arm-trusted-firmware/bl31/aarch64/bl31_entrypoint.S
Alexei Fedorov 9fc59639e6 Add support for Branch Target Identification
This patch adds the functionality needed for platforms to provide
Branch Target Identification (BTI) extension, introduced to AArch64
in Armv8.5-A by adding BTI instruction used to mark valid targets
for indirect branches. The patch sets new GP bit [50] to the stage 1
Translation Table Block and Page entries to denote guarded EL3 code
pages which will cause processor to trap instructions in protected
pages trying to perform an indirect branch to any instruction other
than BTI.
BTI feature is selected by BRANCH_PROTECTION option which supersedes
the previous ENABLE_PAUTH used for Armv8.3-A Pointer Authentication
and is disabled by default. Enabling BTI requires compiler support
and was tested with GCC versions 9.0.0, 9.0.1 and 10.0.0.
The assembly macros and helpers are modified to accommodate the BTI
instruction.
This is an experimental feature.
Note. The previous ENABLE_PAUTH build option to enable PAuth in EL3
is now made as an internal flag and BRANCH_PROTECTION flag should be
used instead to enable Pointer Authentication.
Note. USE_LIBROM=1 option is currently not supported.

Change-Id: Ifaf4438609b16647dc79468b70cd1f47a623362e
Signed-off-by: Alexei Fedorov <Alexei.Fedorov@arm.com>
2019-05-24 14:44:45 +01:00

253 lines
8 KiB
ArmAsm

/*
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <platform_def.h>
#include <arch.h>
#include <common/bl_common.h>
#include <el3_common_macros.S>
#include <lib/pmf/pmf_asm_macros.S>
#include <lib/runtime_instr.h>
#include <lib/xlat_tables/xlat_mmu_helpers.h>
.globl bl31_entrypoint
.globl bl31_warm_entrypoint
/* -----------------------------------------------------
* bl31_entrypoint() is the cold boot entrypoint,
* executed only by the primary cpu.
* -----------------------------------------------------
*/
func bl31_entrypoint
/* ---------------------------------------------------------------
* Stash the previous bootloader arguments x0 - x3 for later use.
* ---------------------------------------------------------------
*/
mov x20, x0
mov x21, x1
mov x22, x2
mov x23, x3
/* --------------------------------------------------------------------
* If PIE is enabled, fixup the Global descriptor Table and dynamic
* relocations
* --------------------------------------------------------------------
*/
#if ENABLE_PIE
mov_imm x0, BL31_BASE
mov_imm x1, BL31_LIMIT
bl fixup_gdt_reloc
#endif /* ENABLE_PIE */
#if !RESET_TO_BL31
/* ---------------------------------------------------------------------
* For !RESET_TO_BL31 systems, only the primary CPU ever reaches
* bl31_entrypoint() during the cold boot flow, so the cold/warm boot
* and primary/secondary CPU logic should not be executed in this case.
*
* Also, assume that the previous bootloader has already initialised the
* SCTLR_EL3, including the endianness, and has initialised the memory.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=0 \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=1 \
_exception_vectors=runtime_exceptions
#else
/* ---------------------------------------------------------------------
* For RESET_TO_BL31 systems which have a programmable reset address,
* bl31_entrypoint() is executed only on the cold boot path so we can
* skip the warm boot mailbox mechanism.
* ---------------------------------------------------------------------
*/
el3_entrypoint_common \
_init_sctlr=1 \
_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \
_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \
_init_memory=1 \
_init_c_runtime=1 \
_exception_vectors=runtime_exceptions
/* ---------------------------------------------------------------------
* For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
* there's no argument to relay from a previous bootloader. Zero the
* arguments passed to the platform layer to reflect that.
* ---------------------------------------------------------------------
*/
mov x20, 0
mov x21, 0
mov x22, 0
mov x23, 0
#endif /* RESET_TO_BL31 */
/* --------------------------------------------------------------------
* Perform BL31 setup
* --------------------------------------------------------------------
*/
mov x0, x20
mov x1, x21
mov x2, x22
mov x3, x23
bl bl31_setup
/* --------------------------------------------------------------------
* Enable pointer authentication
* --------------------------------------------------------------------
*/
#if ENABLE_PAUTH
mrs x0, sctlr_el3
orr x0, x0, #SCTLR_EnIA_BIT
#if ENABLE_BTI
/* --------------------------------------------------------------------
* Enable PAC branch type compatibility
* --------------------------------------------------------------------
*/
bic x0, x0, #SCTLR_BT_BIT
#endif /* ENABLE_BTI */
msr sctlr_el3, x0
isb
#endif /* ENABLE_PAUTH */
/* --------------------------------------------------------------------
* Jump to main function.
* --------------------------------------------------------------------
*/
bl bl31_main
/* --------------------------------------------------------------------
* Clean the .data & .bss sections to main memory. This ensures
* that any global data which was initialised by the primary CPU
* is visible to secondary CPUs before they enable their data
* caches and participate in coherency.
* --------------------------------------------------------------------
*/
adr x0, __DATA_START__
adr x1, __DATA_END__
sub x1, x1, x0
bl clean_dcache_range
adr x0, __BSS_START__
adr x1, __BSS_END__
sub x1, x1, x0
bl clean_dcache_range
b el3_exit
endfunc bl31_entrypoint
/* --------------------------------------------------------------------
* This CPU has been physically powered up. It is either resuming from
* suspend or has simply been turned on. In both cases, call the BL31
* warmboot entrypoint
* --------------------------------------------------------------------
*/
func bl31_warm_entrypoint
#if ENABLE_RUNTIME_INSTRUMENTATION
/*
* This timestamp update happens with cache off. The next
* timestamp collection will need to do cache maintenance prior
* to timestamp update.
*/
pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
mrs x1, cntpct_el0
str x1, [x0]
#endif
/*
* On the warm boot path, most of the EL3 initialisations performed by
* 'el3_entrypoint_common' must be skipped:
*
* - Only when the platform bypasses the BL1/BL31 entrypoint by
* programming the reset address do we need to initialise SCTLR_EL3.
* In other cases, we assume this has been taken care by the
* entrypoint code.
*
* - No need to determine the type of boot, we know it is a warm boot.
*
* - Do not try to distinguish between primary and secondary CPUs, this
* notion only exists for a cold boot.
*
* - No need to initialise the memory or the C runtime environment,
* it has been done once and for all on the cold boot path.
*/
el3_entrypoint_common \
_init_sctlr=PROGRAMMABLE_RESET_ADDRESS \
_warm_boot_mailbox=0 \
_secondary_cold_boot=0 \
_init_memory=0 \
_init_c_runtime=0 \
_exception_vectors=runtime_exceptions
/*
* We're about to enable MMU and participate in PSCI state coordination.
*
* The PSCI implementation invokes platform routines that enable CPUs to
* participate in coherency. On a system where CPUs are not
* cache-coherent without appropriate platform specific programming,
* having caches enabled until such time might lead to coherency issues
* (resulting from stale data getting speculatively fetched, among
* others). Therefore we keep data caches disabled even after enabling
* the MMU for such platforms.
*
* On systems with hardware-assisted coherency, or on single cluster
* platforms, such platform specific programming is not required to
* enter coherency (as CPUs already are); and there's no reason to have
* caches disabled either.
*/
#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
mov x0, xzr
#else
mov x0, #DISABLE_DCACHE
#endif
bl bl31_plat_enable_mmu
/* --------------------------------------------------------------------
* Enable pointer authentication
* --------------------------------------------------------------------
*/
#if ENABLE_PAUTH
bl pauth_load_bl_apiakey
mrs x0, sctlr_el3
orr x0, x0, #SCTLR_EnIA_BIT
#if ENABLE_BTI
/* --------------------------------------------------------------------
* Enable PAC branch type compatibility
* --------------------------------------------------------------------
*/
bic x0, x0, #SCTLR_BT_BIT
#endif /* ENABLE_BTI */
msr sctlr_el3, x0
isb
#endif /* ENABLE_PAUTH */
bl psci_warmboot_entrypoint
#if ENABLE_RUNTIME_INSTRUMENTATION
pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
mov x19, x0
/*
* Invalidate before updating timestamp to ensure previous timestamp
* updates on the same cache line with caches disabled are properly
* seen by the same core. Without the cache invalidate, the core might
* write into a stale cache line.
*/
mov x1, #PMF_TS_SIZE
mov x20, x30
bl inv_dcache_range
mov x30, x20
mrs x0, cntpct_el0
str x0, [x19]
#endif
b el3_exit
endfunc bl31_warm_entrypoint