mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-05-01 16:13:16 +00:00

The PRELOADED_BL33_BASE build option allows to preload a BL33 and bypass its loading by BL2. In ARM standard platforms, the conditional behaviour of PRELOADED_BL33_BASE is moved within the implementation of `plat_get_ns_image_entrypoint()` so that all callers may benefit from this feature. Change-Id: Iea060e204ec72f8081087837854535c4e320da4e
260 lines
8.7 KiB
C
260 lines
8.7 KiB
C
/*
|
|
* Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <arm_def.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <console.h>
|
|
#include <mmio.h>
|
|
#include <plat_arm.h>
|
|
#include <platform.h>
|
|
|
|
#define BL31_END (uintptr_t)(&__BL31_END__)
|
|
|
|
#if USE_COHERENT_MEM
|
|
/*
|
|
* The next 2 constants identify the extents of the coherent memory region.
|
|
* These addresses are used by the MMU setup code and therefore they must be
|
|
* page-aligned. It is the responsibility of the linker script to ensure that
|
|
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
|
|
* refer to page-aligned addresses.
|
|
*/
|
|
#define BL31_COHERENT_RAM_BASE (uintptr_t)(&__COHERENT_RAM_START__)
|
|
#define BL31_COHERENT_RAM_LIMIT (uintptr_t)(&__COHERENT_RAM_END__)
|
|
#endif
|
|
|
|
/*
|
|
* Placeholder variables for copying the arguments that have been passed to
|
|
* BL31 from BL2.
|
|
*/
|
|
static entry_point_info_t bl32_image_ep_info;
|
|
static entry_point_info_t bl33_image_ep_info;
|
|
|
|
|
|
/* Weak definitions may be overridden in specific ARM standard platform */
|
|
#pragma weak bl31_early_platform_setup
|
|
#pragma weak bl31_platform_setup
|
|
#pragma weak bl31_plat_arch_setup
|
|
#pragma weak bl31_plat_get_next_image_ep_info
|
|
|
|
|
|
/*******************************************************************************
|
|
* Return a pointer to the 'entry_point_info' structure of the next image for the
|
|
* security state specified. BL33 corresponds to the non-secure image type
|
|
* while BL32 corresponds to the secure image type. A NULL pointer is returned
|
|
* if the image does not exist.
|
|
******************************************************************************/
|
|
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
|
|
{
|
|
entry_point_info_t *next_image_info;
|
|
|
|
assert(sec_state_is_valid(type));
|
|
next_image_info = (type == NON_SECURE)
|
|
? &bl33_image_ep_info : &bl32_image_ep_info;
|
|
/*
|
|
* None of the images on the ARM development platforms can have 0x0
|
|
* as the entrypoint
|
|
*/
|
|
if (next_image_info->pc)
|
|
return next_image_info;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 early platform setup common to ARM standard platforms.
|
|
* Here is an opportunity to copy parameters passed by the calling EL (S-EL1
|
|
* in BL2 & S-EL3 in BL1) before they are lost (potentially). This needs to be
|
|
* done before the MMU is initialized so that the memory layout can be used
|
|
* while creating page tables. BL2 has flushed this information to memory, so
|
|
* we are guaranteed to pick up good data.
|
|
******************************************************************************/
|
|
void arm_bl31_early_platform_setup(bl31_params_t *from_bl2,
|
|
void *plat_params_from_bl2)
|
|
{
|
|
/* Initialize the console to provide early debug support */
|
|
console_init(PLAT_ARM_BOOT_UART_BASE, PLAT_ARM_BOOT_UART_CLK_IN_HZ,
|
|
ARM_CONSOLE_BAUDRATE);
|
|
|
|
#if RESET_TO_BL31
|
|
/* There are no parameters from BL2 if BL31 is a reset vector */
|
|
assert(from_bl2 == NULL);
|
|
assert(plat_params_from_bl2 == NULL);
|
|
|
|
#ifdef BL32_BASE
|
|
/* Populate entry point information for BL32 */
|
|
SET_PARAM_HEAD(&bl32_image_ep_info,
|
|
PARAM_EP,
|
|
VERSION_1,
|
|
0);
|
|
SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
|
|
bl32_image_ep_info.pc = BL32_BASE;
|
|
bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();
|
|
#endif /* BL32_BASE */
|
|
|
|
/* Populate entry point information for BL33 */
|
|
SET_PARAM_HEAD(&bl33_image_ep_info,
|
|
PARAM_EP,
|
|
VERSION_1,
|
|
0);
|
|
/*
|
|
* Tell BL31 where the non-trusted software image
|
|
* is located and the entry state information
|
|
*/
|
|
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
|
|
|
|
bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
|
|
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
|
|
|
|
#else
|
|
/*
|
|
* Check params passed from BL2 should not be NULL,
|
|
*/
|
|
assert(from_bl2 != NULL);
|
|
assert(from_bl2->h.type == PARAM_BL31);
|
|
assert(from_bl2->h.version >= VERSION_1);
|
|
/*
|
|
* In debug builds, we pass a special value in 'plat_params_from_bl2'
|
|
* to verify platform parameters from BL2 to BL31.
|
|
* In release builds, it's not used.
|
|
*/
|
|
assert(((unsigned long long)plat_params_from_bl2) ==
|
|
ARM_BL31_PLAT_PARAM_VAL);
|
|
|
|
/*
|
|
* Copy BL32 (if populated by BL2) and BL33 entry point information.
|
|
* They are stored in Secure RAM, in BL2's address space.
|
|
*/
|
|
if (from_bl2->bl32_ep_info)
|
|
bl32_image_ep_info = *from_bl2->bl32_ep_info;
|
|
bl33_image_ep_info = *from_bl2->bl33_ep_info;
|
|
#endif
|
|
}
|
|
|
|
void bl31_early_platform_setup(bl31_params_t *from_bl2,
|
|
void *plat_params_from_bl2)
|
|
{
|
|
arm_bl31_early_platform_setup(from_bl2, plat_params_from_bl2);
|
|
|
|
/*
|
|
* Initialize Interconnect for this cluster during cold boot.
|
|
* No need for locks as no other CPU is active.
|
|
*/
|
|
plat_arm_interconnect_init();
|
|
|
|
/*
|
|
* Enable Interconnect coherency for the primary CPU's cluster.
|
|
* Earlier bootloader stages might already do this (e.g. Trusted
|
|
* Firmware's BL1 does it) but we can't assume so. There is no harm in
|
|
* executing this code twice anyway.
|
|
* Platform specific PSCI code will enable coherency for other
|
|
* clusters.
|
|
*/
|
|
plat_arm_interconnect_enter_coherency();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 platform setup common to ARM standard platforms
|
|
******************************************************************************/
|
|
void arm_bl31_platform_setup(void)
|
|
{
|
|
/* Initialize the GIC driver, cpu and distributor interfaces */
|
|
plat_arm_gic_driver_init();
|
|
plat_arm_gic_init();
|
|
|
|
#if RESET_TO_BL31
|
|
/*
|
|
* Do initial security configuration to allow DRAM/device access
|
|
* (if earlier BL has not already done so).
|
|
*/
|
|
plat_arm_security_setup();
|
|
|
|
#endif /* RESET_TO_BL31 */
|
|
|
|
/* Enable and initialize the System level generic timer */
|
|
mmio_write_32(ARM_SYS_CNTCTL_BASE + CNTCR_OFF,
|
|
CNTCR_FCREQ(0) | CNTCR_EN);
|
|
|
|
/* Allow access to the System counter timer module */
|
|
arm_configure_sys_timer();
|
|
|
|
/* Initialize power controller before setting up topology */
|
|
plat_arm_pwrc_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 platform runtime setup prior to BL31 exit common to ARM
|
|
* standard platforms
|
|
******************************************************************************/
|
|
void arm_bl31_plat_runtime_setup(void)
|
|
{
|
|
/* Initialize the runtime console */
|
|
console_init(PLAT_ARM_BL31_RUN_UART_BASE, PLAT_ARM_BL31_RUN_UART_CLK_IN_HZ,
|
|
ARM_CONSOLE_BAUDRATE);
|
|
}
|
|
|
|
void bl31_platform_setup(void)
|
|
{
|
|
arm_bl31_platform_setup();
|
|
}
|
|
|
|
void bl31_plat_runtime_setup(void)
|
|
{
|
|
arm_bl31_plat_runtime_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform the very early platform specific architectural setup shared between
|
|
* ARM standard platforms. This only does basic initialization. Later
|
|
* architectural setup (bl31_arch_setup()) does not do anything platform
|
|
* specific.
|
|
******************************************************************************/
|
|
void arm_bl31_plat_arch_setup(void)
|
|
{
|
|
arm_setup_page_tables(BL31_BASE,
|
|
BL31_END - BL31_BASE,
|
|
BL_CODE_BASE,
|
|
BL_CODE_LIMIT,
|
|
BL_RO_DATA_BASE,
|
|
BL_RO_DATA_LIMIT
|
|
#if USE_COHERENT_MEM
|
|
, BL31_COHERENT_RAM_BASE,
|
|
BL31_COHERENT_RAM_LIMIT
|
|
#endif
|
|
);
|
|
enable_mmu_el3(0);
|
|
}
|
|
|
|
void bl31_plat_arch_setup(void)
|
|
{
|
|
arm_bl31_plat_arch_setup();
|
|
}
|