arm-trusted-firmware/plat/arm/css/drivers/scp/css_pm_scpi.c
Soby Mathew b12a2b493e Introduce SCP power management abstraction
This patch introduces an additional layer of abstraction between
CSS power management hooks and the SCPI driver. A new set of APIs
are introduced in order to abstract out power management operations
from underlying communication mechanism with the SCP.

The SCPI and the associated MHU drivers are moved into a `drivers`
folder in CSS. The new SCP communication abstraction layer is added
in the `drivers/scp` folder. The existing CSS power management
uses the new APIs to reflect this abstraction.

Change-Id: I7d775129fc0558e9703c2724523fb8f0a916838c
Signed-off-by: Soby Mathew <soby.mathew@arm.com>
2016-12-07 12:45:55 +00:00

166 lines
5 KiB
C

/*
* Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch_helpers.h>
#include <assert.h>
#include <css_pm.h>
#include <debug.h>
#include "../scpi/css_scpi.h"
#include "css_scp.h"
/*
* This file implements the SCP power management functions using SCPI protocol.
*/
/*
* Helper function to inform power down state to SCP.
*/
void css_scp_suspend(const psci_power_state_t *target_state)
{
uint32_t cluster_state = scpi_power_on;
uint32_t system_state = scpi_power_on;
/* Check if power down at system power domain level is requested */
if (CSS_SYSTEM_PWR_STATE(target_state) == ARM_LOCAL_STATE_OFF)
system_state = scpi_power_retention;
/* Cluster is to be turned off, so disable coherency */
if (CSS_CLUSTER_PWR_STATE(target_state) == ARM_LOCAL_STATE_OFF)
cluster_state = scpi_power_off;
/*
* Ask the SCP to power down the appropriate components depending upon
* their state.
*/
scpi_set_css_power_state(read_mpidr_el1(),
scpi_power_off,
cluster_state,
system_state);
}
/*
* Helper function to turn off a CPU power domain and its parent power domains
* if applicable. Since SCPI doesn't differentiate between OFF and suspend, we
* call the suspend helper here.
*/
void css_scp_off(const psci_power_state_t *target_state)
{
css_scp_suspend(target_state);
}
/*
* Helper function to turn ON a CPU power domain and its parent power domains
* if applicable.
*/
void css_scp_on(u_register_t mpidr)
{
/*
* SCP takes care of powering up parent power domains so we
* only need to care about level 0
*/
scpi_set_css_power_state(mpidr, scpi_power_on, scpi_power_on,
scpi_power_on);
}
/*
* Helper function to get the power state of a power domain node as reported
* by the SCP.
*/
int css_scp_get_power_state(u_register_t mpidr, unsigned int power_level)
{
int rc, element;
unsigned int cpu_state, cluster_state;
/*
* The format of 'power_level' is implementation-defined, but 0 must
* mean a CPU. We also allow 1 to denote the cluster
*/
if (power_level != ARM_PWR_LVL0 && power_level != ARM_PWR_LVL1)
return PSCI_E_INVALID_PARAMS;
/* Query SCP */
rc = scpi_get_css_power_state(mpidr, &cpu_state, &cluster_state);
if (rc != 0)
return PSCI_E_INVALID_PARAMS;
/* Map power states of CPU and cluster to expected PSCI return codes */
if (power_level == ARM_PWR_LVL0) {
/*
* The CPU state returned by SCP is an 8-bit bit mask
* corresponding to each CPU in the cluster
*/
element = mpidr & MPIDR_AFFLVL_MASK;
return CSS_CPU_PWR_STATE(cpu_state, element) ==
CSS_CPU_PWR_STATE_ON ? HW_ON : HW_OFF;
} else {
assert(cluster_state == CSS_CLUSTER_PWR_STATE_ON ||
cluster_state == CSS_CLUSTER_PWR_STATE_OFF);
return cluster_state == CSS_CLUSTER_PWR_STATE_ON ? HW_ON :
HW_OFF;
}
}
/*
* Helper function to shutdown the system via SCPI.
*/
void __dead2 css_scp_sys_shutdown(void)
{
uint32_t response;
/* Send the power down request to the SCP */
response = scpi_sys_power_state(scpi_system_shutdown);
if (response != SCP_OK) {
ERROR("CSS System Off: SCP error %u.\n", response);
panic();
}
wfi();
ERROR("CSS System Off: operation not handled.\n");
panic();
}
/*
* Helper function to reset the system via SCPI.
*/
void __dead2 css_scp_sys_reboot(void)
{
uint32_t response;
/* Send the system reset request to the SCP */
response = scpi_sys_power_state(scpi_system_reboot);
if (response != SCP_OK) {
ERROR("CSS System Reset: SCP error %u.\n", response);
panic();
}
wfi();
ERROR("CSS System Reset: operation not handled.\n");
panic();
}