mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-21 12:04:27 +00:00

The commit with Change-Id:Ie417e054a7a4c192024a2679419e99efeded1705 updated the register convention r1/x1 values but missing necessary changes in BL31. As a result, a system panic observed during setup for BL32 when TRANSFER_LIST is enabled due to unexpected arguments. This patch is to fix this issue for optee. Change-Id: I13e116e7cb5a7d89fafc11d20295cffbf24793ab Signed-off-by: Raymond Mao <raymond.mao@linaro.org>
862 lines
24 KiB
C
862 lines
24 KiB
C
/*
|
|
* Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
|
|
/*******************************************************************************
|
|
* This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
|
|
* plug-in component to the Secure Monitor, registered as a runtime service. The
|
|
* SPD is expected to be a functional extension of the Secure Payload (SP) that
|
|
* executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
|
|
* the Trusted OS/Applications range to the dispatcher. The SPD will either
|
|
* handle the request locally or delegate it to the Secure Payload. It is also
|
|
* responsible for initialising and maintaining communication with the SP.
|
|
******************************************************************************/
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
|
|
#include <arch_helpers.h>
|
|
#include <bl31/bl31.h>
|
|
#include <common/bl_common.h>
|
|
#include <common/debug.h>
|
|
#include <common/runtime_svc.h>
|
|
#include <lib/coreboot.h>
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
#include <lib/optee_utils.h>
|
|
#include <lib/transfer_list.h>
|
|
#include <lib/xlat_tables/xlat_tables_v2.h>
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
#include <libfdt.h>
|
|
#endif /* OPTEE_ALLOW_SMC_LOAD */
|
|
#include <plat/common/platform.h>
|
|
#include <services/oem/chromeos/widevine_smc_handlers.h>
|
|
#include <tools_share/uuid.h>
|
|
|
|
#include "opteed_private.h"
|
|
#include "teesmc_opteed.h"
|
|
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
static struct transfer_list_header *bl31_tl;
|
|
#endif
|
|
|
|
/*******************************************************************************
|
|
* Address of the entrypoint vector table in OPTEE. It is
|
|
* initialised once on the primary core after a cold boot.
|
|
******************************************************************************/
|
|
struct optee_vectors *optee_vector_table;
|
|
|
|
/*******************************************************************************
|
|
* Array to keep track of per-cpu OPTEE state
|
|
******************************************************************************/
|
|
optee_context_t opteed_sp_context[OPTEED_CORE_COUNT];
|
|
uint32_t opteed_rw;
|
|
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
static bool opteed_allow_load;
|
|
/* OP-TEE image loading service UUID */
|
|
DEFINE_SVC_UUID2(optee_image_load_uuid,
|
|
0xb1eafba3, 0x5d31, 0x4612, 0xb9, 0x06,
|
|
0xc4, 0xc7, 0xa4, 0xbe, 0x3c, 0xc0);
|
|
|
|
#define OPTEED_FDT_SIZE 1024
|
|
static uint8_t fdt_buf[OPTEED_FDT_SIZE] __aligned(CACHE_WRITEBACK_GRANULE);
|
|
|
|
#else
|
|
static int32_t opteed_init(void);
|
|
#endif
|
|
|
|
uint64_t dual32to64(uint32_t high, uint32_t low)
|
|
{
|
|
return ((uint64_t)high << 32) | low;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function is the handler registered for S-EL1 interrupts by the
|
|
* OPTEED. It validates the interrupt and upon success arranges entry into
|
|
* the OPTEE at 'optee_fiq_entry()' for handling the interrupt.
|
|
******************************************************************************/
|
|
static uint64_t opteed_sel1_interrupt_handler(uint32_t id,
|
|
uint32_t flags,
|
|
void *handle,
|
|
void *cookie)
|
|
{
|
|
uint32_t linear_id;
|
|
optee_context_t *optee_ctx;
|
|
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
if (optee_vector_table == NULL) {
|
|
/* OPTEE is not loaded yet, ignore this interrupt */
|
|
SMC_RET0(handle);
|
|
}
|
|
#endif
|
|
|
|
/* Check the security state when the exception was generated */
|
|
assert(get_interrupt_src_ss(flags) == NON_SECURE);
|
|
|
|
/* Sanity check the pointer to this cpu's context */
|
|
assert(handle == cm_get_context(NON_SECURE));
|
|
|
|
/* Save the non-secure context before entering the OPTEE */
|
|
cm_el1_sysregs_context_save(NON_SECURE);
|
|
|
|
/* Get a reference to this cpu's OPTEE context */
|
|
linear_id = plat_my_core_pos();
|
|
optee_ctx = &opteed_sp_context[linear_id];
|
|
assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
|
|
|
|
cm_set_elr_el3(SECURE, (uint64_t)&optee_vector_table->fiq_entry);
|
|
cm_el1_sysregs_context_restore(SECURE);
|
|
cm_set_next_eret_context(SECURE);
|
|
|
|
/*
|
|
* Tell the OPTEE that it has to handle an FIQ (synchronously).
|
|
* Also the instruction in normal world where the interrupt was
|
|
* generated is passed for debugging purposes. It is safe to
|
|
* retrieve this address from ELR_EL3 as the secure context will
|
|
* not take effect until el3_exit().
|
|
*/
|
|
SMC_RET1(&optee_ctx->cpu_ctx, read_elr_el3());
|
|
}
|
|
|
|
/*
|
|
* Registers an interrupt handler for S-EL1 interrupts when generated during
|
|
* code executing in the non-secure state. Panics if it fails to do so.
|
|
*/
|
|
static void register_opteed_interrupt_handler(void)
|
|
{
|
|
u_register_t flags;
|
|
uint64_t rc;
|
|
|
|
flags = 0;
|
|
set_interrupt_rm_flag(flags, NON_SECURE);
|
|
rc = register_interrupt_type_handler(INTR_TYPE_S_EL1,
|
|
opteed_sel1_interrupt_handler,
|
|
flags);
|
|
if (rc)
|
|
panic();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* OPTEE Dispatcher setup. The OPTEED finds out the OPTEE entrypoint and type
|
|
* (aarch32/aarch64) if not already known and initialises the context for entry
|
|
* into OPTEE for its initialization.
|
|
******************************************************************************/
|
|
static int32_t opteed_setup(void)
|
|
{
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
opteed_allow_load = true;
|
|
INFO("Delaying OP-TEE setup until we receive an SMC call to load it\n");
|
|
/*
|
|
* We must register the interrupt handler now so that the interrupt
|
|
* priorities are not changed after starting the linux kernel.
|
|
*/
|
|
register_opteed_interrupt_handler();
|
|
return 0;
|
|
#else
|
|
entry_point_info_t *optee_ep_info;
|
|
uint32_t linear_id;
|
|
uint64_t arg0;
|
|
uint64_t arg1;
|
|
uint64_t arg2;
|
|
uint64_t arg3;
|
|
struct transfer_list_header *tl = NULL;
|
|
struct transfer_list_entry *te = NULL;
|
|
void *dt = NULL;
|
|
|
|
linear_id = plat_my_core_pos();
|
|
|
|
/*
|
|
* Get information about the Secure Payload (BL32) image. Its
|
|
* absence is a critical failure. TODO: Add support to
|
|
* conditionally include the SPD service
|
|
*/
|
|
optee_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
|
|
if (!optee_ep_info) {
|
|
WARN("No OPTEE provided by BL2 boot loader, Booting device"
|
|
" without OPTEE initialization. SMC`s destined for OPTEE"
|
|
" will return SMC_UNK\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If there's no valid entry point for SP, we return a non-zero value
|
|
* signalling failure initializing the service. We bail out without
|
|
* registering any handlers
|
|
*/
|
|
if (!optee_ep_info->pc)
|
|
return 1;
|
|
|
|
tl = (void *)optee_ep_info->args.arg3;
|
|
if (TRANSFER_LIST && transfer_list_check_header(tl)) {
|
|
te = transfer_list_find(tl, TL_TAG_FDT);
|
|
dt = transfer_list_entry_data(te);
|
|
|
|
opteed_rw = GET_RW(optee_ep_info->spsr);
|
|
if (opteed_rw == OPTEE_AARCH64) {
|
|
if (optee_ep_info->args.arg1 !=
|
|
TRANSFER_LIST_HANDOFF_X1_VALUE(
|
|
REGISTER_CONVENTION_VERSION))
|
|
return 1;
|
|
|
|
arg0 = (uint64_t)dt;
|
|
arg2 = 0;
|
|
} else {
|
|
if (optee_ep_info->args.arg1 !=
|
|
TRANSFER_LIST_HANDOFF_R1_VALUE(
|
|
REGISTER_CONVENTION_VERSION))
|
|
return 1;
|
|
|
|
arg0 = 0;
|
|
arg2 = (uint64_t)dt;
|
|
}
|
|
|
|
arg1 = optee_ep_info->args.arg1;
|
|
arg3 = optee_ep_info->args.arg3;
|
|
} else {
|
|
/* Default handoff arguments */
|
|
opteed_rw = optee_ep_info->args.arg0;
|
|
arg0 = optee_ep_info->args.arg1; /* opteed_pageable_part */
|
|
arg1 = optee_ep_info->args.arg2; /* opteed_mem_limit */
|
|
arg2 = optee_ep_info->args.arg3; /* dt_addr */
|
|
arg3 = 0;
|
|
}
|
|
|
|
opteed_init_optee_ep_state(optee_ep_info, opteed_rw, optee_ep_info->pc,
|
|
arg0, arg1, arg2, arg3,
|
|
&opteed_sp_context[linear_id]);
|
|
|
|
/*
|
|
* All OPTEED initialization done. Now register our init function with
|
|
* BL31 for deferred invocation
|
|
*/
|
|
bl31_register_bl32_init(&opteed_init);
|
|
|
|
return 0;
|
|
#endif /* OPTEE_ALLOW_SMC_LOAD */
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function passes control to the OPTEE image (BL32) for the first time
|
|
* on the primary cpu after a cold boot. It assumes that a valid secure
|
|
* context has already been created by opteed_setup() which can be directly
|
|
* used. It also assumes that a valid non-secure context has been
|
|
* initialised by PSCI so it does not need to save and restore any
|
|
* non-secure state. This function performs a synchronous entry into
|
|
* OPTEE. OPTEE passes control back to this routine through a SMC. This returns
|
|
* a non-zero value on success and zero on failure.
|
|
******************************************************************************/
|
|
static int32_t
|
|
opteed_init_with_entry_point(entry_point_info_t *optee_entry_point)
|
|
{
|
|
uint32_t linear_id = plat_my_core_pos();
|
|
optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
|
|
uint64_t rc;
|
|
assert(optee_entry_point);
|
|
|
|
cm_init_my_context(optee_entry_point);
|
|
|
|
/*
|
|
* Arrange for an entry into OPTEE. It will be returned via
|
|
* OPTEE_ENTRY_DONE case
|
|
*/
|
|
rc = opteed_synchronous_sp_entry(optee_ctx);
|
|
assert(rc != 0);
|
|
|
|
return rc;
|
|
}
|
|
|
|
#if !OPTEE_ALLOW_SMC_LOAD
|
|
static int32_t opteed_init(void)
|
|
{
|
|
entry_point_info_t *optee_entry_point;
|
|
/*
|
|
* Get information about the OP-TEE (BL32) image. Its
|
|
* absence is a critical failure.
|
|
*/
|
|
optee_entry_point = bl31_plat_get_next_image_ep_info(SECURE);
|
|
return opteed_init_with_entry_point(optee_entry_point);
|
|
}
|
|
#endif /* !OPTEE_ALLOW_SMC_LOAD */
|
|
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
#if COREBOOT
|
|
/*
|
|
* Adds a firmware/coreboot node with the coreboot table information to a device
|
|
* tree. Returns zero on success or if there is no coreboot table information;
|
|
* failure code otherwise.
|
|
*/
|
|
static int add_coreboot_node(void *fdt)
|
|
{
|
|
int ret;
|
|
uint64_t coreboot_table_addr;
|
|
uint32_t coreboot_table_size;
|
|
struct {
|
|
uint64_t addr;
|
|
uint32_t size;
|
|
} reg_node;
|
|
coreboot_get_table_location(&coreboot_table_addr, &coreboot_table_size);
|
|
if (!coreboot_table_addr || !coreboot_table_size) {
|
|
WARN("Unable to get coreboot table location for device tree");
|
|
return 0;
|
|
}
|
|
ret = fdt_begin_node(fdt, "firmware");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_property(fdt, "ranges", NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_begin_node(fdt, "coreboot");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_property_string(fdt, "compatible", "coreboot");
|
|
if (ret)
|
|
return ret;
|
|
|
|
reg_node.addr = cpu_to_fdt64(coreboot_table_addr);
|
|
reg_node.size = cpu_to_fdt32(coreboot_table_size);
|
|
ret = fdt_property(fdt, "reg", ®_node,
|
|
sizeof(uint64_t) + sizeof(uint32_t));
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_end_node(fdt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return fdt_end_node(fdt);
|
|
}
|
|
#endif /* COREBOOT */
|
|
|
|
#if CROS_WIDEVINE_SMC
|
|
/*
|
|
* Adds a options/widevine node with the widevine table information to a device
|
|
* tree. Returns zero on success or if there is no widevine table information;
|
|
* failure code otherwise.
|
|
*/
|
|
static int add_options_widevine_node(void *fdt)
|
|
{
|
|
int ret;
|
|
|
|
ret = fdt_begin_node(fdt, "options");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_begin_node(fdt, "op-tee");
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_begin_node(fdt, "widevine");
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cros_oem_tpm_auth_pk.length) {
|
|
ret = fdt_property(fdt, "tcg,tpm-auth-public-key",
|
|
cros_oem_tpm_auth_pk.buffer,
|
|
cros_oem_tpm_auth_pk.length);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (cros_oem_huk.length) {
|
|
ret = fdt_property(fdt, "op-tee,hardware-unique-key",
|
|
cros_oem_huk.buffer, cros_oem_huk.length);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (cros_oem_rot.length) {
|
|
ret = fdt_property(fdt, "google,widevine-root-of-trust-ecc-p256",
|
|
cros_oem_rot.buffer, cros_oem_rot.length);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = fdt_end_node(fdt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_end_node(fdt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return fdt_end_node(fdt);
|
|
}
|
|
#endif /* CROS_WIDEVINE_SMC */
|
|
|
|
/*
|
|
* Creates a device tree for passing into OP-TEE. Currently is populated with
|
|
* the coreboot table address.
|
|
* Returns 0 on success, error code otherwise.
|
|
*/
|
|
static int create_opteed_dt(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = fdt_create(fdt_buf, OPTEED_FDT_SIZE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_finish_reservemap(fdt_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fdt_begin_node(fdt_buf, "");
|
|
if (ret)
|
|
return ret;
|
|
|
|
#if COREBOOT
|
|
ret = add_coreboot_node(fdt_buf);
|
|
if (ret)
|
|
return ret;
|
|
#endif /* COREBOOT */
|
|
|
|
#if CROS_WIDEVINE_SMC
|
|
ret = add_options_widevine_node(fdt_buf);
|
|
if (ret)
|
|
return ret;
|
|
#endif /* CROS_WIDEVINE_SMC */
|
|
|
|
ret = fdt_end_node(fdt_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return fdt_finish(fdt_buf);
|
|
}
|
|
|
|
static int32_t create_smc_tl(const void *fdt, uint32_t fdt_sz)
|
|
{
|
|
#if TRANSFER_LIST
|
|
bl31_tl = transfer_list_init((void *)(uintptr_t)FW_HANDOFF_BASE,
|
|
FW_HANDOFF_SIZE);
|
|
if (!bl31_tl) {
|
|
ERROR("Failed to initialize Transfer List at 0x%lx\n",
|
|
(unsigned long)FW_HANDOFF_BASE);
|
|
return -1;
|
|
}
|
|
|
|
if (!transfer_list_add(bl31_tl, TL_TAG_FDT, fdt_sz, fdt)) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function is responsible for handling the SMC that loads the OP-TEE
|
|
* binary image via a non-secure SMC call. It takes the size and physical
|
|
* address of the payload as parameters.
|
|
******************************************************************************/
|
|
static int32_t opteed_handle_smc_load(uint64_t data_size, uint32_t data_pa)
|
|
{
|
|
uintptr_t data_va = data_pa;
|
|
uint64_t mapped_data_pa;
|
|
uintptr_t mapped_data_va;
|
|
uint64_t data_map_size;
|
|
int32_t rc;
|
|
optee_header_t *image_header;
|
|
uint8_t *image_ptr;
|
|
uint64_t target_pa;
|
|
uint64_t target_end_pa;
|
|
uint64_t image_pa;
|
|
uintptr_t image_va;
|
|
optee_image_t *curr_image;
|
|
uintptr_t target_va;
|
|
uint64_t target_size;
|
|
entry_point_info_t optee_ep_info;
|
|
uint32_t linear_id = plat_my_core_pos();
|
|
uint64_t dt_addr = 0;
|
|
uint64_t arg0 = 0;
|
|
uint64_t arg1 = 0;
|
|
uint64_t arg2 = 0;
|
|
uint64_t arg3 = 0;
|
|
|
|
mapped_data_pa = page_align(data_pa, DOWN);
|
|
mapped_data_va = mapped_data_pa;
|
|
data_map_size = page_align(data_size + (mapped_data_pa - data_pa), UP);
|
|
|
|
/*
|
|
* We do not validate the passed in address because we are trusting the
|
|
* non-secure world at this point still.
|
|
*/
|
|
rc = mmap_add_dynamic_region(mapped_data_pa, mapped_data_va,
|
|
data_map_size, MT_MEMORY | MT_RO | MT_NS);
|
|
if (rc != 0) {
|
|
return rc;
|
|
}
|
|
|
|
image_header = (optee_header_t *)data_va;
|
|
if (image_header->magic != TEE_MAGIC_NUM_OPTEE ||
|
|
image_header->version != 2 || image_header->nb_images != 1) {
|
|
mmap_remove_dynamic_region(mapped_data_va, data_map_size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
image_ptr = (uint8_t *)data_va + sizeof(optee_header_t) +
|
|
sizeof(optee_image_t);
|
|
if (image_header->arch == 1) {
|
|
opteed_rw = OPTEE_AARCH64;
|
|
} else {
|
|
opteed_rw = OPTEE_AARCH32;
|
|
}
|
|
|
|
curr_image = &image_header->optee_image_list[0];
|
|
image_pa = dual32to64(curr_image->load_addr_hi,
|
|
curr_image->load_addr_lo);
|
|
image_va = image_pa;
|
|
target_end_pa = image_pa + curr_image->size;
|
|
|
|
/* Now also map the memory we want to copy it to. */
|
|
target_pa = page_align(image_pa, DOWN);
|
|
target_va = target_pa;
|
|
target_size = page_align(target_end_pa, UP) - target_pa;
|
|
|
|
rc = mmap_add_dynamic_region(target_pa, target_va, target_size,
|
|
MT_MEMORY | MT_RW | MT_SECURE);
|
|
if (rc != 0) {
|
|
mmap_remove_dynamic_region(mapped_data_va, data_map_size);
|
|
return rc;
|
|
}
|
|
|
|
INFO("Loaded OP-TEE via SMC: size %d addr 0x%" PRIx64 "\n",
|
|
curr_image->size, image_va);
|
|
|
|
memcpy((void *)image_va, image_ptr, curr_image->size);
|
|
flush_dcache_range(target_pa, target_size);
|
|
|
|
mmap_remove_dynamic_region(mapped_data_va, data_map_size);
|
|
mmap_remove_dynamic_region(target_va, target_size);
|
|
|
|
/* Save the non-secure state */
|
|
cm_el1_sysregs_context_save(NON_SECURE);
|
|
|
|
rc = create_opteed_dt();
|
|
if (rc) {
|
|
ERROR("Failed device tree creation %d\n", rc);
|
|
return rc;
|
|
}
|
|
dt_addr = (uint64_t)fdt_buf;
|
|
flush_dcache_range(dt_addr, OPTEED_FDT_SIZE);
|
|
|
|
if (TRANSFER_LIST &&
|
|
!create_smc_tl((void *)dt_addr, OPTEED_FDT_SIZE)) {
|
|
struct transfer_list_entry *te = NULL;
|
|
void *dt = NULL;
|
|
|
|
te = transfer_list_find(bl31_tl, TL_TAG_FDT);
|
|
dt = transfer_list_entry_data(te);
|
|
|
|
if (opteed_rw == OPTEE_AARCH64) {
|
|
arg0 = (uint64_t)dt;
|
|
arg1 = TRANSFER_LIST_HANDOFF_X1_VALUE(REGISTER_CONVENTION_VERSION);
|
|
arg2 = 0;
|
|
} else {
|
|
arg0 = 0;
|
|
arg1 = TRANSFER_LIST_HANDOFF_R1_VALUE(REGISTER_CONVENTION_VERSION);
|
|
arg2 = (uint64_t)dt;
|
|
}
|
|
|
|
arg3 = (uint64_t)bl31_tl;
|
|
} else {
|
|
/* Default handoff arguments */
|
|
arg2 = dt_addr;
|
|
}
|
|
|
|
opteed_init_optee_ep_state(&optee_ep_info,
|
|
opteed_rw,
|
|
image_pa,
|
|
arg0,
|
|
arg1,
|
|
arg2,
|
|
arg3,
|
|
&opteed_sp_context[linear_id]);
|
|
if (opteed_init_with_entry_point(&optee_ep_info) == 0) {
|
|
rc = -EFAULT;
|
|
}
|
|
|
|
/* Restore non-secure state */
|
|
cm_el1_sysregs_context_restore(NON_SECURE);
|
|
cm_set_next_eret_context(NON_SECURE);
|
|
|
|
return rc;
|
|
}
|
|
#endif /* OPTEE_ALLOW_SMC_LOAD */
|
|
|
|
/*******************************************************************************
|
|
* This function is responsible for handling all SMCs in the Trusted OS/App
|
|
* range from the non-secure state as defined in the SMC Calling Convention
|
|
* Document. It is also responsible for communicating with the Secure
|
|
* payload to delegate work and return results back to the non-secure
|
|
* state. Lastly it will also return any information that OPTEE needs to do
|
|
* the work assigned to it.
|
|
******************************************************************************/
|
|
static uintptr_t opteed_smc_handler(uint32_t smc_fid,
|
|
u_register_t x1,
|
|
u_register_t x2,
|
|
u_register_t x3,
|
|
u_register_t x4,
|
|
void *cookie,
|
|
void *handle,
|
|
u_register_t flags)
|
|
{
|
|
cpu_context_t *ns_cpu_context;
|
|
uint32_t linear_id = plat_my_core_pos();
|
|
optee_context_t *optee_ctx = &opteed_sp_context[linear_id];
|
|
|
|
/*
|
|
* Determine which security state this SMC originated from
|
|
*/
|
|
|
|
if (is_caller_non_secure(flags)) {
|
|
#if OPTEE_ALLOW_SMC_LOAD
|
|
if (opteed_allow_load && smc_fid == NSSMC_OPTEED_CALL_UID) {
|
|
/* Provide the UUID of the image loading service. */
|
|
SMC_UUID_RET(handle, optee_image_load_uuid);
|
|
}
|
|
if (smc_fid == NSSMC_OPTEED_CALL_LOAD_IMAGE) {
|
|
/*
|
|
* TODO: Consider wiping the code for SMC loading from
|
|
* memory after it has been invoked similar to what is
|
|
* done under RECLAIM_INIT, but extended to happen
|
|
* later.
|
|
*/
|
|
if (!opteed_allow_load) {
|
|
SMC_RET1(handle, -EPERM);
|
|
}
|
|
|
|
opteed_allow_load = false;
|
|
uint64_t data_size = dual32to64(x1, x2);
|
|
uint64_t data_pa = dual32to64(x3, x4);
|
|
if (!data_size || !data_pa) {
|
|
/*
|
|
* This is invoked when the OP-TEE image didn't
|
|
* load correctly in the kernel but we want to
|
|
* block off loading of it later for security
|
|
* reasons.
|
|
*/
|
|
SMC_RET1(handle, -EINVAL);
|
|
}
|
|
SMC_RET1(handle, opteed_handle_smc_load(
|
|
data_size, data_pa));
|
|
}
|
|
#endif /* OPTEE_ALLOW_SMC_LOAD */
|
|
/*
|
|
* This is a fresh request from the non-secure client.
|
|
* The parameters are in x1 and x2. Figure out which
|
|
* registers need to be preserved, save the non-secure
|
|
* state and send the request to the secure payload.
|
|
*/
|
|
assert(handle == cm_get_context(NON_SECURE));
|
|
|
|
cm_el1_sysregs_context_save(NON_SECURE);
|
|
|
|
/*
|
|
* We are done stashing the non-secure context. Ask the
|
|
* OP-TEE to do the work now. If we are loading vi an SMC,
|
|
* then we also need to init this CPU context if not done
|
|
* already.
|
|
*/
|
|
if (optee_vector_table == NULL) {
|
|
SMC_RET1(handle, -EINVAL);
|
|
}
|
|
|
|
if (get_optee_pstate(optee_ctx->state) ==
|
|
OPTEE_PSTATE_UNKNOWN) {
|
|
opteed_cpu_on_finish_handler(0);
|
|
}
|
|
|
|
/*
|
|
* Verify if there is a valid context to use, copy the
|
|
* operation type and parameters to the secure context
|
|
* and jump to the fast smc entry point in the secure
|
|
* payload. Entry into S-EL1 will take place upon exit
|
|
* from this function.
|
|
*/
|
|
assert(&optee_ctx->cpu_ctx == cm_get_context(SECURE));
|
|
|
|
/* Set appropriate entry for SMC.
|
|
* We expect OPTEE to manage the PSTATE.I and PSTATE.F
|
|
* flags as appropriate.
|
|
*/
|
|
if (GET_SMC_TYPE(smc_fid) == SMC_TYPE_FAST) {
|
|
cm_set_elr_el3(SECURE, (uint64_t)
|
|
&optee_vector_table->fast_smc_entry);
|
|
} else {
|
|
cm_set_elr_el3(SECURE, (uint64_t)
|
|
&optee_vector_table->yield_smc_entry);
|
|
}
|
|
|
|
cm_el1_sysregs_context_restore(SECURE);
|
|
cm_set_next_eret_context(SECURE);
|
|
|
|
write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
|
|
CTX_GPREG_X4,
|
|
read_ctx_reg(get_gpregs_ctx(handle),
|
|
CTX_GPREG_X4));
|
|
write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
|
|
CTX_GPREG_X5,
|
|
read_ctx_reg(get_gpregs_ctx(handle),
|
|
CTX_GPREG_X5));
|
|
write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
|
|
CTX_GPREG_X6,
|
|
read_ctx_reg(get_gpregs_ctx(handle),
|
|
CTX_GPREG_X6));
|
|
/* Propagate hypervisor client ID */
|
|
write_ctx_reg(get_gpregs_ctx(&optee_ctx->cpu_ctx),
|
|
CTX_GPREG_X7,
|
|
read_ctx_reg(get_gpregs_ctx(handle),
|
|
CTX_GPREG_X7));
|
|
|
|
SMC_RET4(&optee_ctx->cpu_ctx, smc_fid, x1, x2, x3);
|
|
}
|
|
|
|
/*
|
|
* Returning from OPTEE
|
|
*/
|
|
|
|
switch (smc_fid) {
|
|
/*
|
|
* OPTEE has finished initialising itself after a cold boot
|
|
*/
|
|
case TEESMC_OPTEED_RETURN_ENTRY_DONE:
|
|
/*
|
|
* Stash the OPTEE entry points information. This is done
|
|
* only once on the primary cpu
|
|
*/
|
|
assert(optee_vector_table == NULL);
|
|
optee_vector_table = (optee_vectors_t *) x1;
|
|
|
|
if (optee_vector_table) {
|
|
set_optee_pstate(optee_ctx->state, OPTEE_PSTATE_ON);
|
|
|
|
/*
|
|
* OPTEE has been successfully initialized.
|
|
* Register power management hooks with PSCI
|
|
*/
|
|
psci_register_spd_pm_hook(&opteed_pm);
|
|
|
|
#if !OPTEE_ALLOW_SMC_LOAD
|
|
register_opteed_interrupt_handler();
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* OPTEE reports completion. The OPTEED must have initiated
|
|
* the original request through a synchronous entry into
|
|
* OPTEE. Jump back to the original C runtime context.
|
|
*/
|
|
opteed_synchronous_sp_exit(optee_ctx, x1);
|
|
break;
|
|
|
|
|
|
/*
|
|
* These function IDs is used only by OP-TEE to indicate it has
|
|
* finished:
|
|
* 1. turning itself on in response to an earlier psci
|
|
* cpu_on request
|
|
* 2. resuming itself after an earlier psci cpu_suspend
|
|
* request.
|
|
*/
|
|
case TEESMC_OPTEED_RETURN_ON_DONE:
|
|
case TEESMC_OPTEED_RETURN_RESUME_DONE:
|
|
|
|
|
|
/*
|
|
* These function IDs is used only by the SP to indicate it has
|
|
* finished:
|
|
* 1. suspending itself after an earlier psci cpu_suspend
|
|
* request.
|
|
* 2. turning itself off in response to an earlier psci
|
|
* cpu_off request.
|
|
*/
|
|
case TEESMC_OPTEED_RETURN_OFF_DONE:
|
|
case TEESMC_OPTEED_RETURN_SUSPEND_DONE:
|
|
case TEESMC_OPTEED_RETURN_SYSTEM_OFF_DONE:
|
|
case TEESMC_OPTEED_RETURN_SYSTEM_RESET_DONE:
|
|
|
|
/*
|
|
* OPTEE reports completion. The OPTEED must have initiated the
|
|
* original request through a synchronous entry into OPTEE.
|
|
* Jump back to the original C runtime context, and pass x1 as
|
|
* return value to the caller
|
|
*/
|
|
opteed_synchronous_sp_exit(optee_ctx, x1);
|
|
break;
|
|
|
|
/*
|
|
* OPTEE is returning from a call or being preempted from a call, in
|
|
* either case execution should resume in the normal world.
|
|
*/
|
|
case TEESMC_OPTEED_RETURN_CALL_DONE:
|
|
/*
|
|
* This is the result from the secure client of an
|
|
* earlier request. The results are in x0-x3. Copy it
|
|
* into the non-secure context, save the secure state
|
|
* and return to the non-secure state.
|
|
*/
|
|
assert(handle == cm_get_context(SECURE));
|
|
cm_el1_sysregs_context_save(SECURE);
|
|
|
|
/* Get a reference to the non-secure context */
|
|
ns_cpu_context = cm_get_context(NON_SECURE);
|
|
assert(ns_cpu_context);
|
|
|
|
/* Restore non-secure state */
|
|
cm_el1_sysregs_context_restore(NON_SECURE);
|
|
cm_set_next_eret_context(NON_SECURE);
|
|
|
|
SMC_RET4(ns_cpu_context, x1, x2, x3, x4);
|
|
|
|
/*
|
|
* OPTEE has finished handling a S-EL1 FIQ interrupt. Execution
|
|
* should resume in the normal world.
|
|
*/
|
|
case TEESMC_OPTEED_RETURN_FIQ_DONE:
|
|
/* Get a reference to the non-secure context */
|
|
ns_cpu_context = cm_get_context(NON_SECURE);
|
|
assert(ns_cpu_context);
|
|
|
|
/*
|
|
* Restore non-secure state. There is no need to save the
|
|
* secure system register context since OPTEE was supposed
|
|
* to preserve it during S-EL1 interrupt handling.
|
|
*/
|
|
cm_el1_sysregs_context_restore(NON_SECURE);
|
|
cm_set_next_eret_context(NON_SECURE);
|
|
|
|
SMC_RET0((uint64_t) ns_cpu_context);
|
|
|
|
default:
|
|
panic();
|
|
}
|
|
}
|
|
|
|
/* Define an OPTEED runtime service descriptor for fast SMC calls */
|
|
DECLARE_RT_SVC(
|
|
opteed_fast,
|
|
|
|
OEN_TOS_START,
|
|
OEN_TOS_END,
|
|
SMC_TYPE_FAST,
|
|
opteed_setup,
|
|
opteed_smc_handler
|
|
);
|
|
|
|
/* Define an OPTEED runtime service descriptor for yielding SMC calls */
|
|
DECLARE_RT_SVC(
|
|
opteed_std,
|
|
|
|
OEN_TOS_START,
|
|
OEN_TOS_END,
|
|
SMC_TYPE_YIELD,
|
|
NULL,
|
|
opteed_smc_handler
|
|
);
|