arm-trusted-firmware/plat/arm/common/arm_dyn_cfg.c
Harrison Mutai ada4e59d16 feat(arm): migrate heap info to fw handoff
Mbed-TLS requires platforms to allocate it a heap for it's own internal
usage. This heap is typically between shared by BL1 and BL2 to conserve
memory.The base address and size of the heap are conveyed from BL1 to
BL2 through the config TB_FW_CONFIG.

This slightly awkward approach necessitates declaring a placeholder node
in the DTS. At runtime, this node is populated with the actual values of
the heap information. Instead, since this is dynamic information, and
simple to represent through C structures, transmit it to later stages
using the firmware handoff framework.

With this migration, remove references to TB_FW_CONFIG when firmware
handoff is enabled, as it is no longer needed. The setup code now relies
solely on TL structures to configure the TB firmware

Change-Id: Iff00dc742924a055b8bd304f15eec03ce3c6d1ef
Signed-off-by: Harrison Mutai <harrison.mutai@arm.com>
2024-12-18 14:48:24 +00:00

233 lines
6.6 KiB
C

/*
* Copyright (c) 2018-2024, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <string.h>
#include <libfdt.h>
#if CRYPTO_SUPPORT
#include <mbedtls/version.h>
#endif /* CRYPTO_SUPPORT */
#include <common/debug.h>
#include <common/desc_image_load.h>
#include <common/tbbr/tbbr_img_def.h>
#include <lib/fconf/fconf.h>
#include <lib/fconf/fconf_dyn_cfg_getter.h>
#include <lib/fconf/fconf_tbbr_getter.h>
#include <plat/arm/common/arm_dyn_cfg_helpers.h>
#include <plat/arm/common/plat_arm.h>
#include <platform_def.h>
#if CRYPTO_SUPPORT && !TRANSFER_LIST
static void *mbedtls_heap_addr;
static size_t mbedtls_heap_size;
/*
* This function is the implementation of the shared Mbed TLS heap between
* BL1 and BL2 for Arm platforms. The shared heap address is passed from BL1
* to BL2 with a pointer. This pointer resides inside the TB_FW_CONFIG file
* which is a DTB.
*
* This function is placed inside an #if directive for the below reasons:
* - To allocate space for the Mbed TLS heap --only if-- Trusted Board Boot
* is enabled.
* - This implementation requires the DTB to be present so that BL1 has a
* mechanism to pass the pointer to BL2.
*/
int arm_get_mbedtls_heap(void **heap_addr, size_t *heap_size)
{
assert(heap_addr != NULL);
assert(heap_size != NULL);
#if defined(IMAGE_BL1) || RESET_TO_BL2 || defined(IMAGE_BL31)
/* If in BL1 or RESET_TO_BL2 define a heap */
static unsigned char heap[TF_MBEDTLS_HEAP_SIZE];
*heap_addr = heap;
*heap_size = sizeof(heap);
mbedtls_heap_addr = heap;
mbedtls_heap_size = sizeof(heap);
#elif defined(IMAGE_BL2)
/* If in BL2, retrieve the already allocated heap's info from DTB */
*heap_addr = FCONF_GET_PROPERTY(tbbr, dyn_config, mbedtls_heap_addr);
*heap_size = FCONF_GET_PROPERTY(tbbr, dyn_config, mbedtls_heap_size);
#endif
return 0;
}
/*
* Puts the shared Mbed TLS heap information to the DTB.
* Executed only from BL1.
*/
void arm_bl1_set_mbedtls_heap(void)
{
int err;
uintptr_t tb_fw_cfg_dtb;
const struct dyn_cfg_dtb_info_t *tb_fw_config_info;
/*
* If tb_fw_cfg_dtb==NULL then DTB is not present for the current
* platform. As such, we don't attempt to write to the DTB at all.
*
* If mbedtls_heap_addr==NULL, then it means we are using the default
* heap implementation. As such, BL2 will have its own heap for sure
* and hence there is no need to pass any information to the DTB.
*
* In the latter case, if we still wanted to write in the DTB the heap
* information, we would need to call plat_get_mbedtls_heap to retrieve
* the default heap's address and size.
*/
tb_fw_config_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, TB_FW_CONFIG_ID);
assert(tb_fw_config_info != NULL);
tb_fw_cfg_dtb = tb_fw_config_info->config_addr;
if ((tb_fw_cfg_dtb != 0UL) && (mbedtls_heap_addr != NULL)) {
/* As libfdt uses void *, we can't avoid this cast */
void *dtb = (void *)tb_fw_cfg_dtb;
err = arm_set_dtb_mbedtls_heap_info(dtb,
mbedtls_heap_addr, mbedtls_heap_size);
if (err < 0) {
ERROR("%swrite shared Mbed TLS heap information%s",
"BL1: unable to ", " to DTB\n");
panic();
}
#if !MEASURED_BOOT
/*
* Ensure that the info written to the DTB is visible to other
* images. It's critical because BL2 won't be able to proceed
* without the heap info.
*
* In MEASURED_BOOT case flushing is done in a function which
* is called after heap information is written in the DTB.
*/
flush_dcache_range(tb_fw_cfg_dtb, fdt_totalsize(dtb));
#endif /* !MEASURED_BOOT */
}
}
#endif /* CRYPTO_SUPPORT && !TRANSFER_LIST */
#if IMAGE_BL2
/*
* BL2 utility function to initialize dynamic configuration specified by
* FW_CONFIG. Populate the bl_mem_params_node_t of other FW_CONFIGs if
* specified in FW_CONFIG.
*/
void arm_bl2_dyn_cfg_init(void)
{
unsigned int i;
bl_mem_params_node_t *cfg_mem_params = NULL;
uintptr_t image_base;
uint32_t image_size;
unsigned int error_config_id = MAX_IMAGE_IDS;
const unsigned int config_ids[] = {
HW_CONFIG_ID,
SOC_FW_CONFIG_ID,
NT_FW_CONFIG_ID,
TOS_FW_CONFIG_ID
};
const struct dyn_cfg_dtb_info_t *dtb_info;
/* Iterate through all the fw config IDs */
for (i = 0; i < ARRAY_SIZE(config_ids); i++) {
/* Get the config load address and size */
cfg_mem_params = get_bl_mem_params_node(config_ids[i]);
if (cfg_mem_params == NULL) {
VERBOSE("%sconfig_id = %d in bl_mem_params_node\n",
"Couldn't find ", config_ids[i]);
continue;
}
dtb_info = FCONF_GET_PROPERTY(dyn_cfg, dtb, config_ids[i]);
if (dtb_info == NULL) {
VERBOSE("%sconfig_id %d load info in FW_CONFIG\n",
"Couldn't find ", config_ids[i]);
continue;
}
image_base = dtb_info->config_addr;
image_size = dtb_info->config_max_size;
/*
* Do some runtime checks on the load addresses of soc_fw_config,
* tos_fw_config, nt_fw_config. This is not a comprehensive check
* of all invalid addresses but to prevent trivial porting errors.
*/
if (config_ids[i] != HW_CONFIG_ID) {
if (check_uptr_overflow(image_base, image_size)) {
VERBOSE("%s=%d as its %s is overflowing uptr\n",
"skip loading of firmware config",
config_ids[i],
"load-address");
error_config_id = config_ids[i];
continue;
}
#ifdef BL31_BASE
/* Ensure the configs don't overlap with BL31 */
if ((image_base >= BL31_BASE) &&
(image_base <= BL31_LIMIT)) {
VERBOSE("%s=%d as its %s is overlapping BL31\n",
"skip loading of firmware config",
config_ids[i],
"load-address");
error_config_id = config_ids[i];
continue;
}
#endif
/* Ensure the configs are loaded in a valid address */
if (image_base < ARM_BL_RAM_BASE) {
VERBOSE("%s=%d as its %s is invalid\n",
"skip loading of firmware config",
config_ids[i],
"load-address");
error_config_id = config_ids[i];
continue;
}
#ifdef BL32_BASE
/*
* If BL32 is present, ensure that the configs don't
* overlap with it.
*/
if ((image_base >= BL32_BASE) &&
(image_base <= BL32_LIMIT)) {
VERBOSE("%s=%d as its %s is overlapping BL32\n",
"skip loading of firmware config",
config_ids[i],
"load-address");
error_config_id = config_ids[i];
continue;
}
#endif
}
cfg_mem_params->image_info.image_base = image_base;
cfg_mem_params->image_info.image_max_size = (uint32_t)image_size;
/*
* Remove the IMAGE_ATTRIB_SKIP_LOADING attribute from
* HW_CONFIG or FW_CONFIG nodes
*/
cfg_mem_params->image_info.h.attr &= ~IMAGE_ATTRIB_SKIP_LOADING;
}
if (error_config_id != MAX_IMAGE_IDS) {
ERROR("Invalid config file %u\n", error_config_id);
panic();
}
}
#endif /* IMAGE_BL2 */