mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-18 02:24:18 +00:00

This patch removes the dash character from the image name, to follow the image terminology in the Trusted Firmware Wiki page: https://github.com/ARM-software/arm-trusted-firmware/wiki Changes apply to output messages, comments and documentation. non-ARM platform files have been left unmodified. Change-Id: Ic2a99be4ed929d52afbeb27ac765ceffce46ed76
112 lines
4.2 KiB
ArmAsm
112 lines
4.2 KiB
ArmAsm
/*
|
|
* Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <asm_macros.S>
|
|
#include <el3_common_macros.S>
|
|
#include <psci.h>
|
|
#include <xlat_tables.h>
|
|
|
|
.globl psci_entrypoint
|
|
.globl psci_power_down_wfi
|
|
|
|
/* --------------------------------------------------------------------
|
|
* This CPU has been physically powered up. It is either resuming from
|
|
* suspend or has simply been turned on. In both cases, call the power
|
|
* on finisher.
|
|
* --------------------------------------------------------------------
|
|
*/
|
|
func psci_entrypoint
|
|
/*
|
|
* On the warm boot path, most of the EL3 initialisations performed by
|
|
* 'el3_entrypoint_common' must be skipped:
|
|
*
|
|
* - Only when the platform bypasses the BL1/BL31 entrypoint by
|
|
* programming the reset address do we need to set the CPU endianness.
|
|
* In other cases, we assume this has been taken care by the
|
|
* entrypoint code.
|
|
*
|
|
* - No need to determine the type of boot, we know it is a warm boot.
|
|
*
|
|
* - Do not try to distinguish between primary and secondary CPUs, this
|
|
* notion only exists for a cold boot.
|
|
*
|
|
* - No need to initialise the memory or the C runtime environment,
|
|
* it has been done once and for all on the cold boot path.
|
|
*/
|
|
el3_entrypoint_common \
|
|
_set_endian=PROGRAMMABLE_RESET_ADDRESS \
|
|
_warm_boot_mailbox=0 \
|
|
_secondary_cold_boot=0 \
|
|
_init_memory=0 \
|
|
_init_c_runtime=0 \
|
|
_exception_vectors=runtime_exceptions
|
|
|
|
/* --------------------------------------------
|
|
* Enable the MMU with the DCache disabled. It
|
|
* is safe to use stacks allocated in normal
|
|
* memory as a result. All memory accesses are
|
|
* marked nGnRnE when the MMU is disabled. So
|
|
* all the stack writes will make it to memory.
|
|
* All memory accesses are marked Non-cacheable
|
|
* when the MMU is enabled but D$ is disabled.
|
|
* So used stack memory is guaranteed to be
|
|
* visible immediately after the MMU is enabled
|
|
* Enabling the DCache at the same time as the
|
|
* MMU can lead to speculatively fetched and
|
|
* possibly stale stack memory being read from
|
|
* other caches. This can lead to coherency
|
|
* issues.
|
|
* --------------------------------------------
|
|
*/
|
|
mov x0, #DISABLE_DCACHE
|
|
bl bl31_plat_enable_mmu
|
|
|
|
bl psci_power_up_finish
|
|
|
|
b el3_exit
|
|
endfunc psci_entrypoint
|
|
|
|
/* --------------------------------------------
|
|
* This function is called to indicate to the
|
|
* power controller that it is safe to power
|
|
* down this cpu. It should not exit the wfi
|
|
* and will be released from reset upon power
|
|
* up. 'wfi_spill' is used to catch erroneous
|
|
* exits from wfi.
|
|
* --------------------------------------------
|
|
*/
|
|
func psci_power_down_wfi
|
|
dsb sy // ensure write buffer empty
|
|
wfi
|
|
wfi_spill:
|
|
b wfi_spill
|
|
endfunc psci_power_down_wfi
|
|
|