arm-trusted-firmware/plat/arm/common/arm_bl1_setup.c
Sandrine Bailleux 0af559a833 ARM platforms: Add support for SEPARATE_CODE_AND_RODATA
The arm_setup_page_tables() function used to expect a single set of
addresses defining the extents of the whole read-only section, code
and read-only data mixed up, which was mapped as executable.

This patch changes this behaviour. arm_setup_page_tables() now
expects 2 separate sets of addresses:

 - the extents of the code section;
 - the extents of the read-only data section.

The code is mapped as executable, whereas the data is mapped as
execute-never. New #defines have been introduced to identify the
extents of the code and the read-only data section. Given that
all BL images except BL1 share the same memory layout and linker
script structure, these #defines are common across these images.
The slight memory layout differences in BL1 have been handled by
providing values specific to BL1.

Note that this patch also affects the Xilinx platform port, which
uses the arm_setup_page_tables() function. It has been updated
accordingly, such that the memory mappings on this platform are
unchanged. This is achieved by passing null values as the extents
of the read-only data section so that it is ignored. As a result,
the whole read-only section is still mapped as executable.

Fixes ARM-software/tf-issues#85

Change-Id: I1f95865c53ce6e253a01286ff56e0aa1161abac5
2016-07-08 14:55:11 +01:00

174 lines
5.5 KiB
C

/*
* Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arm_def.h>
#include <bl_common.h>
#include <console.h>
#include <platform_def.h>
#include <plat_arm.h>
#include <sp805.h>
#include <utils.h>
#include <xlat_tables.h>
#include "../../../bl1/bl1_private.h"
#if USE_COHERENT_MEM
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
* page-aligned addresses.
*/
#define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
#endif
/* Weak definitions may be overridden in specific ARM standard platform */
#pragma weak bl1_early_platform_setup
#pragma weak bl1_plat_arch_setup
#pragma weak bl1_platform_setup
#pragma weak bl1_plat_sec_mem_layout
/* Data structure which holds the extents of the trusted SRAM for BL1*/
static meminfo_t bl1_tzram_layout;
meminfo_t *bl1_plat_sec_mem_layout(void)
{
return &bl1_tzram_layout;
}
/*******************************************************************************
* BL1 specific platform actions shared between ARM standard platforms.
******************************************************************************/
void arm_bl1_early_platform_setup(void)
{
const size_t bl1_size = BL1_RAM_LIMIT - BL1_RAM_BASE;
#if !ARM_DISABLE_TRUSTED_WDOG
/* Enable watchdog */
sp805_start(ARM_SP805_TWDG_BASE, ARM_TWDG_LOAD_VAL);
#endif
/* Initialize the console to provide early debug support */
console_init(PLAT_ARM_BOOT_UART_BASE, PLAT_ARM_BOOT_UART_CLK_IN_HZ,
ARM_CONSOLE_BAUDRATE);
/* Allow BL1 to see the whole Trusted RAM */
bl1_tzram_layout.total_base = ARM_BL_RAM_BASE;
bl1_tzram_layout.total_size = ARM_BL_RAM_SIZE;
/* Calculate how much RAM BL1 is using and how much remains free */
bl1_tzram_layout.free_base = ARM_BL_RAM_BASE;
bl1_tzram_layout.free_size = ARM_BL_RAM_SIZE;
reserve_mem(&bl1_tzram_layout.free_base,
&bl1_tzram_layout.free_size,
BL1_RAM_BASE,
bl1_size);
}
void bl1_early_platform_setup(void)
{
arm_bl1_early_platform_setup();
/*
* Initialize Interconnect for this cluster during cold boot.
* No need for locks as no other CPU is active.
*/
plat_arm_interconnect_init();
/*
* Enable Interconnect coherency for the primary CPU's cluster.
*/
plat_arm_interconnect_enter_coherency();
}
/******************************************************************************
* Perform the very early platform specific architecture setup shared between
* ARM standard platforms. This only does basic initialization. Later
* architectural setup (bl1_arch_setup()) does not do anything platform
* specific.
*****************************************************************************/
void arm_bl1_plat_arch_setup(void)
{
arm_setup_page_tables(bl1_tzram_layout.total_base,
bl1_tzram_layout.total_size,
BL_CODE_BASE,
BL1_CODE_LIMIT,
BL1_RO_DATA_BASE,
BL1_RO_DATA_LIMIT
#if USE_COHERENT_MEM
, BL1_COHERENT_RAM_BASE,
BL1_COHERENT_RAM_LIMIT
#endif
);
enable_mmu_el3(0);
}
void bl1_plat_arch_setup(void)
{
arm_bl1_plat_arch_setup();
}
/*
* Perform the platform specific architecture setup shared between
* ARM standard platforms.
*/
void arm_bl1_platform_setup(void)
{
/* Initialise the IO layer and register platform IO devices */
plat_arm_io_setup();
}
void bl1_platform_setup(void)
{
arm_bl1_platform_setup();
}
void bl1_plat_prepare_exit(entry_point_info_t *ep_info)
{
#if !ARM_DISABLE_TRUSTED_WDOG
/* Disable watchdog before leaving BL1 */
sp805_stop(ARM_SP805_TWDG_BASE);
#endif
#ifdef EL3_PAYLOAD_BASE
/*
* Program the EL3 payload's entry point address into the CPUs mailbox
* in order to release secondary CPUs from their holding pen and make
* them jump there.
*/
arm_program_trusted_mailbox(ep_info->pc);
dsbsy();
sev();
#endif
}