs;
|
|
uint32_t dbschhrw1_sctrfcab;
|
|
|
|
/* RFC */
|
|
js2[js2_trfcab] =
|
|
_f_scale(ddr_mbps, ddr_mbpsdiv,
|
|
jedec_spec2_trfc_ab[max_density] * 1000U, 0U);
|
|
/* DBTR0.CL : RL */
|
|
mmio_write_32(DBSC_DBTR(0), RL);
|
|
|
|
/* DBTR1.CWL : WL */
|
|
mmio_write_32(DBSC_DBTR(1), WL);
|
|
|
|
/* DBTR2.AL : 0 */
|
|
mmio_write_32(DBSC_DBTR(2), 0U);
|
|
|
|
/* DBTR3.TRCD: tRCD */
|
|
mmio_write_32(DBSC_DBTR(3), js2[js2_trcd]);
|
|
|
|
/* DBTR4.TRPA,TRP: tRPab,tRPpb */
|
|
mmio_write_32(DBSC_DBTR(4), (js2[js2_trpab] << 16) | js2[js2_trppb]);
|
|
|
|
/* DBTR5.TRC : use tRCpb */
|
|
mmio_write_32(DBSC_DBTR(5), js2[js2_trcpb]);
|
|
|
|
/* DBTR6.TRAS : tRAS */
|
|
mmio_write_32(DBSC_DBTR(6), js2[js2_tras]);
|
|
|
|
/* DBTR7.TRRD : tRRD */
|
|
mmio_write_32(DBSC_DBTR(7), (js2[js2_trrd] << 16) | js2[js2_trrd]);
|
|
|
|
/* DBTR8.TFAW : tFAW */
|
|
mmio_write_32(DBSC_DBTR(8), js2[js2_tfaw]);
|
|
|
|
/* DBTR9.TRDPR : tRTP */
|
|
mmio_write_32(DBSC_DBTR(9), js2[js2_trtp]);
|
|
|
|
/* DBTR10.TWR : nWR */
|
|
mmio_write_32(DBSC_DBTR(10), js1[js1_ind].nwr);
|
|
|
|
/*
|
|
* DBTR11.TRDWR : RL + BL / 2 + Rounddown(tRPST) + PHY_ODTLoff -
|
|
* odtlon + tDQSCK - tODTon,min +
|
|
* PCB delay (out+in) + tPHY_ODToff
|
|
*/
|
|
mmio_write_32(DBSC_DBTR(11),
|
|
RL + (16U / 2U) + 1U + 2U - js1[js1_ind].odtlon +
|
|
js2[js2_tdqsck] - js2[js2_tODTon_min] +
|
|
_f_scale(ddr_mbps, ddr_mbpsdiv, 1300, 0));
|
|
|
|
/* DBTR12.TWRRD : WL + 1 + BL/2 + tWTR */
|
|
data_l = WL + 1U + (16U / 2U) + js2[js2_twtr];
|
|
mmio_write_32(DBSC_DBTR(12), (data_l << 16) | data_l);
|
|
|
|
/* DBTR13.TRFCAB : tRFCab */
|
|
mmio_write_32(DBSC_DBTR(13), js2[js2_trfcab]);
|
|
|
|
/* DBTR14.TCKEHDLL,tCKEH : tCKEHCMD,tCKEHCMD */
|
|
mmio_write_32(DBSC_DBTR(14),
|
|
(js2[js2_tckehcmd] << 16) | (js2[js2_tckehcmd]));
|
|
|
|
/* DBTR15.TCKESR,TCKEL : tSR,tCKELPD */
|
|
mmio_write_32(DBSC_DBTR(15), (js2[js2_tsr] << 16) | (js2[js2_tckelpd]));
|
|
|
|
/* DBTR16 */
|
|
/* WDQL : tphy_wrlat + tphy_wrdata */
|
|
wdql = ddrtbl_getval(_cnf_DDR_PI_REGSET, _reg_PI_WRLAT_F1);
|
|
/* DQENLTNCY : tphy_wrlat = WL-2 : PHY_WRITE_PATH_LAT_ADD == 0
|
|
* tphy_wrlat = WL-3 : PHY_WRITE_PATH_LAT_ADD != 0
|
|
*/
|
|
dqenltncy = ddrtbl_getval(_cnf_DDR_PI_REGSET, _reg_PI_WRLAT_ADJ_F1);
|
|
/* DQL : tphy_rdlat + trdata_en */
|
|
/* it is not important for dbsc */
|
|
dql = RL + 16U;
|
|
/* DQIENLTNCY : trdata_en */
|
|
dqienltncy = ddrtbl_getval(_cnf_DDR_PI_REGSET, _reg_PI_RDLAT_ADJ_F1) - 1U;
|
|
mmio_write_32(DBSC_DBTR(16),
|
|
(dqienltncy << 24) | (dql << 16) | (dqenltncy << 8) | wdql);
|
|
|
|
/* DBTR24 */
|
|
/* WRCSLAT = WRLAT -5 */
|
|
wrcslat = wdql - 5U;
|
|
/* WRCSGAP = 5 */
|
|
wrcsgap = 5U;
|
|
/* RDCSLAT = RDLAT_ADJ +2 */
|
|
rdcslat = dqienltncy;
|
|
if (prr_product != PRR_PRODUCT_M3) {
|
|
rdcslat += 2U;
|
|
}
|
|
/* RDCSGAP = 6 */
|
|
rdcsgap = 6U;
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
rdcsgap = 4U;
|
|
}
|
|
mmio_write_32(DBSC_DBTR(24),
|
|
(rdcsgap << 24) | (rdcslat << 16) | (wrcsgap << 8) | wrcslat);
|
|
|
|
/* DBTR17.TMODRD,TMOD,TRDMR: tMRR,tMRD,(0) */
|
|
mmio_write_32(DBSC_DBTR(17),
|
|
(js2[js2_tmrr] << 24) | (js2[js2_tmrd] << 16));
|
|
|
|
/* DBTR18.RODTL, RODTA, WODTL, WODTA : do not use in LPDDR4 */
|
|
mmio_write_32(DBSC_DBTR(18), 0);
|
|
|
|
/* DBTR19.TZQCL, TZQCS : do not use in LPDDR4 */
|
|
mmio_write_32(DBSC_DBTR(19), 0);
|
|
|
|
/* DBTR20.TXSDLL, TXS : tRFCab+tCKEHCMD */
|
|
data_l = js2[js2_trfcab] + js2[js2_tckehcmd];
|
|
mmio_write_32(DBSC_DBTR(20), (data_l << 16) | data_l);
|
|
|
|
/* DBTR21.TCCD */
|
|
/* DBTR23.TCCD */
|
|
if (ddr_tccd == 8U) {
|
|
data_l = 8U;
|
|
mmio_write_32(DBSC_DBTR(21), (data_l << 16) | data_l);
|
|
mmio_write_32(DBSC_DBTR(23), 0x00000002);
|
|
} else if (ddr_tccd <= 11U) {
|
|
data_l = 11U;
|
|
mmio_write_32(DBSC_DBTR(21), (data_l << 16) | data_l);
|
|
mmio_write_32(DBSC_DBTR(23), 0x00000000);
|
|
} else {
|
|
data_l = ddr_tccd;
|
|
mmio_write_32(DBSC_DBTR(21), (data_l << 16) | data_l);
|
|
mmio_write_32(DBSC_DBTR(23), 0x00000000);
|
|
}
|
|
|
|
/* DBTR22.ZQLAT : */
|
|
data_l = js2[js2_tzqcalns] * 100U; /* 1000 * 1000 ps */
|
|
data_l = (data_l << 16U) | (js2[js2_tzqlat] + 24U + 20U);
|
|
mmio_write_32(DBSC_DBTR(22), data_l);
|
|
|
|
/* DBTR25 : do not use in LPDDR4 */
|
|
mmio_write_32(DBSC_DBTR(25), 0U);
|
|
|
|
/*
|
|
* DBRNK :
|
|
* DBSC_DBRNK2 rkrr
|
|
* DBSC_DBRNK3 rkrw
|
|
* DBSC_DBRNK4 rkwr
|
|
* DBSC_DBRNK5 rkww
|
|
*/
|
|
#define _par_DBRNK_VAL (0x7007U)
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
data_l = (_par_DBRNK_VAL >> ((uint32_t)i * 4U)) & 0x0fU;
|
|
data_l2 = 0U;
|
|
foreach_vch(ch) {
|
|
data_l2 = data_l2 | (data_l << (4U * ch));
|
|
}
|
|
mmio_write_32(DBSC_DBRNK(2 + i), data_l2);
|
|
}
|
|
mmio_write_32(DBSC_DBADJ0, 0x00000000U);
|
|
|
|
/* timing registers for scheduler */
|
|
/* SCFCTST0 */
|
|
/* SCFCTST0 ACT-ACT */
|
|
scfctst0_act_act = js2[js2_trcpb] * 800UL * ddr_mbpsdiv / ddr_mbps;
|
|
/* SCFCTST0 RDA-ACT */
|
|
scfctst0_rda_act = ((16U / 2U) + js2[js2_trtp] - 8U +
|
|
js2[js2_trppb]) * 800UL * ddr_mbpsdiv / ddr_mbps;
|
|
/* SCFCTST0 WRA-ACT */
|
|
scfctst0_wra_act = (WL + 1U + (16U / 2U) +
|
|
js1[js1_ind].nwr) * 800UL * ddr_mbpsdiv / ddr_mbps;
|
|
/* SCFCTST0 PRE-ACT */
|
|
scfctst0_pre_act = js2[js2_trppb];
|
|
mmio_write_32(DBSC_SCFCTST0,
|
|
(scfctst0_act_act << 24) | (scfctst0_rda_act << 16) |
|
|
(scfctst0_wra_act << 8) | scfctst0_pre_act);
|
|
|
|
/* SCFCTST1 */
|
|
/* SCFCTST1 RD-WR */
|
|
scfctst1_rd_wr = (mmio_read_32(DBSC_DBTR(11)) & 0xffU) * 800UL * ddr_mbpsdiv /
|
|
ddr_mbps;
|
|
/* SCFCTST1 WR-RD */
|
|
scfctst1_wr_rd = (mmio_read_32(DBSC_DBTR(12)) & 0xff) * 800UL * ddr_mbpsdiv /
|
|
ddr_mbps;
|
|
/* SCFCTST1 ACT-RD/WR */
|
|
scfctst1_act_rd_wr = js2[js2_trcd] * 800UL * ddr_mbpsdiv / ddr_mbps;
|
|
/* SCFCTST1 ASYNCOFS */
|
|
scfctst1_asyncofs = 12U;
|
|
mmio_write_32(DBSC_SCFCTST1,
|
|
(scfctst1_rd_wr << 24) | (scfctst1_wr_rd << 16) |
|
|
(scfctst1_act_rd_wr << 8) | scfctst1_asyncofs);
|
|
|
|
/* DBSCHRW1 */
|
|
/* DBSCHRW1 SCTRFCAB */
|
|
dbschhrw1_sctrfcab = js2[js2_trfcab] * 800UL * ddr_mbpsdiv / ddr_mbps;
|
|
data_l = (((mmio_read_32(DBSC_DBTR(16)) & 0x00FF0000U) >> 16) +
|
|
(mmio_read_32(DBSC_DBTR(22)) & 0x0000FFFFU) +
|
|
(0x28U * 2U)) * 400U * 2U * ddr_mbpsdiv / ddr_mbps + 7U;
|
|
if (dbschhrw1_sctrfcab < data_l) {
|
|
dbschhrw1_sctrfcab = data_l;
|
|
}
|
|
|
|
if ((prr_product == PRR_PRODUCT_M3) && (prr_cut < PRR_PRODUCT_30)) {
|
|
mmio_write_32(DBSC_DBSCHRW1, dbschhrw1_sctrfcab +
|
|
((mmio_read_32(DBSC_DBTR(22)) & 0x0000FFFFU) *
|
|
400U * 2U * ddr_mbpsdiv + (ddr_mbps - 1U)) / ddr_mbps - 3U);
|
|
} else {
|
|
mmio_write_32(DBSC_DBSCHRW1, dbschhrw1_sctrfcab +
|
|
((mmio_read_32(DBSC_DBTR(22)) & 0x0000FFFFU) *
|
|
400U * 2U * ddr_mbpsdiv + (ddr_mbps - 1U)) / ddr_mbps);
|
|
}
|
|
|
|
/* QOS and CAM */
|
|
#ifdef DDR_QOS_INIT_SETTING /* only for non qos_init */
|
|
/* wbkwait(0004), wbkmdhi(4,2),wbkmdlo(1,8) */
|
|
mmio_write_32(DBSC_DBCAM0CNF1, 0x00043218U);
|
|
/* 0(fillunit),8(dirtymax),4(dirtymin) */
|
|
mmio_write_32(DBSC_DBCAM0CNF2, 0x000000F4U);
|
|
/* stop_tolerance */
|
|
mmio_write_32(DBSC_DBSCHRW0, 0x22421111U);
|
|
/* rd-wr/wr-rd toggle priority */
|
|
mmio_write_32(DBSC_SCFCTST2, 0x012F1123U);
|
|
mmio_write_32(DBSC_DBSCHSZ0, 0x00000001U);
|
|
mmio_write_32(DBSC_DBSCHCNT0, 0x000F0037U);
|
|
|
|
/* QoS Settings */
|
|
mmio_write_32(DBSC_DBSCHQOS00, 0x00000F00U);
|
|
mmio_write_32(DBSC_DBSCHQOS01, 0x00000B00U);
|
|
mmio_write_32(DBSC_DBSCHQOS02, 0x00000000U);
|
|
mmio_write_32(DBSC_DBSCHQOS03, 0x00000000U);
|
|
mmio_write_32(DBSC_DBSCHQOS40, 0x00000300U);
|
|
mmio_write_32(DBSC_DBSCHQOS41, 0x000002F0U);
|
|
mmio_write_32(DBSC_DBSCHQOS42, 0x00000200U);
|
|
mmio_write_32(DBSC_DBSCHQOS43, 0x00000100U);
|
|
mmio_write_32(DBSC_DBSCHQOS90, 0x00000100U);
|
|
mmio_write_32(DBSC_DBSCHQOS91, 0x000000F0U);
|
|
mmio_write_32(DBSC_DBSCHQOS92, 0x000000A0U);
|
|
mmio_write_32(DBSC_DBSCHQOS93, 0x00000040U);
|
|
mmio_write_32(DBSC_DBSCHQOS120, 0x00000040U);
|
|
mmio_write_32(DBSC_DBSCHQOS121, 0x00000030U);
|
|
mmio_write_32(DBSC_DBSCHQOS122, 0x00000020U);
|
|
mmio_write_32(DBSC_DBSCHQOS123, 0x00000010U);
|
|
mmio_write_32(DBSC_DBSCHQOS130, 0x00000100U);
|
|
mmio_write_32(DBSC_DBSCHQOS131, 0x000000F0U);
|
|
mmio_write_32(DBSC_DBSCHQOS132, 0x000000A0U);
|
|
mmio_write_32(DBSC_DBSCHQOS133, 0x00000040U);
|
|
mmio_write_32(DBSC_DBSCHQOS140, 0x000000C0U);
|
|
mmio_write_32(DBSC_DBSCHQOS141, 0x000000B0U);
|
|
mmio_write_32(DBSC_DBSCHQOS142, 0x00000080U);
|
|
mmio_write_32(DBSC_DBSCHQOS143, 0x00000040U);
|
|
mmio_write_32(DBSC_DBSCHQOS150, 0x00000040U);
|
|
mmio_write_32(DBSC_DBSCHQOS151, 0x00000030U);
|
|
mmio_write_32(DBSC_DBSCHQOS152, 0x00000020U);
|
|
mmio_write_32(DBSC_DBSCHQOS153, 0x00000010U);
|
|
|
|
mmio_write_32(QOSCTRL_RAEN, 0x00000001U);
|
|
#endif /* DDR_QOS_INIT_SETTING */
|
|
|
|
/* resrdis */
|
|
mmio_write_32(DBSC_DBBCAMDIS, 0x00000001U);
|
|
}
|
|
|
|
static void dbsc_regset_post(void)
|
|
{
|
|
uint32_t slice, rdlat_max, rdlat_min;
|
|
uint32_t ch, cs;
|
|
uint32_t data_l;
|
|
uint32_t srx;
|
|
|
|
rdlat_max = 0U;
|
|
rdlat_min = 0xffffU;
|
|
foreach_vch(ch) {
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
if ((ch_have_this_cs[cs] & (1U << ch)) != 0U) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_PER_CS_TRAINING_INDEX,
|
|
cs);
|
|
data_l = ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDDQS_LATENCY_ADJUST);
|
|
if (data_l > rdlat_max) {
|
|
rdlat_max = data_l;
|
|
}
|
|
if (data_l < rdlat_min) {
|
|
rdlat_min = data_l;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mmio_write_32(DBSC_DBTR(24),
|
|
((rdlat_max + 2U) << 24) +
|
|
((rdlat_max + 2U) << 16) +
|
|
mmio_read_32(DBSC_DBTR(24)));
|
|
|
|
/* set ddr density information */
|
|
foreach_ech(ch) {
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
if (ddr_density[ch][cs] == 0xffU) {
|
|
mmio_write_32(DBSC_DBMEMCONF(ch, cs), 0x00U);
|
|
} else {
|
|
mmio_write_32(DBSC_DBMEMCONF(ch, cs),
|
|
DBMEMCONF_REGD(ddr_density[ch]
|
|
[cs]));
|
|
}
|
|
}
|
|
mmio_write_32(DBSC_DBMEMCONF(ch, 2), 0x00000000U);
|
|
mmio_write_32(DBSC_DBMEMCONF(ch, 3), 0x00000000U);
|
|
}
|
|
|
|
mmio_write_32(DBSC_DBBUS0CNF1, 0x00000010U);
|
|
|
|
/* set DBI */
|
|
if (board_cnf->dbi_en != 0U) {
|
|
mmio_write_32(DBSC_DBDBICNT, 0x00000003U);
|
|
}
|
|
|
|
/* set REFCYCLE */
|
|
data_l = (get_refperiod()) * ddr_mbps / 2000U / ddr_mbpsdiv;
|
|
mmio_write_32(DBSC_DBRFCNF1, 0x00080000U | (data_l & 0x0000ffffU));
|
|
mmio_write_32(DBSC_DBRFCNF2, 0x00010000U | DBSC_REFINTS);
|
|
|
|
#if RCAR_REWT_TRAINING != 0
|
|
/* Periodic-WriteDQ Training seeting */
|
|
if ((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut == PRR_PRODUCT_10)) {
|
|
/* G2M Ver.1.0 not support */
|
|
} else {
|
|
/* G2M Ver.1.1 or later */
|
|
mmio_write_32(DBSC_DBDFIPMSTRCNF, 0x00000000U);
|
|
|
|
ddr_setval_ach_as(_reg_PHY_WDQLVL_PATT, 0x04U);
|
|
ddr_setval_ach_as(_reg_PHY_WDQLVL_QTR_DLY_STEP, 0x0FU);
|
|
ddr_setval_ach_as(_reg_PHY_WDQLVL_DLY_STEP, 0x50U);
|
|
ddr_setval_ach_as(_reg_PHY_WDQLVL_DQDM_SLV_DLY_START, 0x0300U);
|
|
|
|
ddr_setval_ach(_reg_PI_WDQLVL_CS_MAP,
|
|
ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
_reg_PI_WDQLVL_CS_MAP));
|
|
ddr_setval_ach(_reg_PI_LONG_COUNT_MASK, 0x1fU);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_EN, 0x00U);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_ROTATE, 0x01U);
|
|
ddr_setval_ach(_reg_PI_TREF_F0, 0x0000U);
|
|
ddr_setval_ach(_reg_PI_TREF_F1, 0x0000U);
|
|
ddr_setval_ach(_reg_PI_TREF_F2, 0x0000U);
|
|
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
ddr_setval_ach(_reg_PI_WDQLVL_EN, 0x02U);
|
|
} else {
|
|
ddr_setval_ach(_reg_PI_WDQLVL_EN_F1, 0x02U);
|
|
}
|
|
ddr_setval_ach(_reg_PI_WDQLVL_PERIODIC, 0x01U);
|
|
|
|
/* DFI_PHYMSTR_ACK , WTmode setting */
|
|
/* DFI_PHYMSTR_ACK: WTmode =b'01 */
|
|
mmio_write_32(DBSC_DBDFIPMSTRCNF, 0x00000011U);
|
|
}
|
|
#endif /* RCAR_REWT_TRAINING */
|
|
/* periodic dram zqcal enable */
|
|
mmio_write_32(DBSC_DBCALCNF, 0x01000010U);
|
|
|
|
/* periodic phy ctrl update enable */
|
|
if ((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut < PRR_PRODUCT_30)) {
|
|
/* non : G2M Ver.1.x not support */
|
|
} else {
|
|
mmio_write_32(DBSC_DBDFICUPDCNF, 0x28240001U);
|
|
}
|
|
|
|
#ifdef DDR_BACKUPMODE
|
|
/* SRX */
|
|
srx = 0x0A840001U; /* for All channels */
|
|
if (ddr_backup == DRAM_BOOT_STATUS_WARM) {
|
|
#ifdef DDR_BACKUPMODE_HALF /* for Half channel(ch0, 1 only) */
|
|
NOTICE("BL2: [DEBUG_MESS] DDR_BACKUPMODE_HALF\n");
|
|
srx = 0x0A040001U;
|
|
#endif /* DDR_BACKUPMODE_HALF */
|
|
send_dbcmd(srx);
|
|
}
|
|
#endif /* DDR_BACKUPMODE */
|
|
|
|
/* set Auto Refresh */
|
|
mmio_write_32(DBSC_DBRFEN, 0x00000001U);
|
|
|
|
#if RCAR_REWT_TRAINING != 0
|
|
/* Periodic WriteDQ Traning */
|
|
if ((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut == PRR_PRODUCT_10)) {
|
|
/* non : G2M Ver.1.0 not support */
|
|
} else {
|
|
/* G2M Ver.1.1 or later */
|
|
ddr_setval_ach(_reg_PI_WDQLVL_INTERVAL, 0x0100U);
|
|
}
|
|
#endif /* RCAR_REWT_TRAINING */
|
|
|
|
/* dram access enable */
|
|
mmio_write_32(DBSC_DBACEN, 0x00000001U);
|
|
|
|
MSG_LF(__func__ "(done)");
|
|
}
|
|
|
|
/* DFI_INIT_START */
|
|
static uint32_t dfi_init_start(void)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t phytrainingok;
|
|
uint32_t retry;
|
|
uint32_t data_l;
|
|
uint32_t ret = 0U;
|
|
const uint32_t RETRY_MAX = 0x10000U;
|
|
|
|
ddr_setval_ach_as(_reg_PHY_DLL_RST_EN, 0x02U);
|
|
dsb_sev();
|
|
ddrphy_regif_idle();
|
|
|
|
/* dll_rst negate */
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDCNT3(ch), 0x0000CF01U);
|
|
}
|
|
dsb_sev();
|
|
|
|
/* wait init_complete */
|
|
phytrainingok = 0U;
|
|
retry = 0U;
|
|
while (retry++ < RETRY_MAX) {
|
|
foreach_vch(ch) {
|
|
data_l = mmio_read_32(DBSC_DBDFISTAT(ch));
|
|
if (data_l & 0x00000001U) {
|
|
phytrainingok |= (1U << ch);
|
|
}
|
|
}
|
|
dsb_sev();
|
|
if (phytrainingok == ddr_phyvalid) {
|
|
break;
|
|
}
|
|
if (retry % 256U == 0U) {
|
|
ddr_setval_ach_as(_reg_SC_PHY_RX_CAL_START, 0x01U);
|
|
}
|
|
}
|
|
|
|
/* all ch ok? */
|
|
if ((phytrainingok & ddr_phyvalid) != ddr_phyvalid) {
|
|
ret = 0xffU;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* dbdficnt0:
|
|
* dfi_dram_clk_disable=0
|
|
* dfi_frequency = 0
|
|
* freq_ratio = 01 (2:1)
|
|
* init_start =0
|
|
*/
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBDFICNT(ch), 0x00000010U);
|
|
}
|
|
dsb_sev();
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/* drivability setting : CMOS MODE ON/OFF */
|
|
static void change_lpddr4_en(uint32_t mode)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t i;
|
|
uint32_t data_l;
|
|
const uint32_t _reg_PHY_PAD_DRIVE_X[3] = {
|
|
_reg_PHY_PAD_ADDR_DRIVE,
|
|
_reg_PHY_PAD_CLK_DRIVE,
|
|
_reg_PHY_PAD_CS_DRIVE
|
|
};
|
|
|
|
foreach_vch(ch) {
|
|
for (i = 0U; i < 3U; i++) {
|
|
data_l = ddr_getval(ch, _reg_PHY_PAD_DRIVE_X[i]);
|
|
if (mode != 0U) {
|
|
data_l |= (1U << 14);
|
|
} else {
|
|
data_l &= ~(1U << 14);
|
|
}
|
|
ddr_setval(ch, _reg_PHY_PAD_DRIVE_X[i], data_l);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* drivability setting */
|
|
static uint32_t set_term_code(void)
|
|
{
|
|
uint32_t i;
|
|
uint32_t ch, index;
|
|
uint32_t data_l;
|
|
uint32_t chip_id[2];
|
|
uint32_t term_code;
|
|
uint32_t override;
|
|
|
|
term_code = ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PAD_DATA_TERM);
|
|
override = 0U;
|
|
for (i = 0U; i < 2U; i++) {
|
|
chip_id[i] = mmio_read_32(LIFEC_CHIPID(i));
|
|
}
|
|
|
|
index = 0U;
|
|
while (true) {
|
|
if (termcode_by_sample[index][0] == 0xffffffff) {
|
|
break;
|
|
}
|
|
if ((termcode_by_sample[index][0] == chip_id[0]) &&
|
|
(termcode_by_sample[index][1] == chip_id[1])) {
|
|
term_code = termcode_by_sample[index][2];
|
|
override = 1;
|
|
break;
|
|
}
|
|
index++;
|
|
}
|
|
|
|
if (override != 0U) {
|
|
for (index = 0U; index < _reg_PHY_PAD_TERM_X_NUM; index++) {
|
|
data_l =
|
|
ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PAD_TERM_X[index]);
|
|
data_l = (data_l & 0xfffe0000U) | term_code;
|
|
ddr_setval_ach(_reg_PHY_PAD_TERM_X[index], data_l);
|
|
}
|
|
} else if ((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut == PRR_PRODUCT_10)) {
|
|
/* non */
|
|
} else {
|
|
ddr_setval_ach(_reg_PHY_PAD_TERM_X[0],
|
|
(ddrtbl_getval(_cnf_DDR_PHY_ADR_G_REGSET,
|
|
_reg_PHY_PAD_TERM_X[0]) & 0xFFFE0000U));
|
|
ddr_setval_ach(_reg_PHY_CAL_CLEAR_0, 0x01U);
|
|
ddr_setval_ach(_reg_PHY_CAL_START_0, 0x01U);
|
|
foreach_vch(ch) {
|
|
do {
|
|
data_l =
|
|
ddr_getval(ch, _reg_PHY_CAL_RESULT2_OBS_0);
|
|
} while (!(data_l & 0x00800000U));
|
|
}
|
|
|
|
/* G2M Ver.1.1 or later */
|
|
foreach_vch(ch) {
|
|
for (index = 0U; index < _reg_PHY_PAD_TERM_X_NUM;
|
|
index++) {
|
|
data_l = ddr_getval(ch, _reg_PHY_PAD_TERM_X[index]);
|
|
ddr_setval(ch, _reg_PHY_PAD_TERM_X[index],
|
|
(data_l & 0xFFFE0FFFU) | 0x00015000U);
|
|
}
|
|
}
|
|
}
|
|
|
|
ddr_padcal_tcompensate_getinit(override);
|
|
|
|
return 0U;
|
|
}
|
|
|
|
/* DDR mode register setting */
|
|
static void ddr_register_set(void)
|
|
{
|
|
int32_t fspwp;
|
|
uint32_t tmp;
|
|
|
|
for (fspwp = 1; fspwp >= 0; fspwp--) {
|
|
/*MR13, fspwp */
|
|
send_dbcmd(0x0e840d08U | ((2U - fspwp) << 6));
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr1_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840100U | tmp);
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr2_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840200U | tmp);
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr3_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840300U | tmp);
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr11_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840b00U | tmp);
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr12_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840c00U | tmp);
|
|
|
|
tmp = ddrtbl_getval(_cnf_DDR_PI_REGSET,
|
|
reg_pi_mr14_data_fx_csx[fspwp][0]);
|
|
send_dbcmd(0x0e840e00U | tmp);
|
|
/* MR22 */
|
|
send_dbcmd(0x0e841616U);
|
|
|
|
/* ZQCAL start */
|
|
send_dbcmd(0x0d84004FU);
|
|
|
|
/* ZQLAT */
|
|
send_dbcmd(0x0d840051U);
|
|
}
|
|
|
|
/* MR13, fspwp */
|
|
send_dbcmd(0x0e840d08U);
|
|
}
|
|
|
|
/* Training handshake functions */
|
|
static inline uint32_t wait_freqchgreq(uint32_t assert)
|
|
{
|
|
uint32_t data_l;
|
|
uint32_t count;
|
|
uint32_t ch;
|
|
|
|
count = 100000U;
|
|
|
|
if (assert != 0U) {
|
|
do {
|
|
data_l = 1U;
|
|
foreach_vch(ch) {
|
|
data_l &= mmio_read_32(DBSC_DBPDSTAT(ch));
|
|
}
|
|
count = count - 1U;
|
|
} while (((data_l & 0x01U) != 0x01U) && (count != 0U));
|
|
} else {
|
|
do {
|
|
data_l = 0U;
|
|
foreach_vch(ch) {
|
|
data_l |= mmio_read_32(DBSC_DBPDSTAT(ch));
|
|
}
|
|
count = count - 1U;
|
|
} while (((data_l & 0x01U) != 0x00U) && (count != 0U));
|
|
}
|
|
|
|
return (count == 0U);
|
|
}
|
|
|
|
static inline void set_freqchgack(uint32_t assert)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t data_l;
|
|
|
|
if (assert != 0U) {
|
|
data_l = 0x0CF20000U;
|
|
} else {
|
|
data_l = 0x00000000U;
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDCNT2(ch), data_l);
|
|
}
|
|
}
|
|
|
|
static inline void set_dfifrequency(uint32_t freq)
|
|
{
|
|
uint32_t ch;
|
|
|
|
foreach_vch(ch) {
|
|
mmio_clrsetbits_32(DBSC_DBDFICNT(ch), 0x1fU << 24, freq << 24);
|
|
}
|
|
dsb_sev();
|
|
}
|
|
|
|
static uint32_t pll3_freq(uint32_t on)
|
|
{
|
|
uint32_t timeout;
|
|
|
|
timeout = wait_freqchgreq(1U);
|
|
|
|
if (timeout != 0U) {
|
|
return 1U;
|
|
}
|
|
|
|
pll3_control(on);
|
|
set_dfifrequency(on);
|
|
|
|
set_freqchgack(1U);
|
|
timeout = wait_freqchgreq(0U);
|
|
set_freqchgack(0U);
|
|
|
|
if (timeout != 0U) {
|
|
FATAL_MSG("BL2: Time out[2]\n");
|
|
return 1U;
|
|
}
|
|
|
|
return 0U;
|
|
}
|
|
|
|
/* update dly */
|
|
static void update_dly(void)
|
|
{
|
|
ddr_setval_ach(_reg_SC_PHY_MANUAL_UPDATE, 0x01U);
|
|
ddr_setval_ach(_reg_PHY_ADRCTL_MANUAL_UPDATE, 0x01U);
|
|
}
|
|
|
|
/* training by pi */
|
|
static uint32_t pi_training_go(void)
|
|
{
|
|
uint32_t flag;
|
|
uint32_t data_l;
|
|
uint32_t retry;
|
|
const uint32_t RETRY_MAX = 4096U * 16U;
|
|
uint32_t ch;
|
|
uint32_t mst_ch;
|
|
uint32_t cur_frq;
|
|
uint32_t complete;
|
|
uint32_t frqchg_req;
|
|
|
|
/* pi_start */
|
|
ddr_setval_ach(_reg_PI_START, 0x01U);
|
|
foreach_vch(ch) {
|
|
ddr_getval(ch, _reg_PI_INT_STATUS);
|
|
}
|
|
|
|
/* set dfi_phymstr_ack = 1 */
|
|
mmio_write_32(DBSC_DBDFIPMSTRCNF, 0x00000001U);
|
|
dsb_sev();
|
|
|
|
/* wait pi_int_status[0] */
|
|
mst_ch = 0U;
|
|
flag = 0U;
|
|
complete = 0U;
|
|
cur_frq = 0U;
|
|
for (retry = 0U; retry < RETRY_MAX; retry++) {
|
|
frqchg_req = mmio_read_32(DBSC_DBPDSTAT(mst_ch)) & 0x01;
|
|
|
|
if (frqchg_req != 0U) {
|
|
if (cur_frq != 0U) {
|
|
/* Low frequency */
|
|
flag = pll3_freq(0U);
|
|
cur_frq = 0U;
|
|
} else {
|
|
/* High frequency */
|
|
flag = pll3_freq(1U);
|
|
cur_frq = 1U;
|
|
}
|
|
if (flag != 0U) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (cur_frq != 0U) {
|
|
foreach_vch(ch) {
|
|
if ((complete & (1U << ch)) != 0U) {
|
|
continue;
|
|
}
|
|
data_l = ddr_getval(ch, _reg_PI_INT_STATUS);
|
|
if ((data_l & 0x01U) != 0U) {
|
|
complete |= (1U << ch);
|
|
}
|
|
}
|
|
if (complete == ddr_phyvalid) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
foreach_vch(ch) {
|
|
/* dummy read */
|
|
data_l = ddr_getval_s(ch, 0U, _reg_PHY_CAL_RESULT2_OBS_0);
|
|
data_l = ddr_getval(ch, _reg_PI_INT_STATUS);
|
|
ddr_setval(ch, _reg_PI_INT_ACK, data_l);
|
|
}
|
|
if (ddrphy_regif_chk() != 0U) {
|
|
complete = 0xfdU;
|
|
}
|
|
return complete;
|
|
}
|
|
|
|
/* Initialize DDR */
|
|
static uint32_t init_ddr(void)
|
|
{
|
|
uint32_t i;
|
|
uint32_t data_l;
|
|
uint32_t phytrainingok;
|
|
uint32_t ch, slice;
|
|
uint32_t index;
|
|
uint32_t err;
|
|
int16_t adj;
|
|
|
|
MSG_LF(__func__ ":0\n");
|
|
|
|
/* unlock phy */
|
|
/* Unlock DDRPHY register(AGAIN) */
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDLK(ch), 0x0000A55AU);
|
|
}
|
|
dsb_sev();
|
|
|
|
reg_ddrphy_write_a(0x00001010U, 0x00000001U);
|
|
/* DBSC register pre-setting */
|
|
dbsc_regset_pre();
|
|
|
|
/* load ddrphy registers */
|
|
ddrtbl_load();
|
|
|
|
/* configure ddrphy registers */
|
|
ddr_config();
|
|
|
|
/* dfi_reset assert */
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDCNT0(ch), 0x01U);
|
|
}
|
|
dsb_sev();
|
|
|
|
/* dbsc register set */
|
|
dbsc_regset();
|
|
MSG_LF(__func__ ":1\n");
|
|
|
|
/* dfi_reset negate */
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDCNT0(ch), 0x00U);
|
|
}
|
|
dsb_sev();
|
|
|
|
/* dfi_init_start (start ddrphy) */
|
|
err = dfi_init_start();
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_I;
|
|
}
|
|
MSG_LF(__func__ ":2\n");
|
|
|
|
/* ddr backupmode end */
|
|
#ifdef DDR_BACKUPMODE
|
|
if (ddr_backup != 0U) {
|
|
NOTICE("BL2: [WARM_BOOT]\n");
|
|
} else {
|
|
NOTICE("BL2: [COLD_BOOT]\n");
|
|
}
|
|
#endif
|
|
MSG_LF(__func__ ":3\n");
|
|
|
|
/* override term code after dfi_init_complete */
|
|
err = set_term_code();
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_I;
|
|
}
|
|
MSG_LF(__func__ ":4\n");
|
|
|
|
/* rx offset calibration */
|
|
if (prr_cut > PRR_PRODUCT_11) {
|
|
err = rx_offset_cal_hw();
|
|
} else {
|
|
err = rx_offset_cal();
|
|
}
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_O;
|
|
}
|
|
MSG_LF(__func__ ":5\n");
|
|
|
|
/* Dummy PDE */
|
|
send_dbcmd(0x08840000U);
|
|
|
|
/* PDX */
|
|
send_dbcmd(0x08840001U);
|
|
|
|
/* check register i/f is alive */
|
|
err = ddrphy_regif_chk();
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_O;
|
|
}
|
|
MSG_LF(__func__ ":6\n");
|
|
|
|
/* phy initialize end */
|
|
|
|
/* setup DDR mode registers */
|
|
/* CMOS MODE */
|
|
change_lpddr4_en(0);
|
|
|
|
/* MRS */
|
|
ddr_register_set();
|
|
|
|
/* Thermal sensor setting */
|
|
/* THCTR Bit6: PONM=0 , Bit0: THSST=1 */
|
|
data_l = (mmio_read_32(THS1_THCTR) & 0xFFFFFFBFU) | 0x00000001U;
|
|
mmio_write_32(THS1_THCTR, data_l);
|
|
|
|
/* LPDDR4 MODE */
|
|
change_lpddr4_en(1);
|
|
|
|
MSG_LF(__func__ ":7\n");
|
|
|
|
/* mask CS_MAP if RANKx is not found */
|
|
foreach_vch(ch) {
|
|
data_l = ddr_getval(ch, _reg_PI_CS_MAP);
|
|
if ((ch_have_this_cs[1] & (1U << ch)) == 0U) {
|
|
data_l = data_l & 0x05U;
|
|
}
|
|
ddr_setval(ch, _reg_PI_CS_MAP, data_l);
|
|
}
|
|
|
|
/* exec pi_training */
|
|
reg_ddrphy_write_a(ddr_regdef_adr(_reg_PHY_FREQ_SEL_MULTICAST_EN),
|
|
BIT(ddr_regdef_lsb(_reg_PHY_FREQ_SEL_MULTICAST_EN)));
|
|
ddr_setval_ach_as(_reg_PHY_PER_CS_TRAINING_MULTICAST_EN, 0x00U);
|
|
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_PER_CS_TRAINING_EN,
|
|
((ch_have_this_cs[1]) >> ch) & 0x01U);
|
|
}
|
|
}
|
|
|
|
phytrainingok = pi_training_go();
|
|
|
|
if (ddr_phyvalid != (phytrainingok & ddr_phyvalid)) {
|
|
return INITDRAM_ERR_T | phytrainingok;
|
|
}
|
|
|
|
MSG_LF(__func__ ":8\n");
|
|
|
|
/* CACS DLY ADJUST */
|
|
data_l = board_cnf->cacs_dly + (uint32_t)_f_scale_adj(board_cnf->cacs_dly_adj);
|
|
foreach_vch(ch) {
|
|
for (i = 0U; i < _reg_PHY_CLK_CACS_SLAVE_DELAY_X_NUM; i++) {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].cacs_adj[i]);
|
|
ddr_setval(ch, _reg_PHY_CLK_CACS_SLAVE_DELAY_X[i],
|
|
data_l + (uint32_t)adj);
|
|
}
|
|
|
|
if (ddr_phycaslice == 1U) {
|
|
for (i = 0U; i < 6U; i++) {
|
|
index = i + _reg_PHY_CLK_CACS_SLAVE_DELAY_X_NUM;
|
|
adj = _f_scale_adj(board_cnf->ch[ch].cacs_adj[index]);
|
|
ddr_setval_s(ch, 2U,
|
|
_reg_PHY_CLK_CACS_SLAVE_DELAY_X[i],
|
|
data_l + (uint32_t)adj);
|
|
}
|
|
}
|
|
}
|
|
|
|
update_dly();
|
|
MSG_LF(__func__ ":9\n");
|
|
|
|
/* Adjust write path latency */
|
|
if (ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_WRITE_PATH_LAT_ADD) != 0U) {
|
|
adjust_wpath_latency();
|
|
}
|
|
|
|
/* RDQLVL Training */
|
|
if (ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_IE_MODE) == 0U) {
|
|
ddr_setval_ach_as(_reg_PHY_IE_MODE, 0x01U);
|
|
}
|
|
|
|
err = rdqdm_man();
|
|
|
|
if (ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET, _reg_PHY_IE_MODE) == 0U) {
|
|
ddr_setval_ach_as(_reg_PHY_IE_MODE, 0x00U);
|
|
}
|
|
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_T;
|
|
}
|
|
update_dly();
|
|
MSG_LF(__func__ ":10\n");
|
|
|
|
/* WDQLVL Training */
|
|
err = wdqdm_man();
|
|
if (err != 0U) {
|
|
return INITDRAM_ERR_T;
|
|
}
|
|
update_dly();
|
|
MSG_LF(__func__ ":11\n");
|
|
|
|
dbsc_regset_post();
|
|
MSG_LF(__func__ ":12\n");
|
|
|
|
return phytrainingok;
|
|
}
|
|
|
|
/* SW LEVELING COMMON */
|
|
static uint32_t swlvl1(uint32_t ddr_csn, uint32_t reg_cs, uint32_t reg_kick)
|
|
{
|
|
const uint32_t RETRY_MAX = 0x1000U;
|
|
uint32_t ch, data_l;
|
|
uint32_t waiting;
|
|
uint32_t retry;
|
|
uint32_t err = 0U;
|
|
|
|
/* set EXIT -> OP_DONE is cleared */
|
|
ddr_setval_ach(_reg_PI_SWLVL_EXIT, 0x01);
|
|
|
|
/* kick */
|
|
foreach_vch(ch) {
|
|
if ((ch_have_this_cs[ddr_csn % 2U] & (1U << ch)) != 0U) {
|
|
ddr_setval(ch, reg_cs, ddr_csn);
|
|
ddr_setval(ch, reg_kick, 0x01U);
|
|
}
|
|
}
|
|
foreach_vch(ch) {
|
|
/*PREPARE ADDR REGISTER (for SWLVL_OP_DONE) */
|
|
ddr_getval(ch, _reg_PI_SWLVL_OP_DONE);
|
|
}
|
|
waiting = ch_have_this_cs[ddr_csn % 2U];
|
|
dsb_sev();
|
|
retry = RETRY_MAX;
|
|
do {
|
|
foreach_vch(ch) {
|
|
if ((waiting & (1U << ch)) == 0U) {
|
|
continue;
|
|
}
|
|
data_l = ddr_getval(ch, _reg_PI_SWLVL_OP_DONE);
|
|
if ((data_l & 0x01U) != 0U) {
|
|
waiting &= ~(1U << ch);
|
|
}
|
|
}
|
|
retry--;
|
|
} while ((waiting != 0U) && (retry > 0U));
|
|
if (retry == 0U) {
|
|
err = 1U;
|
|
}
|
|
|
|
dsb_sev();
|
|
/* set EXIT -> OP_DONE is cleared */
|
|
ddr_setval_ach(_reg_PI_SWLVL_EXIT, 0x01U);
|
|
dsb_sev();
|
|
|
|
return err;
|
|
}
|
|
|
|
/* WDQ TRAINING */
|
|
#ifndef DDR_FAST_INIT
|
|
static void wdqdm_clr1(uint32_t ch, uint32_t ddr_csn)
|
|
{
|
|
uint32_t cs, slice;
|
|
uint32_t data_l;
|
|
int32_t i, k;
|
|
|
|
/* clr of training results buffer */
|
|
cs = ddr_csn % 2U;
|
|
data_l = board_cnf->dqdm_dly_w;
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
k = (board_cnf->ch[ch].dqs_swap >> (4 * slice)) & 0x0f;
|
|
if (((k >= 2) && (ddr_csn < 2)) || ((k < 2) && (ddr_csn >= 2))) {
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i <= 8; i++) {
|
|
if ((ch_have_this_cs[CS_CNT - 1 - cs] & (1U << ch)) != 0U) {
|
|
wdqdm_dly[ch][cs][slice][i] =
|
|
wdqdm_dly[ch][CS_CNT - 1 - cs][slice][i];
|
|
} else {
|
|
wdqdm_dly[ch][cs][slice][i] = data_l;
|
|
}
|
|
wdqdm_le[ch][cs][slice][i] = 0U;
|
|
wdqdm_te[ch][cs][slice][i] = 0U;
|
|
}
|
|
wdqdm_st[ch][cs][slice] = 0U;
|
|
wdqdm_win[ch][cs][slice] = 0U;
|
|
}
|
|
}
|
|
|
|
static uint32_t wdqdm_ana1(uint32_t ch, uint32_t ddr_csn)
|
|
{
|
|
const uint32_t _par_WDQLVL_RETRY_THRES = 0x7c0U;
|
|
uint32_t cs, slice;
|
|
uint32_t data_l;
|
|
int32_t min_win;
|
|
int32_t i, k;
|
|
uint32_t err;
|
|
int32_t win;
|
|
int8_t _adj;
|
|
int16_t adj;
|
|
uint32_t dq;
|
|
|
|
/* analysis of training results */
|
|
err = 0U;
|
|
for (slice = 0U; slice < SLICE_CNT; slice += 1U) {
|
|
k = (board_cnf->ch[ch].dqs_swap >> (4 * slice)) & 0x0f;
|
|
if (((k >= 2) && (ddr_csn < 2)) || ((k < 2) && (ddr_csn >= 2))) {
|
|
continue;
|
|
}
|
|
|
|
cs = ddr_csn % 2U;
|
|
ddr_setval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_INDEX, cs);
|
|
for (i = 0; i < 9; i++) {
|
|
dq = slice * 8U + i;
|
|
if (i == 8) {
|
|
_adj = board_cnf->ch[ch].dm_adj_w[slice];
|
|
} else {
|
|
_adj = board_cnf->ch[ch].dq_adj_w[dq];
|
|
}
|
|
adj = _f_scale_adj(_adj);
|
|
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_CLK_WRX_SLAVE_DELAY[i]) + adj;
|
|
ddr_setval_s(ch, slice, _reg_PHY_CLK_WRX_SLAVE_DELAY[i],
|
|
data_l);
|
|
wdqdm_dly[ch][cs][slice][i] = data_l;
|
|
}
|
|
ddr_setval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_EN, 0x00);
|
|
data_l = ddr_getval_s(ch, slice, _reg_PHY_WDQLVL_STATUS_OBS);
|
|
wdqdm_st[ch][cs][slice] = data_l;
|
|
min_win = INT_LEAST32_MAX;
|
|
for (i = 0; i <= 8; i++) {
|
|
ddr_setval_s(ch, slice, _reg_PHY_WDQLVL_DQDM_OBS_SELECT,
|
|
i);
|
|
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_WDQLVL_DQDM_TE_DLY_OBS);
|
|
wdqdm_te[ch][cs][slice][i] = data_l;
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_WDQLVL_DQDM_LE_DLY_OBS);
|
|
wdqdm_le[ch][cs][slice][i] = data_l;
|
|
win = (int32_t)wdqdm_te[ch][cs][slice][i] -
|
|
wdqdm_le[ch][cs][slice][i];
|
|
if (min_win > win) {
|
|
min_win = win;
|
|
}
|
|
if (data_l >= _par_WDQLVL_RETRY_THRES) {
|
|
err = 2;
|
|
}
|
|
}
|
|
wdqdm_win[ch][cs][slice] = min_win;
|
|
ddr_setval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_EN,
|
|
((ch_have_this_cs[1]) >> ch) & 0x01);
|
|
}
|
|
return err;
|
|
}
|
|
#endif/* DDR_FAST_INIT */
|
|
|
|
static void wdqdm_cp(uint32_t ddr_csn, uint32_t restore)
|
|
{
|
|
uint32_t tgt_cs, src_cs;
|
|
uint32_t ch, slice;
|
|
uint32_t tmp_r;
|
|
uint32_t i;
|
|
|
|
/* copy of training results */
|
|
foreach_vch(ch) {
|
|
for (tgt_cs = 0U; tgt_cs < CS_CNT; tgt_cs++) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_PER_CS_TRAINING_INDEX,
|
|
tgt_cs);
|
|
src_cs = ddr_csn % 2U;
|
|
if ((ch_have_this_cs[1] & (1U << ch)) == 0U) {
|
|
src_cs = 0U;
|
|
}
|
|
for (i = 0U; i <= 4U; i += 4U) {
|
|
if (restore != 0U) {
|
|
tmp_r = rdqdm_dly[ch][tgt_cs][slice][i];
|
|
} else {
|
|
tmp_r = rdqdm_dly[ch][src_cs][slice][i];
|
|
}
|
|
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i],
|
|
tmp_r);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint32_t wdqdm_man1(void)
|
|
{
|
|
uint32_t mr14_csab0_bak[DRAM_CH_CNT];
|
|
uint32_t ch, cs, ddr_csn;
|
|
uint32_t data_l;
|
|
uint32_t err = 0U;
|
|
#ifndef DDR_FAST_INIT
|
|
uint32_t err_flg = 0U;
|
|
#endif/* DDR_FAST_INIT */
|
|
|
|
/* CLEAR PREV RESULT */
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
ddr_setval_ach_as(_reg_PHY_PER_CS_TRAINING_INDEX, cs);
|
|
ddr_setval_ach_as(_reg_PHY_WDQLVL_CLR_PREV_RESULTS, 0x01U);
|
|
}
|
|
ddrphy_regif_idle();
|
|
|
|
for (ddr_csn = 0U; ddr_csn < CSAB_CNT; ddr_csn++) {
|
|
if (((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut == PRR_PRODUCT_10))) {
|
|
wdqdm_cp(ddr_csn, 0U);
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
data_l = ddr_getval(ch, reg_pi_mr14_data_fx_csx[1][ddr_csn]);
|
|
ddr_setval(ch, reg_pi_mr14_data_fx_csx[1][0], data_l);
|
|
}
|
|
|
|
/* KICK WDQLVL */
|
|
err = swlvl1(ddr_csn, _reg_PI_WDQLVL_CS, _reg_PI_WDQLVL_REQ);
|
|
if (err != 0U) {
|
|
goto err_exit;
|
|
}
|
|
|
|
if (ddr_csn == 0U) {
|
|
foreach_vch(ch) {
|
|
mr14_csab0_bak[ch] = ddr_getval(ch,
|
|
reg_pi_mr14_data_fx_csx[1][0]);
|
|
}
|
|
} else {
|
|
foreach_vch(ch) {
|
|
ddr_setval(ch, reg_pi_mr14_data_fx_csx[1][0],
|
|
mr14_csab0_bak[ch]);
|
|
}
|
|
}
|
|
#ifndef DDR_FAST_INIT
|
|
foreach_vch(ch) {
|
|
if ((ch_have_this_cs[ddr_csn % 2U] & (1U << ch)) == 0U) {
|
|
wdqdm_clr1(ch, ddr_csn);
|
|
continue;
|
|
}
|
|
err = wdqdm_ana1(ch, ddr_csn);
|
|
if (err != 0U) {
|
|
err_flg |= (1U << (ddr_csn * 4U + ch));
|
|
}
|
|
ddrphy_regif_idle();
|
|
}
|
|
#endif/* DDR_FAST_INIT */
|
|
}
|
|
err_exit:
|
|
#ifndef DDR_FAST_INIT
|
|
err |= err_flg;
|
|
#endif/* DDR_FAST_INIT */
|
|
|
|
return err;
|
|
}
|
|
|
|
static uint32_t wdqdm_man(void)
|
|
{
|
|
uint32_t datal, ch, ddr_csn, mr14_bkup[4][4];
|
|
const uint32_t retry_max = 0x10U;
|
|
uint32_t err, retry_cnt;
|
|
|
|
datal = RL + js2[js2_tdqsck] + (16U / 2U) + 1U - WL + 2U + 2U + 19U;
|
|
if ((mmio_read_32(DBSC_DBTR(11)) & 0xFF) > datal) {
|
|
datal = mmio_read_32(DBSC_DBTR(11)) & 0xFF;
|
|
}
|
|
ddr_setval_ach(_reg_PI_TDFI_WDQLVL_RW, datal);
|
|
|
|
ddr_setval_ach(_reg_PI_TDFI_WDQLVL_WR,
|
|
(mmio_read_32(DBSC_DBTR(12)) & 0xFF) + 10);
|
|
|
|
ddr_setval_ach(_reg_PI_TRFC_F0, mmio_read_32(DBSC_DBTR(13)) & 0x1FF);
|
|
ddr_setval_ach(_reg_PI_TRFC_F1, mmio_read_32(DBSC_DBTR(13)) & 0x1FF);
|
|
|
|
retry_cnt = 0U;
|
|
err = 0U;
|
|
do {
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_EN, 0x01);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_NORMAL_STEPSIZE, 0x01);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_DELTA, 0x0C);
|
|
dsb_sev();
|
|
err = wdqdm_man1();
|
|
foreach_vch(ch) {
|
|
for (ddr_csn = 0U; ddr_csn < CSAB_CNT; ddr_csn++) {
|
|
mr14_bkup[ch][ddr_csn] =
|
|
ddr_getval(ch, reg_pi_mr14_data_fx_csx
|
|
[1][ddr_csn]);
|
|
dsb_sev();
|
|
}
|
|
}
|
|
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_DELTA, 0x04);
|
|
|
|
pvtcode_update();
|
|
err = wdqdm_man1();
|
|
foreach_vch(ch) {
|
|
for (ddr_csn = 0U; ddr_csn < CSAB_CNT; ddr_csn++) {
|
|
mr14_bkup[ch][ddr_csn] =
|
|
(mr14_bkup[ch][ddr_csn] +
|
|
ddr_getval(ch, reg_pi_mr14_data_fx_csx
|
|
[1][ddr_csn])) / 2U;
|
|
ddr_setval(ch,
|
|
reg_pi_mr14_data_fx_csx[1]
|
|
[ddr_csn],
|
|
mr14_bkup[ch][ddr_csn]);
|
|
}
|
|
}
|
|
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_NORMAL_STEPSIZE, 0x0U);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_DELTA, 0x0U);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_INITIAL_START_POINT, 0x0U);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_INITIAL_STOP_POINT, 0x0U);
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_INITIAL_STEPSIZE, 0x0U);
|
|
|
|
pvtcode_update2();
|
|
err = wdqdm_man1();
|
|
ddr_setval_ach(_reg_PI_WDQLVL_VREF_EN, 0x0U);
|
|
|
|
} while ((err != 0U) && (++retry_cnt < retry_max));
|
|
|
|
if (prr_product == PRR_PRODUCT_M3 && prr_cut <= PRR_PRODUCT_10) {
|
|
wdqdm_cp(0U, 1U);
|
|
}
|
|
|
|
return (retry_cnt >= retry_max);
|
|
}
|
|
|
|
/* RDQ TRAINING */
|
|
#ifndef DDR_FAST_INIT
|
|
static void rdqdm_clr1(uint32_t ch, uint32_t ddr_csn)
|
|
{
|
|
uint32_t cs, slice;
|
|
uint32_t data_l;
|
|
int32_t i, k;
|
|
|
|
/* clr of training results buffer */
|
|
cs = ddr_csn % 2U;
|
|
data_l = board_cnf->dqdm_dly_r;
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
k = (board_cnf->ch[ch].dqs_swap >> (4 * slice)) & 0x0f;
|
|
if (((k >= 2) && (ddr_csn < 2)) || ((k < 2) && (ddr_csn >= 2))) {
|
|
continue;
|
|
}
|
|
|
|
for (i = 0; i <= 8; i++) {
|
|
if ((ch_have_this_cs[CS_CNT - 1 - cs] & (1U << ch)) != 0U) {
|
|
rdqdm_dly[ch][cs][slice][i] =
|
|
rdqdm_dly[ch][CS_CNT - 1 - cs][slice][i];
|
|
rdqdm_dly[ch][cs][slice + SLICE_CNT][i] =
|
|
rdqdm_dly[ch][CS_CNT - 1 - cs][slice + SLICE_CNT][i];
|
|
} else {
|
|
rdqdm_dly[ch][cs][slice][i] = data_l;
|
|
rdqdm_dly[ch][cs][slice + SLICE_CNT][i] = data_l;
|
|
}
|
|
rdqdm_le[ch][cs][slice][i] = 0U;
|
|
rdqdm_le[ch][cs][slice + SLICE_CNT][i] = 0U;
|
|
rdqdm_te[ch][cs][slice][i] = 0U;
|
|
rdqdm_te[ch][cs][slice + SLICE_CNT][i] = 0U;
|
|
rdqdm_nw[ch][cs][slice][i] = 0U;
|
|
rdqdm_nw[ch][cs][slice + SLICE_CNT][i] = 0U;
|
|
}
|
|
rdqdm_st[ch][cs][slice] = 0U;
|
|
rdqdm_win[ch][cs][slice] = 0U;
|
|
}
|
|
}
|
|
|
|
static uint32_t rdqdm_ana1(uint32_t ch, uint32_t ddr_csn)
|
|
{
|
|
uint32_t rdq_status_obs_select;
|
|
uint32_t cs, slice;
|
|
uint32_t data_l;
|
|
uint32_t err;
|
|
uint32_t dq;
|
|
int32_t min_win;
|
|
int8_t _adj;
|
|
int16_t adj;
|
|
int32_t min_win;
|
|
int32_t win;
|
|
int32_t i, k;
|
|
|
|
/* analysis of training results */
|
|
err = 0U;
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
k = (board_cnf->ch[ch].dqs_swap >> (4 * slice)) & 0x0f;
|
|
if (((k >= 2) && (ddr_csn < 2)) || ((k < 2) && (ddr_csn >= 2))) {
|
|
continue;
|
|
}
|
|
|
|
cs = ddr_csn % 2U;
|
|
ddr_setval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_INDEX, cs);
|
|
ddrphy_regif_idle();
|
|
|
|
ddr_getval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_INDEX);
|
|
ddrphy_regif_idle();
|
|
|
|
for (i = 0; i <= 8; i++) {
|
|
dq = slice * 8 + i;
|
|
if (i == 8) {
|
|
_adj = board_cnf->ch[ch].dm_adj_r[slice];
|
|
} else {
|
|
_adj = board_cnf->ch[ch].dq_adj_r[dq];
|
|
}
|
|
|
|
adj = _f_scale_adj(_adj);
|
|
|
|
data_l = ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i]) + adj;
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i],
|
|
data_l);
|
|
rdqdm_dly[ch][cs][slice][i] = data_l;
|
|
|
|
data_l = ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDDQS_X_FALL_SLAVE_DELAY[i]) + adj;
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_RDDQS_X_FALL_SLAVE_DELAY[i],
|
|
data_l);
|
|
rdqdm_dly[ch][cs][slice + SLICE_CNT][i] = data_l;
|
|
}
|
|
min_win = INT_LEAST32_MAX;
|
|
for (i = 0; i <= 8; i++) {
|
|
data_l =
|
|
ddr_getval_s(ch, slice, _reg_PHY_RDLVL_STATUS_OBS);
|
|
rdqdm_st[ch][cs][slice] = data_l;
|
|
rdqdm_st[ch][cs][slice + SLICE_CNT] = data_l;
|
|
/* k : rise/fall */
|
|
for (k = 0; k < 2; k++) {
|
|
if (i == 8) {
|
|
rdq_status_obs_select = 16 + 8 * k;
|
|
} else {
|
|
rdq_status_obs_select = i + k * 8;
|
|
}
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_RDLVL_RDDQS_DQ_OBS_SELECT,
|
|
rdq_status_obs_select);
|
|
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDLVL_RDDQS_DQ_LE_DLY_OBS);
|
|
rdqdm_le[ch][cs][slice + SLICE_CNT * k][i] = data_l;
|
|
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDLVL_RDDQS_DQ_TE_DLY_OBS);
|
|
rdqdm_te[ch][cs][slice + SLICE_CNT * k][i] = data_l;
|
|
|
|
data_l =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_RDLVL_RDDQS_DQ_NUM_WINDOWS_OBS);
|
|
rdqdm_nw[ch][cs][slice + SLICE_CNT * k][i] = data_l;
|
|
|
|
win =
|
|
(int32_t)rdqdm_te[ch][cs][slice +
|
|
SLICE_CNT *
|
|
k][i] -
|
|
rdqdm_le[ch][cs][slice + SLICE_CNT * k][i];
|
|
if (i != 8) {
|
|
if (min_win > win) {
|
|
min_win = win;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
rdqdm_win[ch][cs][slice] = min_win;
|
|
if (min_win <= 0) {
|
|
err = 2;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
#else /* DDR_FAST_INIT */
|
|
static void rdqdm_man1_set(uint32_t ddr_csn, uint32_t ch, uint32_t slice)
|
|
{
|
|
uint32_t i, adj, data_l;
|
|
|
|
for (i = 0U; i <= 8U; i++) {
|
|
if (i == 8U) {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].dm_adj_r[slice]);
|
|
} else {
|
|
adj = _f_scale_adj(board_cnf->ch[ch].dq_adj_r[slice * 8U + i]);
|
|
}
|
|
ddr_setval_s(ch, slice, _reg_PHY_PER_CS_TRAINING_INDEX, ddr_csn);
|
|
data_l = ddr_getval_s(ch, slice, _reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i]) + adj;
|
|
ddr_setval_s(ch, slice, _reg_PHY_RDDQS_X_RISE_SLAVE_DELAY[i], data_l);
|
|
rdqdm_dly[ch][ddr_csn][slice][i] = data_l;
|
|
rdqdm_dly[ch][ddr_csn | 1U][slice][i] = data_l;
|
|
|
|
data_l = ddr_getval_s(ch, slice, _reg_PHY_RDDQS_X_FALL_SLAVE_DELAY[i]) + adj;
|
|
ddr_setval_s(ch, slice, _reg_PHY_RDDQS_X_FALL_SLAVE_DELAY[i], data_l);
|
|
rdqdm_dly[ch][ddr_csn][slice + SLICE_CNT][i] = data_l;
|
|
rdqdm_dly[ch][ddr_csn | 1U][slice + SLICE_CNT][i] = data_l;
|
|
}
|
|
}
|
|
#endif /* DDR_FAST_INIT */
|
|
|
|
static uint32_t rdqdm_man1(void)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t ddr_csn;
|
|
uint32_t val;
|
|
#ifdef DDR_FAST_INIT
|
|
uint32_t slice;
|
|
#endif/* DDR_FAST_INIT */
|
|
uint32_t err;
|
|
|
|
/* manual execution of training */
|
|
err = 0U;
|
|
|
|
for (ddr_csn = 0U; ddr_csn < CSAB_CNT; ddr_csn++) {
|
|
/* KICK RDQLVL */
|
|
err = swlvl1(ddr_csn, _reg_PI_RDLVL_CS, _reg_PI_RDLVL_REQ);
|
|
if (err != 0U) {
|
|
goto err_exit;
|
|
}
|
|
#ifndef DDR_FAST_INIT
|
|
foreach_vch(ch) {
|
|
if ((ch_have_this_cs[ddr_csn % 2] & (1U << ch)) == 0U) {
|
|
rdqdm_clr1(ch, ddr_csn);
|
|
ddrphy_regif_idle();
|
|
continue;
|
|
}
|
|
err = rdqdm_ana1(ch, ddr_csn);
|
|
ddrphy_regif_idle();
|
|
if (err != 0U) {
|
|
goto err_exit;
|
|
}
|
|
}
|
|
#else/* DDR_FAST_INIT */
|
|
foreach_vch(ch) {
|
|
if ((ch_have_this_cs[ddr_csn] & (1U << ch)) != 0U) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
val = ddr_getval_s(ch, slice, _reg_PHY_RDLVL_STATUS_OBS);
|
|
if (val != 0x0D00FFFFU) {
|
|
err = (1U << ch) | (0x10U << slice);
|
|
goto err_exit;
|
|
}
|
|
}
|
|
}
|
|
if ((prr_product == PRR_PRODUCT_M3) &&
|
|
(prr_cut <= PRR_PRODUCT_10)) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
rdqdm_man1_set(ddr_csn, ch, slice);
|
|
}
|
|
}
|
|
}
|
|
ddrphy_regif_idle();
|
|
|
|
#endif/* DDR_FAST_INIT */
|
|
}
|
|
|
|
err_exit:
|
|
return err;
|
|
}
|
|
|
|
static uint32_t rdqdm_man(void)
|
|
{
|
|
uint32_t err, retry_cnt;
|
|
const uint32_t retry_max = 0x01U;
|
|
|
|
ddr_setval_ach_as(_reg_PHY_DQ_TSEL_ENABLE,
|
|
0x00000004U | ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQ_TSEL_ENABLE));
|
|
ddr_setval_ach_as(_reg_PHY_DQS_TSEL_ENABLE,
|
|
0x00000004U | ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQS_TSEL_ENABLE));
|
|
ddr_setval_ach_as(_reg_PHY_DQ_TSEL_SELECT,
|
|
0xFF0FFFFFU & ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQ_TSEL_SELECT));
|
|
ddr_setval_ach_as(_reg_PHY_DQS_TSEL_SELECT,
|
|
0xFF0FFFFFU & ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQS_TSEL_SELECT));
|
|
|
|
retry_cnt = 0U;
|
|
do {
|
|
err = rdqdm_man1();
|
|
ddrphy_regif_idle();
|
|
} while ((err != 0U) && (++retry_cnt < retry_max));
|
|
ddr_setval_ach_as(_reg_PHY_DQ_TSEL_ENABLE,
|
|
ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQ_TSEL_ENABLE));
|
|
ddr_setval_ach_as(_reg_PHY_DQS_TSEL_ENABLE,
|
|
ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQS_TSEL_ENABLE));
|
|
ddr_setval_ach_as(_reg_PHY_DQ_TSEL_SELECT,
|
|
ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQ_TSEL_SELECT));
|
|
ddr_setval_ach_as(_reg_PHY_DQS_TSEL_SELECT,
|
|
ddrtbl_getval(_cnf_DDR_PHY_SLICE_REGSET,
|
|
_reg_PHY_DQS_TSEL_SELECT));
|
|
|
|
return (retry_cnt >= retry_max);
|
|
}
|
|
|
|
/* rx offset calibration */
|
|
static int32_t _find_change(uint64_t val, uint32_t dir)
|
|
{
|
|
int32_t i;
|
|
uint32_t startval;
|
|
uint32_t curval;
|
|
const int32_t VAL_END = 0x3fU;
|
|
|
|
if (dir == 0U) {
|
|
startval = (val & 0x01U);
|
|
for (i = 1; i <= VAL_END; i++) {
|
|
curval = (val >> i) & 0x01U;
|
|
if (curval != startval) {
|
|
return i;
|
|
}
|
|
}
|
|
return VAL_END;
|
|
}
|
|
|
|
startval = (val >> dir) & 0x01U;
|
|
for (i = (int32_t)dir - 1; i >= 0; i--) {
|
|
curval = (val >> i) & 0x01U;
|
|
if (curval != startval) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t _rx_offset_cal_updn(uint32_t code)
|
|
{
|
|
const uint32_t CODE_MAX = 0x40U;
|
|
uint32_t tmp;
|
|
|
|
if (code == 0U) {
|
|
tmp = (1U << 6) | (CODE_MAX - 1U);
|
|
} else {
|
|
tmp = (code << 6) | (CODE_MAX - code);
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
static uint32_t rx_offset_cal(void)
|
|
{
|
|
uint32_t index;
|
|
uint32_t code;
|
|
const uint32_t CODE_MAX = 0x40U;
|
|
const uint32_t CODE_STEP = 2U;
|
|
uint32_t ch, slice;
|
|
uint32_t tmp;
|
|
uint32_t tmp_ach_as[DRAM_CH_CNT][SLICE_CNT];
|
|
uint64_t val[DRAM_CH_CNT][SLICE_CNT][_reg_PHY_RX_CAL_X_NUM];
|
|
uint64_t tmpval;
|
|
int32_t lsb, msb;
|
|
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_OVERRIDE, 0x01);
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
for (index = 0U; index < _reg_PHY_RX_CAL_X_NUM; index++) {
|
|
val[ch][slice][index] = 0U;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (code = 0U; code < CODE_MAX / CODE_STEP; code++) {
|
|
tmp = _rx_offset_cal_updn(code * CODE_STEP);
|
|
for (index = 0U; index < _reg_PHY_RX_CAL_X_NUM; index++) {
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_X[index], tmp);
|
|
}
|
|
dsb_sev();
|
|
ddr_getval_ach_as(_reg_PHY_RX_CAL_OBS, (uint32_t *)tmp_ach_as);
|
|
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
tmp = tmp_ach_as[ch][slice];
|
|
for (index = 0U; index < _reg_PHY_RX_CAL_X_NUM;
|
|
index++) {
|
|
if ((tmp & (1U << index)) != 0U) {
|
|
val[ch][slice][index] |=
|
|
(1ULL << code);
|
|
} else {
|
|
val[ch][slice][index] &=
|
|
~(1ULL << code);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
for (index = 0U; index < _reg_PHY_RX_CAL_X_NUM;
|
|
index++) {
|
|
tmpval = val[ch][slice][index];
|
|
lsb = _find_change(tmpval, 0U);
|
|
msb = _find_change(tmpval,
|
|
(CODE_MAX / CODE_STEP) - 1U);
|
|
tmp = (lsb + msb) >> 1U;
|
|
|
|
tmp = _rx_offset_cal_updn(tmp * CODE_STEP);
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_RX_CAL_X[index], tmp);
|
|
}
|
|
}
|
|
}
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_OVERRIDE, 0x00);
|
|
|
|
return 0U;
|
|
}
|
|
|
|
static uint32_t rx_offset_cal_hw(void)
|
|
{
|
|
uint32_t ch, slice;
|
|
uint32_t retry;
|
|
uint32_t complete;
|
|
uint32_t tmp;
|
|
uint32_t tmp_ach_as[DRAM_CH_CNT][SLICE_CNT];
|
|
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_X[9], 0x00);
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_OVERRIDE, 0x00);
|
|
ddr_setval_ach_as(_reg_PHY_RX_CAL_SAMPLE_WAIT, 0x0f);
|
|
|
|
retry = 0U;
|
|
while (retry < 4096U) {
|
|
if ((retry & 0xffU) == 0U) {
|
|
ddr_setval_ach_as(_reg_SC_PHY_RX_CAL_START, 0x01);
|
|
}
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
tmp_ach_as[ch][slice] =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_RX_CAL_X[9]);
|
|
}
|
|
}
|
|
|
|
complete = 1U;
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice++) {
|
|
tmp = tmp_ach_as[ch][slice];
|
|
tmp = (tmp & 0x3fU) + ((tmp >> 6) & 0x3fU);
|
|
if (tmp != 0x40U) {
|
|
complete = 0U;
|
|
}
|
|
}
|
|
}
|
|
if (complete != 0U) {
|
|
break;
|
|
}
|
|
|
|
retry++;
|
|
}
|
|
|
|
return (complete == 0U);
|
|
}
|
|
|
|
/* adjust wpath latency */
|
|
static void adjust_wpath_latency(void)
|
|
{
|
|
uint32_t ch, cs, slice;
|
|
uint32_t dly;
|
|
uint32_t wpath_add;
|
|
const uint32_t _par_EARLY_THRESHOLD_VAL = 0x180U;
|
|
|
|
foreach_vch(ch) {
|
|
for (slice = 0U; slice < SLICE_CNT; slice += 1U) {
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_PER_CS_TRAINING_INDEX,
|
|
cs);
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_PER_CS_TRAINING_INDEX);
|
|
dly =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_CLK_WRDQS_SLAVE_DELAY);
|
|
if (dly <= _par_EARLY_THRESHOLD_VAL) {
|
|
continue;
|
|
}
|
|
|
|
wpath_add =
|
|
ddr_getval_s(ch, slice,
|
|
_reg_PHY_WRITE_PATH_LAT_ADD);
|
|
ddr_setval_s(ch, slice,
|
|
_reg_PHY_WRITE_PATH_LAT_ADD,
|
|
wpath_add - 1U);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* DDR Initialize entry */
|
|
int32_t rzg_dram_init(void)
|
|
{
|
|
uint32_t ch, cs;
|
|
uint32_t data_l;
|
|
uint32_t bus_mbps, bus_mbpsdiv;
|
|
uint32_t tmp_tccd;
|
|
uint32_t failcount;
|
|
uint32_t cnf_boardtype;
|
|
int32_t ret = INITDRAM_NG;
|
|
|
|
/* Thermal sensor setting */
|
|
data_l = mmio_read_32(CPG_MSTPSR5);
|
|
if ((data_l & BIT(22)) != 0U) { /* case THS/TSC Standby */
|
|
data_l &= ~BIT(22);
|
|
cpg_write_32(CPG_SMSTPCR5, data_l);
|
|
while ((mmio_read_32(CPG_MSTPSR5) & BIT(22)) != 0U) {
|
|
/* wait bit=0 */
|
|
}
|
|
}
|
|
|
|
/* THCTR Bit6: PONM=0 , Bit0: THSST=0 */
|
|
data_l = mmio_read_32(THS1_THCTR) & 0xFFFFFFBE;
|
|
mmio_write_32(THS1_THCTR, data_l);
|
|
|
|
/* Judge product and cut */
|
|
#ifdef RCAR_DDR_FIXED_LSI_TYPE
|
|
#if (RCAR_LSI == RCAR_AUTO)
|
|
prr_product = mmio_read_32(PRR) & PRR_PRODUCT_MASK;
|
|
prr_cut = mmio_read_32(PRR) & PRR_CUT_MASK;
|
|
#else /* RCAR_LSI */
|
|
#ifndef RCAR_LSI_CUT
|
|
prr_cut = mmio_read_32(PRR) & PRR_CUT_MASK;
|
|
#endif /* RCAR_LSI_CUT */
|
|
#endif /* RCAR_LSI */
|
|
#else /* RCAR_DDR_FIXED_LSI_TYPE */
|
|
prr_product = mmio_read_32(PRR) & PRR_PRODUCT_MASK;
|
|
prr_cut = mmio_read_32(PRR) & PRR_CUT_MASK;
|
|
#endif /* RCAR_DDR_FIXED_LSI_TYPE */
|
|
|
|
if (prr_product == PRR_PRODUCT_M3) {
|
|
p_ddr_regdef_tbl =
|
|
(const uint32_t *)&DDR_REGDEF_TBL[1][0];
|
|
} else {
|
|
FATAL_MSG("BL2: DDR:Unknown Product\n");
|
|
goto done;
|
|
}
|
|
|
|
if ((prr_product == PRR_PRODUCT_M3) && (prr_cut < PRR_PRODUCT_30)) {
|
|
/* non : G2M Ver.1.x not support */
|
|
} else {
|
|
mmio_write_32(DBSC_DBSYSCNT0, 0x00001234U);
|
|
}
|
|
|
|
/* Judge board type */
|
|
cnf_boardtype = boardcnf_get_brd_type(prr_product);
|
|
if (cnf_boardtype >= (uint32_t)BOARDNUM) {
|
|
FATAL_MSG("BL2: DDR:Unknown Board\n");
|
|
goto done;
|
|
}
|
|
board_cnf = (const struct _boardcnf *)&boardcnfs[cnf_boardtype];
|
|
|
|
/* RCAR_DRAM_SPLIT_2CH (2U) */
|
|
#if RCAR_DRAM_SPLIT == 2
|
|
ddr_phyvalid = board_cnf->phyvalid;
|
|
#else /* RCAR_DRAM_SPLIT_2CH */
|
|
ddr_phyvalid = board_cnf->phyvalid;
|
|
#endif /* RCAR_DRAM_SPLIT_2CH */
|
|
|
|
max_density = 0U;
|
|
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
ch_have_this_cs[cs] = 0U;
|
|
}
|
|
|
|
foreach_ech(ch) {
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
ddr_density[ch][cs] = 0xffU;
|
|
}
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
for (cs = 0U; cs < CS_CNT; cs++) {
|
|
data_l = board_cnf->ch[ch].ddr_density[cs];
|
|
ddr_density[ch][cs] = data_l;
|
|
|
|
if (data_l == 0xffU) {
|
|
continue;
|
|
}
|
|
if (data_l > max_density) {
|
|
max_density = data_l;
|
|
}
|
|
ch_have_this_cs[cs] |= (1U << ch);
|
|
}
|
|
}
|
|
|
|
/* Judge board clock frequency (in MHz) */
|
|
boardcnf_get_brd_clk(cnf_boardtype, &brd_clk, &brd_clkdiv);
|
|
if ((brd_clk / brd_clkdiv) > 25U) {
|
|
brd_clkdiva = 1U;
|
|
} else {
|
|
brd_clkdiva = 0U;
|
|
}
|
|
|
|
/* Judge ddr operating frequency clock(in Mbps) */
|
|
boardcnf_get_ddr_mbps(cnf_boardtype, &ddr_mbps, &ddr_mbpsdiv);
|
|
|
|
ddr0800_mul = CLK_DIV(800U, 2U, brd_clk, brd_clkdiv * (brd_clkdiva + 1U));
|
|
|
|
ddr_mul = CLK_DIV(ddr_mbps, ddr_mbpsdiv * 2U, brd_clk,
|
|
brd_clkdiv * (brd_clkdiva + 1U));
|
|
|
|
/* Adjust tccd */
|
|
data_l = (0x00006000 & mmio_read_32(RST_MODEMR)) >> 13;
|
|
bus_mbps = 0U;
|
|
bus_mbpsdiv = 0U;
|
|
switch (data_l) {
|
|
case 0:
|
|
bus_mbps = brd_clk * 0x60U * 2U;
|
|
bus_mbpsdiv = brd_clkdiv * 1U;
|
|
break;
|
|
case 1:
|
|
bus_mbps = brd_clk * 0x50U * 2U;
|
|
bus_mbpsdiv = brd_clkdiv * 1U;
|
|
break;
|
|
case 2:
|
|
bus_mbps = brd_clk * 0x40U * 2U;
|
|
bus_mbpsdiv = brd_clkdiv * 1U;
|
|
break;
|
|
case 3:
|
|
bus_mbps = brd_clk * 0x60U * 2U;
|
|
bus_mbpsdiv = brd_clkdiv * 2U;
|
|
break;
|
|
default:
|
|
bus_mbps = brd_clk * 0x60U * 2U;
|
|
bus_mbpsdiv = brd_clkdiv * 2U;
|
|
WARN("BL2: DDR using default values for adjusting tccd");
|
|
break;
|
|
}
|
|
tmp_tccd = CLK_DIV(ddr_mbps * 8U, ddr_mbpsdiv, bus_mbps, bus_mbpsdiv);
|
|
if (8U * ddr_mbps * bus_mbpsdiv != tmp_tccd * bus_mbps * ddr_mbpsdiv) {
|
|
tmp_tccd = tmp_tccd + 1U;
|
|
}
|
|
|
|
if (tmp_tccd < 8U) {
|
|
ddr_tccd = 8U;
|
|
} else {
|
|
ddr_tccd = tmp_tccd;
|
|
}
|
|
|
|
NOTICE("BL2: DDR%d(%s)\n", ddr_mbps / ddr_mbpsdiv, RCAR_DDR_VERSION);
|
|
|
|
MSG_LF("Start\n");
|
|
|
|
/* PLL Setting */
|
|
pll3_control(1U);
|
|
|
|
/* initialize DDR */
|
|
data_l = init_ddr();
|
|
if (data_l == ddr_phyvalid) {
|
|
failcount = 0U;
|
|
} else {
|
|
failcount = 1U;
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
mmio_write_32(DBSC_DBPDLK(ch), 0x00000000U);
|
|
}
|
|
if ((prr_product == PRR_PRODUCT_M3) && (prr_cut < PRR_PRODUCT_30)) {
|
|
/* non : G2M Ver.1.x not support */
|
|
} else {
|
|
mmio_write_32(DBSC_DBSYSCNT0, 0x00000000);
|
|
}
|
|
|
|
if (failcount == 0U) {
|
|
ret = INITDRAM_OK;
|
|
}
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static void pvtcode_update(void)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t data_l;
|
|
uint32_t pvtp[4], pvtn[4], pvtp_init, pvtn_init;
|
|
int32_t pvtp_tmp, pvtn_tmp;
|
|
|
|
foreach_vch(ch) {
|
|
pvtn_init = (tcal.tcomp_cal[ch] & 0xFC0U) >> 6;
|
|
pvtp_init = (tcal.tcomp_cal[ch] & 0x03FU) >> 0;
|
|
|
|
if (8912U * pvtp_init > 44230U) {
|
|
pvtp_tmp = (5000U + 8912U * pvtp_init - 44230U) / 10000U;
|
|
} else {
|
|
pvtp_tmp =
|
|
-((-(5000 + 8912 * pvtp_init - 44230)) / 10000);
|
|
}
|
|
pvtn_tmp = (5000U + 5776U * (uint32_t)pvtn_init + 30280U) / 10000U;
|
|
|
|
pvtn[ch] = (uint32_t)pvtn_tmp + pvtn_init;
|
|
pvtp[ch] = (uint32_t)pvtp_tmp + pvtp_init;
|
|
|
|
if (pvtn[ch] > 63U) {
|
|
pvtn[ch] = 63U;
|
|
pvtp[ch] =
|
|
(pvtp_tmp) * (63 - 6 * pvtn_tmp -
|
|
pvtn_init) / (pvtn_tmp) +
|
|
6 * pvtp_tmp + pvtp_init;
|
|
}
|
|
|
|
data_l = pvtp[ch] | (pvtn[ch] << 6) | 0x00015000U;
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_FDBK_TERM),
|
|
data_l | 0x00020000U);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_DATA_TERM),
|
|
data_l);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_DQS_TERM),
|
|
data_l);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_ADDR_TERM),
|
|
data_l);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_CS_TERM),
|
|
data_l);
|
|
}
|
|
}
|
|
|
|
static void pvtcode_update2(void)
|
|
{
|
|
uint32_t ch;
|
|
|
|
foreach_vch(ch) {
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_FDBK_TERM),
|
|
tcal.init_cal[ch] | 0x00020000U);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_DATA_TERM),
|
|
tcal.init_cal[ch]);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_DQS_TERM),
|
|
tcal.init_cal[ch]);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_ADDR_TERM),
|
|
tcal.init_cal[ch]);
|
|
reg_ddrphy_write(ch, ddr_regdef_adr(_reg_PHY_PAD_CS_TERM),
|
|
tcal.init_cal[ch]);
|
|
}
|
|
}
|
|
|
|
static void ddr_padcal_tcompensate_getinit(uint32_t override)
|
|
{
|
|
uint32_t ch;
|
|
uint32_t data_l;
|
|
uint32_t pvtp, pvtn;
|
|
|
|
tcal.init_temp = 0;
|
|
for (ch = 0U; ch < 4U; ch++) {
|
|
tcal.init_cal[ch] = 0U;
|
|
tcal.tcomp_cal[ch] = 0U;
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
tcal.init_cal[ch] = ddr_getval(ch, _reg_PHY_PAD_TERM_X[1]);
|
|
tcal.tcomp_cal[ch] = ddr_getval(ch, _reg_PHY_PAD_TERM_X[1]);
|
|
}
|
|
|
|
if (override == 0U) {
|
|
data_l = mmio_read_32(THS1_TEMP);
|
|
if (data_l < 2800U) {
|
|
tcal.init_temp =
|
|
(143 * (int32_t)data_l - 359000) / 1000;
|
|
} else {
|
|
tcal.init_temp =
|
|
(121 * (int32_t)data_l - 296300) / 1000;
|
|
}
|
|
|
|
foreach_vch(ch) {
|
|
pvtp = (tcal.init_cal[ch] >> 0) & 0x000003FU;
|
|
pvtn = (tcal.init_cal[ch] >> 6) & 0x000003FU;
|
|
if ((int32_t)pvtp >
|
|
((tcal.init_temp * 29 - 3625) / 1000)) {
|
|
pvtp = (int32_t)pvtp +
|
|
((3625 - tcal.init_temp * 29) / 1000);
|
|
} else {
|
|
pvtp = 0U;
|
|
}
|
|
|
|
if ((int32_t)pvtn >
|
|
((tcal.init_temp * 54 - 6750) / 1000)) {
|
|
pvtn = (int32_t)pvtn +
|
|
((6750 - tcal.init_temp * 54) / 1000);
|
|
} else {
|
|
pvtn = 0U;
|
|
}
|
|
|
|
tcal.init_cal[ch] = 0x00015000U | (pvtn << 6) | pvtp;
|
|
}
|
|
tcal.init_temp = 125;
|
|
}
|
|
}
|
|
|
|
#ifndef DDR_QOS_INIT_SETTING
|
|
/* For QoS init */
|
|
uint8_t rzg_get_boardcnf_phyvalid(void)
|
|
{
|
|
return ddr_phyvalid;
|
|
}
|
|
#endif /* DDR_QOS_INIT_SETTING */
|