arm-trusted-firmware/drivers/rpi3/sdhost/rpi3_sdhost.c
Rob Newberry bd96d533dc fix(rpi3): initialize SD card host controller
Add initial configuration parameters for Rasperry Pi 3's sdhost
controller, and then configure and use those parameters.

This change allows warm reboots of UEFI on Raspberry Pi 3B+ where
existing code often fails with "unknown error". See discussion at:

https://github.com/pftf/RPi3/issues/24

The basic idea is that some initial configuration parameters
(clock rate, bus width) aren't configured into the hardware before
commands start being sent. I suspect that the particular setting
that matters is the "slow card" bit, but the initial clock setting
also seemed wrong to me.

Change-Id: I526def340def143f23f3422f1fc14c12c937ca7f
Signed-off-by: Rob Newberry <robthedude@mac.com>
2023-04-13 10:29:51 +01:00

678 lines
18 KiB
C

/*
* Copyright (c) 2019, Linaro Limited
* Copyright (c) 2019, Ying-Chun Liu (PaulLiu) <paul.liu@linaro.org>
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <common/debug.h>
#include <lib/mmio.h>
#include <drivers/delay_timer.h>
#include <drivers/rpi3/sdhost/rpi3_sdhost.h>
#include <drivers/mmc.h>
#include <drivers/rpi3/gpio/rpi3_gpio.h>
#include <errno.h>
#include <string.h>
static void rpi3_sdhost_initialize(void);
static int rpi3_sdhost_send_cmd(struct mmc_cmd *cmd);
static int rpi3_sdhost_set_ios(unsigned int clk, unsigned int width);
static int rpi3_sdhost_prepare(int lba, uintptr_t buf, size_t size);
static int rpi3_sdhost_read(int lba, uintptr_t buf, size_t size);
static int rpi3_sdhost_write(int lba, uintptr_t buf, size_t size);
static const struct mmc_ops rpi3_sdhost_ops = {
.init = rpi3_sdhost_initialize,
.send_cmd = rpi3_sdhost_send_cmd,
.set_ios = rpi3_sdhost_set_ios,
.prepare = rpi3_sdhost_prepare,
.read = rpi3_sdhost_read,
.write = rpi3_sdhost_write,
};
static struct rpi3_sdhost_params rpi3_sdhost_params;
/**
* Wait for command being processed.
*
* This function waits the command being processed. It compares
* the ENABLE flag of the HC_COMMAND register. When ENABLE flag disappeared
* it means the command is processed by the SDHOST.
* The timeout is currently 1000*100 us = 100 ms.
*
* @return 0: command finished. 1: command timed out.
*/
static int rpi3_sdhost_waitcommand(void)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
volatile int timeout = 1000;
while ((mmio_read_32(reg_base + HC_COMMAND) & HC_CMD_ENABLE)
&& (--timeout > 0)) {
udelay(100);
}
return ((timeout > 0) ? 0 : (-(ETIMEDOUT)));
}
/**
* Send the command and argument to the SDHOST
*
* This function will wait for the previous command finished. And then
* clear any error status of previous command. And then
* send out the command and args. The command will be turned on the ENABLE
* flag before sending out.
*/
static void send_command_raw(unsigned int cmd, unsigned int arg)
{
unsigned int status;
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
/* wait for previous command finish */
rpi3_sdhost_waitcommand();
/* clean error status */
status = mmio_read_32(reg_base + HC_HOSTSTATUS);
if (status & HC_HSTST_MASK_ERROR_ALL)
mmio_write_32(reg_base + HC_HOSTSTATUS, status);
/* recording the command */
rpi3_sdhost_params.current_cmd = cmd & HC_CMD_COMMAND_MASK;
/* send the argument and command */
mmio_write_32(reg_base + HC_ARGUMENT, arg);
mmio_write_32(reg_base + HC_COMMAND, cmd | HC_CMD_ENABLE);
}
/**
* Send the command and argument to the SDHOST, decorated with control
* flags.
*
* This function will use send_command_raw to send the commands to SDHOST.
* But before sending it will decorate the command with control flags specific
* to SDHOST.
*/
static void send_command_decorated(unsigned int cmd, unsigned int arg)
{
unsigned int cmd_flags = 0;
switch (cmd & HC_CMD_COMMAND_MASK) {
case MMC_CMD(0):
cmd_flags |= HC_CMD_RESPONSE_NONE;
break;
case MMC_ACMD(51):
cmd_flags |= HC_CMD_READ;
break;
case MMC_CMD(8):
case MMC_CMD(11):
case MMC_CMD(17):
case MMC_CMD(18):
cmd_flags |= HC_CMD_READ;
break;
case MMC_CMD(20):
case MMC_CMD(24):
case MMC_CMD(25):
cmd_flags |= HC_CMD_WRITE;
break;
case MMC_CMD(12):
cmd_flags |= HC_CMD_BUSY;
break;
default:
break;
}
send_command_raw(cmd | cmd_flags, arg);
}
/**
* drains the FIFO on DATA port
*
* This function drains any data left in the DATA port.
*/
static void rpi3_drain_fifo(void)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
volatile int timeout = 100000;
rpi3_sdhost_waitcommand();
while (mmio_read_32(reg_base + HC_HOSTSTATUS) & HC_HSTST_HAVEDATA) {
mmio_read_32(reg_base + HC_DATAPORT);
udelay(100);
}
while (1) {
uint32_t edm, fsm;
edm = mmio_read_32(reg_base + HC_DEBUG);
fsm = edm & HC_DBG_FSM_MASK;
if ((fsm == HC_DBG_FSM_IDENTMODE) ||
(fsm == HC_DBG_FSM_DATAMODE))
break;
if ((fsm == HC_DBG_FSM_READWAIT) ||
(fsm == HC_DBG_FSM_WRITESTART1) ||
(fsm == HC_DBG_FSM_READDATA)) {
mmio_write_32(reg_base + HC_DEBUG,
edm | HC_DBG_FORCE_DATA_MODE);
break;
}
if (--timeout <= 0) {
ERROR("rpi3_sdhost: %s cannot recover stat\n",
__func__);
return;
}
}
}
/**
* Dump SDHOST registers
*/
static void rpi3_sdhost_print_regs(void)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
INFO("rpi3_sdhost: HC_COMMAND: 0x%08x\n",
mmio_read_32(reg_base + HC_COMMAND));
INFO("rpi3_sdhost: HC_ARGUMENT: 0x%08x\n",
mmio_read_32(reg_base + HC_ARGUMENT));
INFO("rpi3_sdhost: HC_TIMEOUTCOUNTER: 0x%08x\n",
mmio_read_32(reg_base + HC_TIMEOUTCOUNTER));
INFO("rpi3_sdhost: HC_CLOCKDIVISOR: 0x%08x\n",
mmio_read_32(reg_base + HC_CLOCKDIVISOR));
INFO("rpi3_sdhost: HC_RESPONSE_0: 0x%08x\n",
mmio_read_32(reg_base + HC_RESPONSE_0));
INFO("rpi3_sdhost: HC_RESPONSE_1: 0x%08x\n",
mmio_read_32(reg_base + HC_RESPONSE_1));
INFO("rpi3_sdhost: HC_RESPONSE_2: 0x%08x\n",
mmio_read_32(reg_base + HC_RESPONSE_2));
INFO("rpi3_sdhost: HC_RESPONSE_3: 0x%08x\n",
mmio_read_32(reg_base + HC_RESPONSE_3));
INFO("rpi3_sdhost: HC_HOSTSTATUS: 0x%08x\n",
mmio_read_32(reg_base + HC_HOSTSTATUS));
INFO("rpi3_sdhost: HC_POWER: 0x%08x\n",
mmio_read_32(reg_base + HC_POWER));
INFO("rpi3_sdhost: HC_DEBUG: 0x%08x\n",
mmio_read_32(reg_base + HC_DEBUG));
INFO("rpi3_sdhost: HC_HOSTCONFIG: 0x%08x\n",
mmio_read_32(reg_base + HC_HOSTCONFIG));
INFO("rpi3_sdhost: HC_BLOCKSIZE: 0x%08x\n",
mmio_read_32(reg_base + HC_BLOCKSIZE));
INFO("rpi3_sdhost: HC_BLOCKCOUNT: 0x%08x\n",
mmio_read_32(reg_base + HC_BLOCKCOUNT));
}
/**
* Reset SDHOST
*/
static void rpi3_sdhost_reset(void)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
unsigned int dbg;
uint32_t tmp1;
mmio_write_32(reg_base + HC_POWER, 0);
mmio_write_32(reg_base + HC_COMMAND, 0);
mmio_write_32(reg_base + HC_ARGUMENT, 0);
mmio_write_32(reg_base + HC_TIMEOUTCOUNTER, HC_TIMEOUT_DEFAULT);
mmio_write_32(reg_base + HC_CLOCKDIVISOR, 0);
mmio_write_32(reg_base + HC_HOSTSTATUS, HC_HSTST_RESET);
mmio_write_32(reg_base + HC_HOSTCONFIG, 0);
mmio_write_32(reg_base + HC_BLOCKSIZE, 0);
mmio_write_32(reg_base + HC_BLOCKCOUNT, 0);
dbg = mmio_read_32(reg_base + HC_DEBUG);
dbg &= ~((HC_DBG_FIFO_THRESH_MASK << HC_DBG_FIFO_THRESH_READ_SHIFT) |
(HC_DBG_FIFO_THRESH_MASK << HC_DBG_FIFO_THRESH_WRITE_SHIFT));
dbg |= (HC_FIFO_THRESH_READ << HC_DBG_FIFO_THRESH_READ_SHIFT) |
(HC_FIFO_THRESH_WRITE << HC_DBG_FIFO_THRESH_WRITE_SHIFT);
mmio_write_32(reg_base + HC_DEBUG, dbg);
mdelay(250);
mmio_write_32(reg_base + HC_POWER, 1);
mdelay(250);
rpi3_sdhost_params.clk_rate = 0;
mmio_write_32(reg_base + HC_CLOCKDIVISOR, HC_CLOCKDIVISOR_MAXVAL);
tmp1 = mmio_read_32(reg_base + HC_HOSTCONFIG);
mmio_write_32(reg_base + HC_HOSTCONFIG, tmp1 | HC_HSTCF_INT_BUSY);
}
static void rpi3_sdhost_initialize(void)
{
assert((rpi3_sdhost_params.reg_base & MMC_BLOCK_MASK) == 0);
rpi3_sdhost_reset();
rpi3_sdhost_set_ios(rpi3_sdhost_params.clk_rate_initial,
rpi3_sdhost_params.bus_width);
udelay(300);
}
static int rpi3_sdhost_send_cmd(struct mmc_cmd *cmd)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
int err = 0;
uint32_t cmd_idx;
uint32_t cmd_arg;
uint32_t cmd_flags = 0;
uint32_t intmask;
/* Wait for the command done */
err = rpi3_sdhost_waitcommand();
if (err != 0) {
WARN("previous command not done yet\n");
return err;
}
cmd_idx = cmd->cmd_idx & HC_CMD_COMMAND_MASK;
cmd_arg = cmd->cmd_arg;
if (cmd_idx == MMC_ACMD(51)) {
/* if previous cmd send to SDHOST is not MMC_CMD(55).
* It means this MMC_ACMD(51) is a resend.
* And we must also resend MMC_CMD(55) in this case
*/
if (rpi3_sdhost_params.current_cmd != MMC_CMD(55)) {
send_command_decorated(
MMC_CMD(55),
rpi3_sdhost_params.sdcard_rca <<
RCA_SHIFT_OFFSET);
rpi3_sdhost_params.mmc_app_cmd = 1;
rpi3_sdhost_waitcommand();
/* Also we need to call prepare to clean the buffer */
rpi3_sdhost_prepare(0, (uintptr_t)NULL, 8);
}
}
/* We ignore MMC_CMD(12) sending from the TF-A's MMC driver
* because we send MMC_CMD(12) by ourselves.
*/
if (cmd_idx == MMC_CMD(12))
return 0;
if ((cmd->resp_type & MMC_RSP_136) &&
(cmd->resp_type & MMC_RSP_BUSY)) {
ERROR("rpi3_sdhost: unsupported response type!\n");
return -(EOPNOTSUPP);
}
if (cmd->resp_type & MMC_RSP_48 && cmd->resp_type != MMC_RESPONSE_R2) {
/* 48-bit command
* We don't need to set any flags here because it is default.
*/
} else if (cmd->resp_type & MMC_RSP_136) {
/* 136-bit command */
cmd_flags |= HC_CMD_RESPONSE_LONG;
} else {
/* no respond command */
cmd_flags |= HC_CMD_RESPONSE_NONE;
}
rpi3_sdhost_params.cmdbusy = 0;
if (cmd->resp_type & MMC_RSP_BUSY) {
cmd_flags |= HC_CMD_BUSY;
rpi3_sdhost_params.cmdbusy = 1;
}
if (rpi3_sdhost_params.mmc_app_cmd) {
switch (cmd_idx) {
case MMC_ACMD(41):
if (cmd_arg == OCR_HCS)
cmd_arg |= OCR_3_3_3_4;
break;
default:
break;
}
rpi3_sdhost_params.mmc_app_cmd = 0;
}
if (cmd_idx == MMC_CMD(55))
rpi3_sdhost_params.mmc_app_cmd = 1;
send_command_decorated(cmd_idx | cmd_flags, cmd_arg);
intmask = mmio_read_32(reg_base + HC_HOSTSTATUS);
if (rpi3_sdhost_params.cmdbusy && (intmask & HC_HSTST_INT_BUSY)) {
mmio_write_32(reg_base + HC_HOSTSTATUS, HC_HSTST_INT_BUSY);
rpi3_sdhost_params.cmdbusy = 0;
}
if (!(cmd_flags & HC_CMD_RESPONSE_NONE)) {
err = rpi3_sdhost_waitcommand();
if (err != 0)
ERROR("rpi3_sdhost: cmd cannot be finished\n");
}
cmd->resp_data[0] = mmio_read_32(reg_base + HC_RESPONSE_0);
cmd->resp_data[1] = mmio_read_32(reg_base + HC_RESPONSE_1);
cmd->resp_data[2] = mmio_read_32(reg_base + HC_RESPONSE_2);
cmd->resp_data[3] = mmio_read_32(reg_base + HC_RESPONSE_3);
if (mmio_read_32(reg_base + HC_COMMAND) & HC_CMD_FAILED) {
uint32_t sdhsts = mmio_read_32(reg_base + HC_HOSTSTATUS);
mmio_write_32(reg_base + HC_HOSTSTATUS,
HC_HSTST_MASK_ERROR_ALL);
/*
* If the command SEND_OP_COND returns with CRC7 error,
* it can be considered as having completed successfully.
*/
if (!(sdhsts & HC_HSTST_ERROR_CRC7)
|| (cmd_idx != MMC_CMD(1))) {
if (sdhsts & HC_HSTST_TIMEOUT_CMD) {
ERROR("rpi3_sdhost: timeout status 0x%x\n",
sdhsts);
err = -(ETIMEDOUT);
} else {
ERROR("rpi3_sdhost: unknown err, cmd = 0x%x\n",
mmio_read_32(reg_base + HC_COMMAND));
ERROR("rpi3_sdhost status: 0x%x\n", sdhsts);
err = -(EILSEQ);
}
}
}
if ((!err) && (cmd_idx == MMC_CMD(3))) {
/* we keep the RCA in case to send MMC_CMD(55) ourselves */
rpi3_sdhost_params.sdcard_rca = (cmd->resp_data[0]
& 0xFFFF0000U) >> 16;
}
return err;
}
static int rpi3_sdhost_set_clock(unsigned int clk)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
uint32_t max_clk = 250000000;
uint32_t div;
if (clk < 100000) {
mmio_write_32(reg_base + HC_CLOCKDIVISOR,
HC_CLOCKDIVISOR_MAXVAL);
return 0;
}
div = max_clk / clk;
if (div < 2)
div = 2;
if ((max_clk / div) > clk)
div++;
div -= 2;
if (div > HC_CLOCKDIVISOR_MAXVAL)
div = HC_CLOCKDIVISOR_MAXVAL;
rpi3_sdhost_params.clk_rate = max_clk / (div + 2);
rpi3_sdhost_params.ns_per_fifo_word = (1000000000 /
rpi3_sdhost_params.clk_rate)
* 8;
mmio_write_32(reg_base + HC_CLOCKDIVISOR, div);
return 0;
}
static int rpi3_sdhost_set_ios(unsigned int clk, unsigned int width)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
uint32_t tmp1;
rpi3_sdhost_set_clock(clk);
VERBOSE("rpi3_sdhost: Changing clock to %dHz for data mode\n", clk);
if (width != MMC_BUS_WIDTH_4 && width != MMC_BUS_WIDTH_1) {
ERROR("rpi3_sdhost: width %d not supported\n", width);
return -(EOPNOTSUPP);
}
rpi3_sdhost_params.bus_width = width;
tmp1 = mmio_read_32(reg_base + HC_HOSTCONFIG);
tmp1 &= ~(HC_HSTCF_EXTBUS_4BIT);
if (rpi3_sdhost_params.bus_width == MMC_BUS_WIDTH_4)
tmp1 |= HC_HSTCF_EXTBUS_4BIT;
mmio_write_32(reg_base + HC_HOSTCONFIG, tmp1);
tmp1 = mmio_read_32(reg_base + HC_HOSTCONFIG);
mmio_write_32(reg_base + HC_HOSTCONFIG, tmp1 |
HC_HSTCF_SLOW_CARD | HC_HSTCF_INTBUS_WIDE);
return 0;
}
static int rpi3_sdhost_prepare(int lba, uintptr_t buf, size_t size)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
size_t blocks;
size_t blocksize;
if (size < 512) {
blocksize = size;
blocks = 1;
} else {
blocksize = 512;
blocks = size / blocksize;
if (size % blocksize != 0)
blocks++;
}
rpi3_drain_fifo();
mmio_write_32(reg_base + HC_BLOCKSIZE, blocksize);
mmio_write_32(reg_base + HC_BLOCKCOUNT, blocks);
udelay(100);
return 0;
}
static int rpi3_sdhost_read(int lba, uintptr_t buf, size_t size)
{
int err = 0;
uint32_t *buf1 = ((uint32_t *) buf);
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
int timeout = 100000;
int remaining_words = 0;
for (int i = 0; i < size / 4; i++) {
volatile int t = timeout;
uint32_t hsts_err;
while ((mmio_read_32(reg_base + HC_HOSTSTATUS)
& HC_HSTST_HAVEDATA) == 0) {
if (t == 0) {
ERROR("rpi3_sdhost: fifo timeout after %dus\n",
timeout);
err = -(ETIMEDOUT);
break;
}
t--;
udelay(10);
}
if (t == 0)
break;
uint32_t data = mmio_read_32(reg_base + HC_DATAPORT);
hsts_err = mmio_read_32(reg_base + HC_HOSTSTATUS)
& HC_HSTST_MASK_ERROR_ALL;
if (hsts_err) {
ERROR("rpi3_sdhost: transfer FIFO word %d: 0x%x\n",
i,
mmio_read_32(reg_base + HC_HOSTSTATUS));
rpi3_sdhost_print_regs();
err = -(EILSEQ);
/* clean the error status */
mmio_write_32(reg_base + HC_HOSTSTATUS, hsts_err);
}
if (buf1)
buf1[i] = data;
/* speeding up if the remaining words are still a lot */
remaining_words = (mmio_read_32(reg_base + HC_DEBUG) >> 4)
& HC_DBG_FIFO_THRESH_MASK;
if (remaining_words >= 7)
continue;
/* delay. slowing down the read process */
udelay(100);
}
/* We decide to stop by ourselves.
* It is because MMC_CMD(18) -> MMC_CMD(13) -> MMC_CMD(12)
* doesn't work for RPi3 SDHost.
*/
if (rpi3_sdhost_params.current_cmd == MMC_CMD(18))
send_command_decorated(MMC_CMD(12), 0);
return err;
}
static int rpi3_sdhost_write(int lba, uintptr_t buf, size_t size)
{
uint32_t *buf1 = ((uint32_t *) buf);
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
int err = 0;
int remaining_words = 0;
for (int i = 0; i < size / 4; i++) {
uint32_t hsts_err;
uint32_t data = buf1[i];
uint32_t dbg;
uint32_t fsm_state;
mmio_write_32(reg_base + HC_DATAPORT, data);
dbg = mmio_read_32(reg_base + HC_DEBUG);
fsm_state = dbg & HC_DBG_FSM_MASK;
if (fsm_state != HC_DBG_FSM_WRITEDATA
&& fsm_state != HC_DBG_FSM_WRITESTART1
&& fsm_state != HC_DBG_FSM_WRITESTART2
&& fsm_state != HC_DBG_FSM_WRITECRC
&& fsm_state != HC_DBG_FSM_WRITEWAIT1
&& fsm_state != HC_DBG_FSM_WRITEWAIT2) {
hsts_err = mmio_read_32(reg_base + HC_HOSTSTATUS)
& HC_HSTST_MASK_ERROR_ALL;
if (hsts_err)
err = -(EILSEQ);
}
/* speeding up if the remaining words are not many */
remaining_words = (mmio_read_32(reg_base + HC_DEBUG) >> 4)
& HC_DBG_FIFO_THRESH_MASK;
if (remaining_words <= 4)
continue;
udelay(100);
}
/* We decide to stop by ourselves.
* It is because MMC_CMD(25) -> MMC_CMD(13) -> MMC_CMD(12)
* doesn't work for RPi3 SDHost.
*/
if (rpi3_sdhost_params.current_cmd == MMC_CMD(25))
send_command_decorated(MMC_CMD(12), 0);
return err;
}
void rpi3_sdhost_init(struct rpi3_sdhost_params *params,
struct mmc_device_info *mmc_dev_info)
{
assert((params != 0) &&
((params->reg_base & MMC_BLOCK_MASK) == 0));
memcpy(&rpi3_sdhost_params, params, sizeof(struct rpi3_sdhost_params));
/* backup GPIO 48 to 53 configurations */
for (int i = 48; i <= 53; i++) {
rpi3_sdhost_params.gpio48_pinselect[i - 48]
= rpi3_gpio_get_select(i);
VERBOSE("rpi3_sdhost: Original GPIO state %d: %d\n",
i,
rpi3_sdhost_params.gpio48_pinselect[i - 48]);
}
/* setting pull resistors for 48 to 53.
* It is debatable to set SD_CLK to UP or NONE. We massively
* tested different brands of SD Cards and found NONE works
* most stable.
*
* GPIO 48 (SD_CLK) to GPIO_PULL_NONE
* GPIO 49 (SD_CMD) to GPIO_PULL_UP
* GPIO 50 (SD_D0) to GPIO_PULL_UP
* GPIO 51 (SD_D1) to GPIO_PULL_UP
* GPIO 52 (SD_D2) to GPIO_PULL_UP
* GPIO 53 (SD_D3) to GPIO_PULL_UP
*/
gpio_set_pull(48, GPIO_PULL_NONE);
for (int i = 49; i <= 53; i++)
gpio_set_pull(i, GPIO_PULL_UP);
/* Set pin 48-53 to alt-0. It means route SDHOST to card slot */
for (int i = 48; i <= 53; i++)
rpi3_gpio_set_select(i, RPI3_GPIO_FUNC_ALT0);
mmc_init(&rpi3_sdhost_ops, params->clk_rate, params->bus_width,
params->flags, mmc_dev_info);
}
void rpi3_sdhost_stop(void)
{
uintptr_t reg_base = rpi3_sdhost_params.reg_base;
VERBOSE("rpi3_sdhost: Shutting down: drain FIFO out\n");
rpi3_drain_fifo();
VERBOSE("rpi3_sdhost: Shutting down: slowing down the clock\n");
mmio_write_32(reg_base+HC_CLOCKDIVISOR, HC_CLOCKDIVISOR_SLOWVAL);
udelay(500);
VERBOSE("rpi3_sdhost: Shutting down: put SDHost into idle state\n");
send_command_decorated(MMC_CMD(0), 0);
udelay(500);
mmio_write_32(reg_base + HC_COMMAND, 0);
mmio_write_32(reg_base + HC_ARGUMENT, 0);
mmio_write_32(reg_base + HC_TIMEOUTCOUNTER, HC_TIMEOUT_IDLE);
mmio_write_32(reg_base + HC_CLOCKDIVISOR, HC_CLOCKDIVISOR_STOPVAL);
udelay(100);
mmio_write_32(reg_base + HC_POWER, 0);
mmio_write_32(reg_base + HC_HOSTCONFIG, 0);
mmio_write_32(reg_base + HC_BLOCKSIZE, 0x400);
mmio_write_32(reg_base + HC_BLOCKCOUNT, 0);
mmio_write_32(reg_base + HC_HOSTSTATUS, 0x7f8);
mmio_write_32(reg_base + HC_COMMAND, 0);
mmio_write_32(reg_base + HC_ARGUMENT, 0);
udelay(100);
/* Restore the pinmux to original state */
for (int i = 48; i <= 53; i++) {
rpi3_gpio_set_select(i,
rpi3_sdhost_params.gpio48_pinselect[i-48]);
}
/* Reset the pull resistors before entering BL33.
* GPIO 48 (SD_CLK) to GPIO_PULL_UP
* GPIO 49 (SD_CMD) to GPIO_PULL_UP
* GPIO 50 (SD_D0) to GPIO_PULL_UP
* GPIO 51 (SD_D1) to GPIO_PULL_UP
* GPIO 52 (SD_D2) to GPIO_PULL_UP
* GPIO 53 (SD_D3) to GPIO_PULL_UP
*/
for (int i = 48; i <= 53; i++)
gpio_set_pull(i, GPIO_PULL_UP);
}