arm-trusted-firmware/plat/marvell/a8k/common/plat_ble_setup.c
Justin Chadwell b19498b97b Update marvell platform to not rely on undefined overflow behaviour
This consists of ensuring that the left operand of each shift is
unsigned when the operation might overflow into the sign bit.

Change-Id: I78f386f5ac171d6e52383a3e42003e6fb3e96b57
Signed-off-by: Justin Chadwell <justin.chadwell@arm.com>
2019-07-11 12:10:51 +01:00

735 lines
23 KiB
C

/*
* Copyright (C) 2018 Marvell International Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
* https://spdx.org/licenses
*/
#include <common/debug.h>
#include <drivers/marvell/ap807_clocks_init.h>
#include <drivers/marvell/aro.h>
#include <drivers/marvell/ccu.h>
#include <drivers/marvell/io_win.h>
#include <drivers/marvell/mochi/ap_setup.h>
#include <drivers/marvell/mochi/cp110_setup.h>
#include <armada_common.h>
#include <mv_ddr_if.h>
#include <mvebu_def.h>
#include <plat_marvell.h>
/* Register for skip image use */
#define SCRATCH_PAD_REG2 0xF06F00A8
#define SCRATCH_PAD_SKIP_VAL 0x01
#define NUM_OF_GPIO_PER_REG 32
#define MMAP_SAVE_AND_CONFIG 0
#define MMAP_RESTORE_SAVED 1
/* SAR clock settings */
#define MVEBU_AP_GEN_MGMT_BASE (MVEBU_RFU_BASE + 0x8000)
#define MVEBU_AP_SAR_REG_BASE(r) (MVEBU_AP_GEN_MGMT_BASE + 0x200 +\
((r) << 2))
#define SAR_CLOCK_FREQ_MODE_OFFSET (0)
#define SAR_CLOCK_FREQ_MODE_MASK (0x1f << SAR_CLOCK_FREQ_MODE_OFFSET)
#define SAR_PIDI_LOW_SPEED_OFFSET (20)
#define SAR_PIDI_LOW_SPEED_MASK (1 << SAR_PIDI_LOW_SPEED_OFFSET)
#define SAR_PIDI_LOW_SPEED_SHIFT (15)
#define SAR_PIDI_LOW_SPEED_SET (1 << SAR_PIDI_LOW_SPEED_SHIFT)
#define FREQ_MODE_AP_SAR_REG_NUM (0)
#define SAR_CLOCK_FREQ_MODE(v) (((v) & SAR_CLOCK_FREQ_MODE_MASK) >> \
SAR_CLOCK_FREQ_MODE_OFFSET)
#define AVS_I2C_EEPROM_ADDR 0x57 /* EEPROM */
#define AVS_EN_CTRL_REG (MVEBU_AP_GEN_MGMT_BASE + 0x130)
#define AVS_ENABLE_OFFSET (0)
#define AVS_SOFT_RESET_OFFSET (2)
#define AVS_TARGET_DELTA_OFFSET (21)
#ifndef MVEBU_SOC_AP807
/* AP806 SVC bits */
#define AVS_LOW_VDD_LIMIT_OFFSET (4)
#define AVS_HIGH_VDD_LIMIT_OFFSET (12)
#define AVS_VDD_LOW_LIMIT_MASK (0xFF << AVS_LOW_VDD_LIMIT_OFFSET)
#define AVS_VDD_HIGH_LIMIT_MASK (0xFF << AVS_HIGH_VDD_LIMIT_OFFSET)
#else
/* AP807 SVC bits */
#define AVS_LOW_VDD_LIMIT_OFFSET (3)
#define AVS_HIGH_VDD_LIMIT_OFFSET (13)
#define AVS_VDD_LOW_LIMIT_MASK (0x3FF << AVS_LOW_VDD_LIMIT_OFFSET)
#define AVS_VDD_HIGH_LIMIT_MASK (0x3FF << AVS_HIGH_VDD_LIMIT_OFFSET)
#endif
/* VDD limit is 0.9V for A70x0 @ CPU frequency < 1600MHz */
#define AVS_A7K_LOW_CLK_VALUE ((0x80 << AVS_TARGET_DELTA_OFFSET) | \
(0x1A << AVS_HIGH_VDD_LIMIT_OFFSET) | \
(0x1A << AVS_LOW_VDD_LIMIT_OFFSET) | \
(0x1 << AVS_SOFT_RESET_OFFSET) | \
(0x1 << AVS_ENABLE_OFFSET))
/* VDD limit is 1.0V for all A80x0 devices */
#define AVS_A8K_CLK_VALUE ((0x80 << AVS_TARGET_DELTA_OFFSET) | \
(0x24 << AVS_HIGH_VDD_LIMIT_OFFSET) | \
(0x24 << AVS_LOW_VDD_LIMIT_OFFSET) | \
(0x1 << AVS_SOFT_RESET_OFFSET) | \
(0x1 << AVS_ENABLE_OFFSET))
/* VDD limit is 0.82V for all A3900 devices
* AVS offsets are not the same as in A70x0
*/
#define AVS_A3900_CLK_VALUE ((0x80u << 24) | \
(0x2c2 << 13) | \
(0x2c2 << 3) | \
(0x1 << AVS_SOFT_RESET_OFFSET) | \
(0x1 << AVS_ENABLE_OFFSET))
/* VDD is 0.88V for 2GHz clock */
#define AVS_A3900_HIGH_CLK_VALUE ((0x80u << 24) | \
(0x2f5 << 13) | \
(0x2f5 << 3) | \
(0x1 << AVS_SOFT_RESET_OFFSET) | \
(0x1 << AVS_ENABLE_OFFSET))
#define MVEBU_AP_EFUSE_SRV_CTRL_REG (MVEBU_AP_GEN_MGMT_BASE + 0x8)
#define EFUSE_SRV_CTRL_LD_SELECT_OFFS 6
#define EFUSE_SRV_CTRL_LD_SEL_USER_MASK (1 << EFUSE_SRV_CTRL_LD_SELECT_OFFS)
/*
* - Identification information in the LD-0 eFuse:
* DRO: LD0[74:65] - Not used by the SW
* Revision: LD0[78:75] - Not used by the SW
* Bin: LD0[80:79] - Not used by the SW
* SW Revision: LD0[115:113]
* Cluster 1 PWR: LD0[193] - if set to 1, power down CPU Cluster-1
* resulting in 2 CPUs active only (7020)
*/
#define MVEBU_AP_LD_EFUSE_BASE (MVEBU_AP_GEN_MGMT_BASE + 0xF00)
/* Bits [94:63] - 32 data bits total */
#define MVEBU_AP_LD0_94_63_EFUSE_OFFS (MVEBU_AP_LD_EFUSE_BASE + 0x8)
/* Bits [125:95] - 31 data bits total, 32nd bit is parity for bits [125:63] */
#define MVEBU_AP_LD0_125_95_EFUSE_OFFS (MVEBU_AP_LD_EFUSE_BASE + 0xC)
/* Bits [220:189] - 32 data bits total */
#define MVEBU_AP_LD0_220_189_EFUSE_OFFS (MVEBU_AP_LD_EFUSE_BASE + 0x18)
/* Offsets for the above 2 fields combined into single 64-bit value [125:63] */
#define EFUSE_AP_LD0_DRO_OFFS 2 /* LD0[74:65] */
#define EFUSE_AP_LD0_DRO_MASK 0x3FF
#define EFUSE_AP_LD0_REVID_OFFS 12 /* LD0[78:75] */
#define EFUSE_AP_LD0_REVID_MASK 0xF
#define EFUSE_AP_LD0_BIN_OFFS 16 /* LD0[80:79] */
#define EFUSE_AP_LD0_BIN_MASK 0x3
#define EFUSE_AP_LD0_SWREV_OFFS 50 /* LD0[115:113] */
#define EFUSE_AP_LD0_SWREV_MASK 0x7
#ifndef MVEBU_SOC_AP807
/* AP806 AVS work points in the LD0 eFuse
* SVC1 work point: LD0[88:81]
* SVC2 work point: LD0[96:89]
* SVC3 work point: LD0[104:97]
* SVC4 work point: LD0[112:105]
*/
#define EFUSE_AP_LD0_SVC1_OFFS 18 /* LD0[88:81] */
#define EFUSE_AP_LD0_SVC2_OFFS 26 /* LD0[96:89] */
#define EFUSE_AP_LD0_SVC3_OFFS 34 /* LD0[104:97] */
#define EFUSE_AP_LD0_WP_MASK 0xFF
#else
/* AP807 AVS work points in the LD0 eFuse
* SVC1 work point: LD0[91:81]
* SVC2 work point: LD0[102:92]
* SVC3 work point: LD0[113:103]
*/
#define EFUSE_AP_LD0_SVC1_OFFS 17 /* LD0[91:81] */
#define EFUSE_AP_LD0_SVC2_OFFS 28 /* LD0[102:92] */
#define EFUSE_AP_LD0_SVC3_OFFS 39 /* LD0[113:103] */
#define EFUSE_AP_LD0_WP_MASK 0x3FF
#endif
#define EFUSE_AP_LD0_SVC4_OFFS 42 /* LD0[112:105] */
#define EFUSE_AP_LD0_CLUSTER_DOWN_OFFS 4
#if MARVELL_SVC_TEST
#define MVEBU_CP_MPP_CTRL37_OFFS 20
#define MVEBU_CP_MPP_CTRL38_OFFS 24
#define MVEBU_CP_MPP_I2C_FUNC 2
#define MVEBU_MPP_CTRL_MASK 0xf
#endif
/* Return the AP revision of the chip */
static unsigned int ble_get_ap_type(void)
{
unsigned int chip_rev_id;
chip_rev_id = mmio_read_32(MVEBU_CSS_GWD_CTRL_IIDR2_REG);
chip_rev_id = ((chip_rev_id & GWD_IIDR2_CHIP_ID_MASK) >>
GWD_IIDR2_CHIP_ID_OFFSET);
return chip_rev_id;
}
/******************************************************************************
* The routine allows to save the CCU and IO windows configuration during DRAM
* setup and restore them afterwards before exiting the BLE stage.
* Such window configuration is required since not all default settings coming
* from the HW and the BootROM allow access to peripherals connected to
* all available CPn components.
* For instance, when the boot device is located on CP0, the IO window to CP1
* is not opened automatically by the HW and if the DRAM SPD is located on CP1
* i2c channel, it cannot be read at BLE stage.
* Therefore the DRAM init procedure have to provide access to all available
* CPn peripherals during the BLE stage by setting the CCU IO window to all
* CPnph addresses and by enabling the IO windows accordingly.
* Additionally this function configures the CCU GCR to DRAM, which allows
* usage or more than 4GB DRAM as it configured by the default CCU DRAM window.
*
* IN:
* MMAP_SAVE_AND_CONFIG - save the existing configuration and update it
* MMAP_RESTORE_SAVED - restore saved configuration
* OUT:
* NONE
****************************************************************************
*/
static void ble_plat_mmap_config(int restore)
{
if (restore == MMAP_RESTORE_SAVED) {
/* Restore all orig. settings that were modified by BLE stage */
ccu_restore_win_all(MVEBU_AP0);
/* Restore CCU */
iow_restore_win_all(MVEBU_AP0);
return;
}
/* Store original values */
ccu_save_win_all(MVEBU_AP0);
/* Save CCU */
iow_save_win_all(MVEBU_AP0);
init_ccu(MVEBU_AP0);
/* The configuration saved, now all the changes can be done */
init_io_win(MVEBU_AP0);
}
/****************************************************************************
* Setup Adaptive Voltage Switching - this is required for some platforms
****************************************************************************
*/
#if !MARVELL_SVC_TEST
static void ble_plat_avs_config(void)
{
uint32_t freq_mode, device_id;
uint32_t avs_val = 0;
freq_mode =
SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
FREQ_MODE_AP_SAR_REG_NUM)));
/* Check which SoC is running and act accordingly */
if (ble_get_ap_type() == CHIP_ID_AP807) {
/* Increase CPU voltage for higher CPU clock */
if (freq_mode == CPU_2000_DDR_1200_RCLK_1200)
avs_val = AVS_A3900_HIGH_CLK_VALUE;
else
avs_val = AVS_A3900_CLK_VALUE;
} else {
/* Check which SoC is running and act accordingly */
device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
switch (device_id) {
case MVEBU_80X0_DEV_ID:
case MVEBU_80X0_CP115_DEV_ID:
/* Always fix the default AVS value on A80x0 */
avs_val = AVS_A8K_CLK_VALUE;
break;
case MVEBU_70X0_DEV_ID:
case MVEBU_70X0_CP115_DEV_ID:
/* Fix AVS for CPU clocks lower than 1600MHz on A70x0 */
if ((freq_mode > CPU_1600_DDR_900_RCLK_900_2) &&
(freq_mode < CPU_DDR_RCLK_INVALID))
avs_val = AVS_A7K_LOW_CLK_VALUE;
break;
default:
ERROR("Unsupported Device ID 0x%x\n", device_id);
return;
}
}
if (avs_val) {
VERBOSE("AVS: Setting AVS CTRL to 0x%x\n", avs_val);
mmio_write_32(AVS_EN_CTRL_REG, avs_val);
}
}
#endif
/******************************************************************************
* Update or override current AVS work point value using data stored in EEPROM
* This is only required by QA/validation flows and activated by
* MARVELL_SVC_TEST flag.
*
* The function is expected to be called twice.
*
* First time with AVS value of 0 for testing if the EEPROM requests completely
* override the AVS value and bypass the eFuse test
*
* Second time - with non-zero AVS value obtained from eFuses as an input.
* In this case the EEPROM may contain AVS correction value (either positive
* or negative) that is added to the input AVS value and returned back for
* further processing.
******************************************************************************
*/
static uint32_t avs_update_from_eeprom(uint32_t avs_workpoint)
{
uint32_t new_wp = avs_workpoint;
#if MARVELL_SVC_TEST
/* ---------------------------------------------------------------------
* EEPROM | Data description (avs_step)
* address |
* ---------------------------------------------------------------------
* 0x120 | AVS workpoint correction value
* | if not 0 and not 0xff, correct the AVS taken from eFuse
* | by the number of steps indicated by bit[6:0]
* | bit[7] defines correction direction.
* | If bit[7]=1, add the value from bit[6:0] to AVS workpoint,
* | othervise substruct this value from AVS workpoint.
* ---------------------------------------------------------------------
* 0x121 | AVS workpoint override value
* | Override the AVS workpoint with the value stored in this
* | byte. When running on AP806, the AVS workpoint is 7 bits
* | wide and override value is valid when bit[6:0] holds
* | value greater than zero and smaller than 0x33.
* | When running on AP807, the AVS workpoint is 10 bits wide.
* | Additional 2 MSB bits are supplied by EEPROM byte 0x122.
* | AVS override value is valid when byte @ 0x121 and bit[1:0]
* | of byte @ 0x122 combined have non-zero value.
* ---------------------------------------------------------------------
* 0x122 | Extended AVS workpoint override value
* | Valid only for AP807 platforms and must be less than 0x4
* ---------------------------------------------------------------------
*/
static uint8_t avs_step[3] = {0};
uintptr_t reg;
uint32_t val;
unsigned int ap_type = ble_get_ap_type();
/* Always happens on second call to this function */
if (avs_workpoint != 0) {
/* Get correction steps from the EEPROM */
if ((avs_step[0] != 0) && (avs_step[0] != 0xff)) {
NOTICE("AVS request to step %s by 0x%x from old 0x%x\n",
avs_step[0] & 0x80 ? "DOWN" : "UP",
avs_step[0] & 0x7f, new_wp);
if (avs_step[0] & 0x80)
new_wp -= avs_step[0] & 0x7f;
else
new_wp += avs_step[0] & 0x7f;
}
return new_wp;
}
/* AVS values are located in EEPROM
* at CP0 i2c bus #0, device 0x57 offset 0x120
* The SDA and SCK pins of CP0 i2c-0: MPP[38:37], i2c function 0x2.
*/
reg = MVEBU_CP_MPP_REGS(0, 4);
val = mmio_read_32(reg);
val &= ~((MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL37_OFFS) |
(MVEBU_MPP_CTRL_MASK << MVEBU_CP_MPP_CTRL38_OFFS));
val |= (MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL37_OFFS) |
(MVEBU_CP_MPP_I2C_FUNC << MVEBU_CP_MPP_CTRL38_OFFS);
mmio_write_32(reg, val);
/* Init CP0 i2c-0 */
i2c_init((void *)(MVEBU_CP0_I2C_BASE));
/* Read EEPROM only once at the fist call! */
i2c_read(AVS_I2C_EEPROM_ADDR, 0x120, 2, avs_step, 3);
NOTICE("== SVC test build ==\n");
NOTICE("EEPROM holds values 0x%x, 0x%x and 0x%x\n",
avs_step[0], avs_step[1], avs_step[2]);
/* Override the AVS value? */
if ((ap_type != CHIP_ID_AP807) && (avs_step[1] < 0x33)) {
/* AP806 - AVS is 7 bits */
new_wp = avs_step[1];
} else if (ap_type == CHIP_ID_AP807 && (avs_step[2] < 0x4)) {
/* AP807 - AVS is 10 bits */
new_wp = avs_step[2];
new_wp <<= 8;
new_wp |= avs_step[1];
}
if (new_wp == 0)
NOTICE("Ignore BAD AVS Override value in EEPROM!\n");
else
NOTICE("Override AVS by EEPROM value 0x%x\n", new_wp);
#endif /* MARVELL_SVC_TEST */
return new_wp;
}
/****************************************************************************
* SVC flow - v0.10
* The feature is intended to configure AVS value according to eFuse values
* that are burned individually for each SoC during the test process.
* Primary AVS value is stored in HD efuse and processed on power on
* by the HW engine
* Secondary AVS value is located in LD efuse and contains 4 work points for
* various CPU frequencies.
* The Secondary AVS value is only taken into account if the SW Revision stored
* in the efuse is greater than 0 and the CPU is running in a certain speed.
****************************************************************************
*/
static void ble_plat_svc_config(void)
{
uint32_t reg_val, avs_workpoint, freq_pidi_mode;
uint64_t efuse;
uint32_t device_id, single_cluster;
uint16_t svc[4], perr[4], i, sw_ver;
unsigned int ap_type;
/* Set access to LD0 */
avs_workpoint = avs_update_from_eeprom(0);
if (avs_workpoint)
goto set_aws_wp;
/* Set access to LD0 */
reg_val = mmio_read_32(MVEBU_AP_EFUSE_SRV_CTRL_REG);
reg_val &= ~EFUSE_SRV_CTRL_LD_SELECT_OFFS;
mmio_write_32(MVEBU_AP_EFUSE_SRV_CTRL_REG, reg_val);
/* Obtain the value of LD0[125:63] */
efuse = mmio_read_32(MVEBU_AP_LD0_125_95_EFUSE_OFFS);
efuse <<= 32;
efuse |= mmio_read_32(MVEBU_AP_LD0_94_63_EFUSE_OFFS);
/* SW Revision:
* Starting from SW revision 1 the SVC flow is supported.
* SW version 0 (efuse not programmed) should follow the
* regular AVS update flow.
*/
sw_ver = (efuse >> EFUSE_AP_LD0_SWREV_OFFS) & EFUSE_AP_LD0_SWREV_MASK;
if (sw_ver < 1) {
NOTICE("SVC: SW Revision 0x%x. SVC is not supported\n", sw_ver);
#if MARVELL_SVC_TEST
NOTICE("SVC_TEST: AVS bypassed\n");
#else
ble_plat_avs_config();
#endif
return;
}
/* Frequency mode from SAR */
freq_pidi_mode = SAR_CLOCK_FREQ_MODE(
mmio_read_32(
MVEBU_AP_SAR_REG_BASE(
FREQ_MODE_AP_SAR_REG_NUM)));
/* Decode all SVC work points */
svc[0] = (efuse >> EFUSE_AP_LD0_SVC1_OFFS) & EFUSE_AP_LD0_WP_MASK;
svc[1] = (efuse >> EFUSE_AP_LD0_SVC2_OFFS) & EFUSE_AP_LD0_WP_MASK;
svc[2] = (efuse >> EFUSE_AP_LD0_SVC3_OFFS) & EFUSE_AP_LD0_WP_MASK;
/* Fetch AP type to distinguish between AP806 and AP807 */
ap_type = ble_get_ap_type();
if (ap_type != CHIP_ID_AP807) {
svc[3] = (efuse >> EFUSE_AP_LD0_SVC4_OFFS)
& EFUSE_AP_LD0_WP_MASK;
INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x, [3]=0x%x\n",
svc[0], svc[1], svc[2], svc[3]);
} else {
INFO("SVC: Efuse WP: [0]=0x%x, [1]=0x%x, [2]=0x%x\n",
svc[0], svc[1], svc[2]);
}
/* Validate parity of SVC workpoint values */
for (i = 0; i < 4; i++) {
uint8_t parity, bit;
perr[i] = 0;
for (bit = 1, parity = svc[i] & 1; bit < 7; bit++)
parity ^= (svc[i] >> bit) & 1;
/* Starting from SW version 2, the parity check is mandatory */
if ((sw_ver > 1) && (parity != ((svc[i] >> 7) & 1)))
perr[i] = 1; /* register the error */
}
single_cluster = mmio_read_32(MVEBU_AP_LD0_220_189_EFUSE_OFFS);
single_cluster = (single_cluster >> EFUSE_AP_LD0_CLUSTER_DOWN_OFFS) & 1;
device_id = cp110_device_id_get(MVEBU_CP_REGS_BASE(0));
if (device_id == MVEBU_80X0_DEV_ID ||
device_id == MVEBU_80X0_CP115_DEV_ID) {
/* A8040/A8020 */
NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
single_cluster == 0 ? "8040" : "8020", freq_pidi_mode);
switch (freq_pidi_mode) {
case CPU_1800_DDR_1200_RCLK_1200:
case CPU_1800_DDR_1050_RCLK_1050:
if (perr[1])
goto perror;
avs_workpoint = svc[1];
break;
case CPU_1600_DDR_1050_RCLK_1050:
case CPU_1600_DDR_900_RCLK_900_2:
if (perr[2])
goto perror;
avs_workpoint = svc[2];
break;
case CPU_1300_DDR_800_RCLK_800:
case CPU_1300_DDR_650_RCLK_650:
if (perr[3])
goto perror;
avs_workpoint = svc[3];
break;
case CPU_2000_DDR_1200_RCLK_1200:
case CPU_2000_DDR_1050_RCLK_1050:
default:
if (perr[0])
goto perror;
avs_workpoint = svc[0];
break;
}
} else if (device_id == MVEBU_70X0_DEV_ID ||
device_id == MVEBU_70X0_CP115_DEV_ID) {
/* A7040/A7020/A6040 */
NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
single_cluster == 0 ? "7040" : "7020", freq_pidi_mode);
switch (freq_pidi_mode) {
case CPU_1400_DDR_800_RCLK_800:
if (single_cluster) {/* 7020 */
if (perr[1])
goto perror;
avs_workpoint = svc[1];
} else {
if (perr[0])
goto perror;
avs_workpoint = svc[0];
}
break;
case CPU_1200_DDR_800_RCLK_800:
if (single_cluster) {/* 7020 */
if (perr[2])
goto perror;
avs_workpoint = svc[2];
} else {
if (perr[1])
goto perror;
avs_workpoint = svc[1];
}
break;
case CPU_800_DDR_800_RCLK_800:
case CPU_1000_DDR_800_RCLK_800:
if (single_cluster) {/* 7020 */
if (perr[3])
goto perror;
avs_workpoint = svc[3];
} else {
if (perr[2])
goto perror;
avs_workpoint = svc[2];
}
break;
case CPU_600_DDR_800_RCLK_800:
if (perr[3])
goto perror;
avs_workpoint = svc[3]; /* Same for 6040 and 7020 */
break;
case CPU_1600_DDR_800_RCLK_800: /* 7020 only */
default:
if (single_cluster) {/* 7020 */
if (perr[0])
goto perror;
avs_workpoint = svc[0];
} else
avs_workpoint = 0;
break;
}
} else if (device_id == MVEBU_3900_DEV_ID) {
NOTICE("SVC: DEV ID: %s, FREQ Mode: 0x%x\n",
"3900", freq_pidi_mode);
switch (freq_pidi_mode) {
case CPU_1600_DDR_1200_RCLK_1200:
if (perr[0])
goto perror;
avs_workpoint = svc[0];
break;
case CPU_1300_DDR_800_RCLK_800:
if (perr[1])
goto perror;
avs_workpoint = svc[1];
break;
default:
if (perr[0])
goto perror;
avs_workpoint = svc[0];
break;
}
} else {
ERROR("SVC: Unsupported Device ID 0x%x\n", device_id);
return;
}
/* Set AVS control if needed */
if (avs_workpoint == 0) {
ERROR("SVC: AVS work point not changed\n");
return;
}
/* Remove parity bit */
if (ap_type != CHIP_ID_AP807)
avs_workpoint &= 0x7F;
/* Update WP from EEPROM if needed */
avs_workpoint = avs_update_from_eeprom(avs_workpoint);
set_aws_wp:
reg_val = mmio_read_32(AVS_EN_CTRL_REG);
NOTICE("SVC: AVS work point changed from 0x%x to 0x%x\n",
(reg_val & AVS_VDD_LOW_LIMIT_MASK) >> AVS_LOW_VDD_LIMIT_OFFSET,
avs_workpoint);
reg_val &= ~(AVS_VDD_LOW_LIMIT_MASK | AVS_VDD_HIGH_LIMIT_MASK);
reg_val |= 0x1 << AVS_ENABLE_OFFSET;
reg_val |= avs_workpoint << AVS_HIGH_VDD_LIMIT_OFFSET;
reg_val |= avs_workpoint << AVS_LOW_VDD_LIMIT_OFFSET;
mmio_write_32(AVS_EN_CTRL_REG, reg_val);
return;
perror:
ERROR("Failed SVC WP[%d] parity check!\n", i);
ERROR("Ignoring the WP values\n");
}
#if PLAT_RECOVERY_IMAGE_ENABLE
static int ble_skip_image_i2c(struct skip_image *skip_im)
{
ERROR("skipping image using i2c is not supported\n");
/* not supported */
return 0;
}
static int ble_skip_image_other(struct skip_image *skip_im)
{
ERROR("implementation missing for skip image request\n");
/* not supported, make your own implementation */
return 0;
}
static int ble_skip_image_gpio(struct skip_image *skip_im)
{
unsigned int val;
unsigned int mpp_address = 0;
unsigned int offset = 0;
switch (skip_im->info.test.cp_ap) {
case(CP):
mpp_address = MVEBU_CP_GPIO_DATA_IN(skip_im->info.test.cp_index,
skip_im->info.gpio.num);
if (skip_im->info.gpio.num > NUM_OF_GPIO_PER_REG)
offset = skip_im->info.gpio.num - NUM_OF_GPIO_PER_REG;
else
offset = skip_im->info.gpio.num;
break;
case(AP):
mpp_address = MVEBU_AP_GPIO_DATA_IN;
offset = skip_im->info.gpio.num;
break;
}
val = mmio_read_32(mpp_address);
val &= (1 << offset);
if ((!val && skip_im->info.gpio.button_state == HIGH) ||
(val && skip_im->info.gpio.button_state == LOW)) {
mmio_write_32(SCRATCH_PAD_REG2, SCRATCH_PAD_SKIP_VAL);
return 1;
}
return 0;
}
/*
* This function checks if there's a skip image request:
* return values:
* 1: (true) images request been made.
* 0: (false) no image request been made.
*/
static int ble_skip_current_image(void)
{
struct skip_image *skip_im;
/*fetching skip image info*/
skip_im = (struct skip_image *)plat_marvell_get_skip_image_data();
if (skip_im == NULL)
return 0;
/* check if skipping image request has already been made */
if (mmio_read_32(SCRATCH_PAD_REG2) == SCRATCH_PAD_SKIP_VAL)
return 0;
switch (skip_im->detection_method) {
case GPIO:
return ble_skip_image_gpio(skip_im);
case I2C:
return ble_skip_image_i2c(skip_im);
case USER_DEFINED:
return ble_skip_image_other(skip_im);
}
return 0;
}
#endif
int ble_plat_setup(int *skip)
{
int ret;
unsigned int freq_mode;
/* Power down unused CPUs */
plat_marvell_early_cpu_powerdown();
/*
* Save the current CCU configuration and make required changes:
* - Allow access to DRAM larger than 4GB
* - Open memory access to all CPn peripherals
*/
ble_plat_mmap_config(MMAP_SAVE_AND_CONFIG);
#if PLAT_RECOVERY_IMAGE_ENABLE
/* Check if there's a skip request to bootRom recovery Image */
if (ble_skip_current_image()) {
/* close memory access to all CPn peripherals. */
ble_plat_mmap_config(MMAP_RESTORE_SAVED);
*skip = 1;
return 0;
}
#endif
/* Do required CP-110 setups for BLE stage */
cp110_ble_init(MVEBU_CP_REGS_BASE(0));
/* Setup AVS */
ble_plat_svc_config();
/* read clk option from sampled-at-reset register */
freq_mode =
SAR_CLOCK_FREQ_MODE(mmio_read_32(MVEBU_AP_SAR_REG_BASE(
FREQ_MODE_AP_SAR_REG_NUM)));
/* work with PLL clock driver in AP807 */
if (ble_get_ap_type() == CHIP_ID_AP807)
ap807_clocks_init(freq_mode);
/* Do required AP setups for BLE stage */
ap_ble_init();
/* Update DRAM topology (scan DIMM SPDs) */
plat_marvell_dram_update_topology();
/* Kick it in */
ret = dram_init();
/* Restore the original CCU configuration before exit from BLE */
ble_plat_mmap_config(MMAP_RESTORE_SAVED);
return ret;
}