mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-26 14:55:16 +00:00

The amount of memory supported by the SBSA platform is dynamic and dependent on user input. Since the configuration of the GPT needs to reflect the system memory, QEMU_PAS_NS0 needs to be set based on the information found in the device tree. Change-Id: I5d1411ac00020b7b38a652ba2904c8a70fa64d18 Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
321 lines
8 KiB
C
321 lines
8 KiB
C
/*
|
|
* Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include <common/bl_common.h>
|
|
#include <drivers/arm/pl061_gpio.h>
|
|
#include <lib/gpt_rme/gpt_rme.h>
|
|
#include <lib/transfer_list.h>
|
|
#include <plat/common/platform.h>
|
|
#if ENABLE_RME
|
|
#ifdef PLAT_qemu
|
|
#include <qemu_pas_def.h>
|
|
#elif PLAT_qemu_sbsa
|
|
#include <qemu_sbsa_pas_def.h>
|
|
#endif /* PLAT_qemu */
|
|
#endif /* ENABLE_RME */
|
|
#ifdef PLAT_qemu_sbsa
|
|
#include <sbsa_platform.h>
|
|
#endif
|
|
|
|
#include "qemu_private.h"
|
|
|
|
#define MAP_BL31_TOTAL MAP_REGION_FLAT( \
|
|
BL31_BASE, \
|
|
BL31_END - BL31_BASE, \
|
|
MT_MEMORY | MT_RW | EL3_PAS)
|
|
#define MAP_BL31_RO MAP_REGION_FLAT( \
|
|
BL_CODE_BASE, \
|
|
BL_CODE_END - BL_CODE_BASE, \
|
|
MT_CODE | EL3_PAS), \
|
|
MAP_REGION_FLAT( \
|
|
BL_RO_DATA_BASE, \
|
|
BL_RO_DATA_END \
|
|
- BL_RO_DATA_BASE, \
|
|
MT_RO_DATA | EL3_PAS)
|
|
|
|
#if USE_COHERENT_MEM
|
|
#define MAP_BL_COHERENT_RAM MAP_REGION_FLAT( \
|
|
BL_COHERENT_RAM_BASE, \
|
|
BL_COHERENT_RAM_END \
|
|
- BL_COHERENT_RAM_BASE, \
|
|
MT_DEVICE | MT_RW | EL3_PAS)
|
|
#endif
|
|
|
|
/*
|
|
* Placeholder variables for copying the arguments that have been passed to
|
|
* BL3-1 from BL2.
|
|
*/
|
|
static entry_point_info_t bl32_image_ep_info;
|
|
static entry_point_info_t bl33_image_ep_info;
|
|
#if ENABLE_RME
|
|
static entry_point_info_t rmm_image_ep_info;
|
|
#endif
|
|
static struct transfer_list_header *bl31_tl;
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL3-1 early platform setup. Here is an opportunity to copy
|
|
* parameters passed by the calling EL (S-EL1 in BL2 & EL3 in BL1) before
|
|
* they are lost (potentially). This needs to be done before the MMU is
|
|
* initialized so that the memory layout can be used while creating page
|
|
* tables. BL2 has flushed this information to memory, so we are guaranteed
|
|
* to pick up good data.
|
|
******************************************************************************/
|
|
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
|
|
u_register_t arg2, u_register_t arg3)
|
|
{
|
|
/* Initialize the console to provide early debug support */
|
|
qemu_console_init();
|
|
|
|
/* Platform names have to be lowercase. */
|
|
#ifdef PLAT_qemu_sbsa
|
|
sbsa_platform_init();
|
|
#endif
|
|
|
|
/*
|
|
* Check params passed from BL2
|
|
*/
|
|
bl_params_t *params_from_bl2 = (bl_params_t *)arg0;
|
|
|
|
assert(params_from_bl2);
|
|
assert(params_from_bl2->h.type == PARAM_BL_PARAMS);
|
|
assert(params_from_bl2->h.version >= VERSION_2);
|
|
|
|
bl_params_node_t *bl_params = params_from_bl2->head;
|
|
|
|
/*
|
|
* Copy BL33, BL32 and RMM (if present), entry point information.
|
|
* They are stored in Secure RAM, in BL2's address space.
|
|
*/
|
|
while (bl_params) {
|
|
if (bl_params->image_id == BL32_IMAGE_ID)
|
|
bl32_image_ep_info = *bl_params->ep_info;
|
|
|
|
#if ENABLE_RME
|
|
if (bl_params->image_id == RMM_IMAGE_ID)
|
|
rmm_image_ep_info = *bl_params->ep_info;
|
|
#endif
|
|
|
|
if (bl_params->image_id == BL33_IMAGE_ID)
|
|
bl33_image_ep_info = *bl_params->ep_info;
|
|
|
|
bl_params = bl_params->next_params_info;
|
|
}
|
|
|
|
if (!bl33_image_ep_info.pc)
|
|
panic();
|
|
#if ENABLE_RME
|
|
if (!rmm_image_ep_info.pc)
|
|
panic();
|
|
#endif
|
|
|
|
if (TRANSFER_LIST && arg1 == (TRANSFER_LIST_SIGNATURE |
|
|
REGISTER_CONVENTION_VERSION_MASK) &&
|
|
transfer_list_check_header((void *)arg3) != TL_OPS_NON) {
|
|
bl31_tl = (void *)arg3; /* saved TL address from BL2 */
|
|
}
|
|
}
|
|
|
|
#if ENABLE_RME
|
|
#if PLAT_qemu
|
|
/*
|
|
* The GPT library might modify the gpt regions structure to optimize
|
|
* the layout, so the array cannot be constant.
|
|
*/
|
|
static pas_region_t pas_regions[] = {
|
|
QEMU_PAS_ROOT,
|
|
QEMU_PAS_SECURE,
|
|
QEMU_PAS_GPTS,
|
|
QEMU_PAS_NS0,
|
|
QEMU_PAS_REALM,
|
|
QEMU_PAS_NS1,
|
|
};
|
|
|
|
static inline void bl31_adjust_pas_regions(void) {}
|
|
#elif PLAT_qemu_sbsa
|
|
/*
|
|
* The GPT library might modify the gpt regions structure to optimize
|
|
* the layout, so the array cannot be constant.
|
|
*/
|
|
static pas_region_t pas_regions[] = {
|
|
QEMU_PAS_ROOT,
|
|
QEMU_PAS_SECURE,
|
|
QEMU_PAS_GPTS,
|
|
QEMU_PAS_REALM,
|
|
QEMU_PAS_NS0,
|
|
};
|
|
|
|
static void bl31_adjust_pas_regions(void)
|
|
{
|
|
uint64_t base_addr = 0, total_size = 0;
|
|
struct platform_memory_data data;
|
|
uint32_t node;
|
|
|
|
/*
|
|
* The amount of memory supported by the SBSA platform is dynamic
|
|
* and dependent on user input. Since the configuration of the GPT
|
|
* needs to reflect the system memory, QEMU_PAS_NS0 needs to be set
|
|
* based on the information found in the device tree.
|
|
*/
|
|
|
|
for (node = 0; node < sbsa_platform_num_memnodes(); node++) {
|
|
data = sbsa_platform_memory_node(node);
|
|
|
|
if (data.nodeid == 0) {
|
|
base_addr = data.addr_base;
|
|
}
|
|
|
|
total_size += data.addr_size;
|
|
}
|
|
|
|
/* Index '4' correspond to QEMU_PAS_NS0, see pas_regions[] above */
|
|
pas_regions[4].base_pa = base_addr;
|
|
pas_regions[4].size = total_size;
|
|
}
|
|
#endif /* PLAT_qemu */
|
|
|
|
static void bl31_plat_gpt_setup(void)
|
|
{
|
|
/*
|
|
* Initialize entire protected space to GPT_GPI_ANY. With each L0 entry
|
|
* covering 1GB (currently the only supported option), then covering
|
|
* 256TB of RAM (48-bit PA) would require a 2MB L0 region. At the
|
|
* moment we use a 8KB table, which covers 1TB of RAM (40-bit PA).
|
|
*/
|
|
if (gpt_init_l0_tables(PLATFORM_GPCCR_PPS, PLAT_QEMU_L0_GPT_BASE,
|
|
PLAT_QEMU_L0_GPT_SIZE +
|
|
PLAT_QEMU_GPT_BITLOCK_SIZE) < 0) {
|
|
ERROR("gpt_init_l0_tables() failed!\n");
|
|
panic();
|
|
}
|
|
|
|
bl31_adjust_pas_regions();
|
|
|
|
/* Carve out defined PAS ranges. */
|
|
if (gpt_init_pas_l1_tables(GPCCR_PGS_4K,
|
|
PLAT_QEMU_L1_GPT_BASE,
|
|
PLAT_QEMU_L1_GPT_SIZE,
|
|
pas_regions,
|
|
(unsigned int)(sizeof(pas_regions) /
|
|
sizeof(pas_region_t))) < 0) {
|
|
ERROR("gpt_init_pas_l1_tables() failed!\n");
|
|
panic();
|
|
}
|
|
|
|
INFO("Enabling Granule Protection Checks\n");
|
|
if (gpt_enable() < 0) {
|
|
ERROR("gpt_enable() failed!\n");
|
|
panic();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void bl31_plat_arch_setup(void)
|
|
{
|
|
const mmap_region_t bl_regions[] = {
|
|
MAP_BL31_TOTAL,
|
|
MAP_BL31_RO,
|
|
#if USE_COHERENT_MEM
|
|
MAP_BL_COHERENT_RAM,
|
|
#endif
|
|
#if ENABLE_RME
|
|
MAP_GPT_L0_REGION,
|
|
MAP_GPT_L1_REGION,
|
|
MAP_RMM_SHARED_MEM,
|
|
#endif
|
|
{0}
|
|
};
|
|
|
|
setup_page_tables(bl_regions, plat_qemu_get_mmap());
|
|
|
|
enable_mmu_el3(0);
|
|
|
|
#if ENABLE_RME
|
|
/* Initialise and enable granule protection after MMU. */
|
|
bl31_plat_gpt_setup();
|
|
|
|
/*
|
|
* Initialise Granule Protection library and enable GPC for the primary
|
|
* processor. The tables have already been initialized by a previous BL
|
|
* stage, so there is no need to provide any PAS here. This function
|
|
* sets up pointers to those tables.
|
|
*/
|
|
if (gpt_runtime_init() < 0) {
|
|
ERROR("gpt_runtime_init() failed!\n");
|
|
panic();
|
|
}
|
|
#endif /* ENABLE_RME */
|
|
|
|
}
|
|
|
|
static void qemu_gpio_init(void)
|
|
{
|
|
#ifdef SECURE_GPIO_BASE
|
|
pl061_gpio_init();
|
|
pl061_gpio_register(SECURE_GPIO_BASE, 0);
|
|
#endif
|
|
}
|
|
|
|
void bl31_platform_setup(void)
|
|
{
|
|
plat_qemu_gic_init();
|
|
qemu_gpio_init();
|
|
}
|
|
|
|
unsigned int plat_get_syscnt_freq2(void)
|
|
{
|
|
return read_cntfrq_el0();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Return a pointer to the 'entry_point_info' structure of the next image
|
|
* for the security state specified. BL3-3 corresponds to the non-secure
|
|
* image type while BL3-2 corresponds to the secure image type. A NULL
|
|
* pointer is returned if the image does not exist.
|
|
******************************************************************************/
|
|
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
|
|
{
|
|
entry_point_info_t *next_image_info;
|
|
|
|
assert(sec_state_is_valid(type));
|
|
if (type == NON_SECURE) {
|
|
next_image_info = &bl33_image_ep_info;
|
|
}
|
|
#if ENABLE_RME
|
|
else if (type == REALM) {
|
|
next_image_info = &rmm_image_ep_info;
|
|
}
|
|
#endif
|
|
else {
|
|
next_image_info = &bl32_image_ep_info;
|
|
}
|
|
|
|
/*
|
|
* None of the images on the ARM development platforms can have 0x0
|
|
* as the entrypoint
|
|
*/
|
|
if (next_image_info->pc)
|
|
return next_image_info;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
void bl31_plat_runtime_setup(void)
|
|
{
|
|
#if TRANSFER_LIST
|
|
if (bl31_tl) {
|
|
/*
|
|
* update the TL from S to NS memory before jump to BL33
|
|
* to reflect all changes in TL done by BL32
|
|
*/
|
|
memcpy((void *)FW_NS_HANDOFF_BASE, bl31_tl, bl31_tl->max_size);
|
|
}
|
|
#endif
|
|
|
|
console_flush();
|
|
console_switch_state(CONSOLE_FLAG_RUNTIME);
|
|
}
|