arm-trusted-firmware/plat/common/plat_gicv3.c
Soby Mathew 877cf3ff12 AArch32: Add essential ARM platform and FVP support
This patch adds AArch32 support for FVP and implements common platform APIs
like `plat_get_my_stack`, `plat_set_my_stack`, `plat_my_core_cos` for AArch32.
Only Multi Processor(MP) implementations of these functions are considered in
this patch. The ARM Standard platform layer helpers are implemented for
AArch32 and the common makefiles are modified to cater for both AArch64 and
AArch32 builds. Compatibility with the deprecated platform API is not
supported for AArch32.

Change-Id: Iad228400613eec91abf731b49e21a15bcf2833ea
2016-08-10 18:01:38 +01:00

229 lines
7 KiB
C

/*
* Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <cassert.h>
#include <gic_common.h>
#include <gicv3.h>
#include <interrupt_mgmt.h>
#include <platform.h>
#if IMAGE_BL31
/*
* The following platform GIC functions are weakly defined. They
* provide typical implementations that may be re-used by multiple
* platforms but may also be overridden by a platform if required.
*/
#pragma weak plat_ic_get_pending_interrupt_id
#pragma weak plat_ic_get_pending_interrupt_type
#pragma weak plat_ic_acknowledge_interrupt
#pragma weak plat_ic_get_interrupt_type
#pragma weak plat_ic_end_of_interrupt
#pragma weak plat_interrupt_type_to_line
CASSERT((INTR_TYPE_S_EL1 == INTR_GROUP1S) &&
(INTR_TYPE_NS == INTR_GROUP1NS) &&
(INTR_TYPE_EL3 == INTR_GROUP0), assert_interrupt_type_mismatch);
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller
*/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
unsigned int irqnr;
assert(IS_IN_EL3());
irqnr = gicv3_get_pending_interrupt_id();
return (gicv3_is_intr_id_special_identifier(irqnr)) ?
INTR_ID_UNAVAILABLE : irqnr;
}
/*
* This function returns the type of the highest priority pending interrupt
* at the Interrupt controller. In the case of GICv3, the Highest Priority
* Pending interrupt system register (`ICC_HPPIR0_EL1`) is read to determine
* the id of the pending interrupt. The type of interrupt depends upon the
* id value as follows.
* 1. id = PENDING_G1S_INTID (1020) is reported as a S-EL1 interrupt
* 2. id = PENDING_G1NS_INTID (1021) is reported as a Non-secure interrupt.
* 3. id = GIC_SPURIOUS_INTERRUPT (1023) is reported as an invalid interrupt
* type.
* 4. All other interrupt id's are reported as EL3 interrupt.
*/
uint32_t plat_ic_get_pending_interrupt_type(void)
{
unsigned int irqnr;
assert(IS_IN_EL3());
irqnr = gicv3_get_pending_interrupt_type();
switch (irqnr) {
case PENDING_G1S_INTID:
return INTR_TYPE_S_EL1;
case PENDING_G1NS_INTID:
return INTR_TYPE_NS;
case GIC_SPURIOUS_INTERRUPT:
return INTR_TYPE_INVAL;
default:
return INTR_TYPE_EL3;
}
}
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller and indicates to the Interrupt controller
* that the interrupt processing has started.
*/
uint32_t plat_ic_acknowledge_interrupt(void)
{
assert(IS_IN_EL3());
return gicv3_acknowledge_interrupt();
}
/*
* This function returns the type of the interrupt `id`, depending on how
* the interrupt has been configured in the interrupt controller
*/
uint32_t plat_ic_get_interrupt_type(uint32_t id)
{
assert(IS_IN_EL3());
return gicv3_get_interrupt_type(id, plat_my_core_pos());
}
/*
* This functions is used to indicate to the interrupt controller that
* the processing of the interrupt corresponding to the `id` has
* finished.
*/
void plat_ic_end_of_interrupt(uint32_t id)
{
assert(IS_IN_EL3());
gicv3_end_of_interrupt(id);
}
/*
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
* The interrupt controller knows which pin/line it uses to signal a type of
* interrupt. It lets the interrupt management framework determine for a type of
* interrupt and security state, which line should be used in the SCR_EL3 to
* control its routing to EL3. The interrupt line is represented as the bit
* position of the IRQ or FIQ bit in the SCR_EL3.
*/
uint32_t plat_interrupt_type_to_line(uint32_t type,
uint32_t security_state)
{
assert(type == INTR_TYPE_S_EL1 ||
type == INTR_TYPE_EL3 ||
type == INTR_TYPE_NS);
assert(sec_state_is_valid(security_state));
assert(IS_IN_EL3());
switch (type) {
case INTR_TYPE_S_EL1:
/*
* The S-EL1 interrupts are signaled as IRQ in S-EL0/1 contexts
* and as FIQ in the NS-EL0/1/2 contexts
*/
if (security_state == SECURE)
return __builtin_ctz(SCR_IRQ_BIT);
else
return __builtin_ctz(SCR_FIQ_BIT);
case INTR_TYPE_NS:
/*
* The Non secure interrupts will be signaled as FIQ in S-EL0/1
* contexts and as IRQ in the NS-EL0/1/2 contexts.
*/
if (security_state == SECURE)
return __builtin_ctz(SCR_FIQ_BIT);
else
return __builtin_ctz(SCR_IRQ_BIT);
default:
assert(0);
/* Fall through in the release build */
case INTR_TYPE_EL3:
/*
* The EL3 interrupts are signaled as FIQ in both S-EL0/1 and
* NS-EL0/1/2 contexts
*/
return __builtin_ctz(SCR_FIQ_BIT);
}
}
#endif
#if IMAGE_BL32
#pragma weak plat_ic_get_pending_interrupt_id
#pragma weak plat_ic_acknowledge_interrupt
#pragma weak plat_ic_end_of_interrupt
/* In AArch32, the secure group1 interrupts are targeted to Secure PL1 */
#ifdef AARCH32
#define IS_IN_EL1() IS_IN_SECURE()
#endif
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller
*/
uint32_t plat_ic_get_pending_interrupt_id(void)
{
unsigned int irqnr;
assert(IS_IN_EL1());
irqnr = gicv3_get_pending_interrupt_id_sel1();
return (irqnr == GIC_SPURIOUS_INTERRUPT) ?
INTR_ID_UNAVAILABLE : irqnr;
}
/*
* This function returns the highest priority pending interrupt at
* the Interrupt controller and indicates to the Interrupt controller
* that the interrupt processing has started.
*/
uint32_t plat_ic_acknowledge_interrupt(void)
{
assert(IS_IN_EL1());
return gicv3_acknowledge_interrupt_sel1();
}
/*
* This functions is used to indicate to the interrupt controller that
* the processing of the interrupt corresponding to the `id` has
* finished.
*/
void plat_ic_end_of_interrupt(uint32_t id)
{
assert(IS_IN_EL1());
gicv3_end_of_interrupt_sel1(id);
}
#endif