mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-08 13:53:54 +00:00

Statically allocate 'gpt_bitlock' array of fine-grained 'bitlock_t' data structures in arm_bl31_setup.c. The amount of memory needed for this array is controlled by 'RME_GPT_BITLOCK_BLOCK' build option and 'PLAT_ARM_PPS' macro defined in platform_def.h which specifies the size of protected physical address space in bytes. 'PLAT_ARM_PPS' takes values from 4GB to 4PB supported by Arm architecture. Change-Id: Icf620b5039e45df6828d58fca089cad83b0bc669 Signed-off-by: AlexeiFedorov <Alexei.Fedorov@arm.com>
588 lines
17 KiB
C
588 lines
17 KiB
C
/*
|
|
* Copyright (c) 2015-2025, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
|
|
#include <arch.h>
|
|
#include <arch_features.h>
|
|
#include <arch_helpers.h>
|
|
#include <common/bl_common.h>
|
|
#include <common/debug.h>
|
|
#include <drivers/console.h>
|
|
#include <lib/debugfs.h>
|
|
#include <lib/extensions/ras.h>
|
|
#include <lib/fconf/fconf.h>
|
|
#include <lib/gpt_rme/gpt_rme.h>
|
|
#include <lib/mmio.h>
|
|
#if TRANSFER_LIST
|
|
#include <lib/transfer_list.h>
|
|
#endif
|
|
#include <lib/xlat_tables/xlat_tables_compat.h>
|
|
#include <plat/arm/common/plat_arm.h>
|
|
#include <plat/common/platform.h>
|
|
#include <platform_def.h>
|
|
|
|
struct transfer_list_header *secure_tl;
|
|
struct transfer_list_header *ns_tl __unused;
|
|
|
|
/*
|
|
* Placeholder variables for copying the arguments that have been passed to
|
|
* BL31 from BL2.
|
|
*/
|
|
static entry_point_info_t bl32_image_ep_info;
|
|
static entry_point_info_t bl33_image_ep_info;
|
|
|
|
#if ENABLE_RME
|
|
static entry_point_info_t rmm_image_ep_info;
|
|
#if (RME_GPT_BITLOCK_BLOCK == 0)
|
|
#define BITLOCK_BASE UL(0)
|
|
#define BITLOCK_SIZE UL(0)
|
|
#else
|
|
/*
|
|
* Number of bitlock_t entries in bitlocks array for PLAT_ARM_PPS
|
|
* with RME_GPT_BITLOCK_BLOCK * 512MB per bitlock.
|
|
*/
|
|
#if (PLAT_ARM_PPS > (RME_GPT_BITLOCK_BLOCK * SZ_512M * UL(8)))
|
|
#define BITLOCKS_NUM (PLAT_ARM_PPS) / \
|
|
(RME_GPT_BITLOCK_BLOCK * SZ_512M * UL(8))
|
|
#else
|
|
#define BITLOCKS_NUM U(1)
|
|
#endif
|
|
/*
|
|
* Bitlocks array
|
|
*/
|
|
static bitlock_t gpt_bitlock[BITLOCKS_NUM];
|
|
#define BITLOCK_BASE (uintptr_t)gpt_bitlock
|
|
#define BITLOCK_SIZE sizeof(gpt_bitlock)
|
|
#endif /* RME_GPT_BITLOCK_BLOCK */
|
|
#endif /* ENABLE_RME */
|
|
|
|
#if !RESET_TO_BL31
|
|
/*
|
|
* Check that BL31_BASE is above ARM_FW_CONFIG_LIMIT. The reserved page
|
|
* is required for SOC_FW_CONFIG/TOS_FW_CONFIG passed from BL2.
|
|
*/
|
|
#if TRANSFER_LIST
|
|
CASSERT(BL31_BASE >= PLAT_ARM_EL3_FW_HANDOFF_LIMIT, assert_bl31_base_overflows);
|
|
#else
|
|
CASSERT(BL31_BASE >= ARM_FW_CONFIG_LIMIT, assert_bl31_base_overflows);
|
|
#endif /* TRANSFER_LIST */
|
|
#endif /* RESET_TO_BL31 */
|
|
|
|
/* Weak definitions may be overridden in specific ARM standard platform */
|
|
#pragma weak bl31_early_platform_setup2
|
|
#pragma weak bl31_platform_setup
|
|
#pragma weak bl31_plat_arch_setup
|
|
#pragma weak bl31_plat_get_next_image_ep_info
|
|
#pragma weak bl31_plat_runtime_setup
|
|
|
|
#define MAP_BL31_TOTAL MAP_REGION_FLAT( \
|
|
BL31_START, \
|
|
BL31_END - BL31_START, \
|
|
MT_MEMORY | MT_RW | EL3_PAS)
|
|
#if RECLAIM_INIT_CODE
|
|
IMPORT_SYM(unsigned long, __INIT_CODE_START__, BL_INIT_CODE_BASE);
|
|
IMPORT_SYM(unsigned long, __INIT_CODE_END__, BL_CODE_END_UNALIGNED);
|
|
IMPORT_SYM(unsigned long, __STACKS_END__, BL_STACKS_END_UNALIGNED);
|
|
|
|
#define BL_INIT_CODE_END ((BL_CODE_END_UNALIGNED + PAGE_SIZE - 1) & \
|
|
~(PAGE_SIZE - 1))
|
|
#define BL_STACKS_END ((BL_STACKS_END_UNALIGNED + PAGE_SIZE - 1) & \
|
|
~(PAGE_SIZE - 1))
|
|
|
|
#define MAP_BL_INIT_CODE MAP_REGION_FLAT( \
|
|
BL_INIT_CODE_BASE, \
|
|
BL_INIT_CODE_END \
|
|
- BL_INIT_CODE_BASE, \
|
|
MT_CODE | EL3_PAS)
|
|
#endif
|
|
|
|
#if SEPARATE_NOBITS_REGION
|
|
#define MAP_BL31_NOBITS MAP_REGION_FLAT( \
|
|
BL31_NOBITS_BASE, \
|
|
BL31_NOBITS_LIMIT \
|
|
- BL31_NOBITS_BASE, \
|
|
MT_MEMORY | MT_RW | EL3_PAS)
|
|
|
|
#endif
|
|
/*******************************************************************************
|
|
* Return a pointer to the 'entry_point_info' structure of the next image for the
|
|
* security state specified. BL33 corresponds to the non-secure image type
|
|
* while BL32 corresponds to the secure image type. A NULL pointer is returned
|
|
* if the image does not exist.
|
|
******************************************************************************/
|
|
struct entry_point_info *bl31_plat_get_next_image_ep_info(uint32_t type)
|
|
{
|
|
entry_point_info_t *next_image_info;
|
|
|
|
assert(sec_state_is_valid(type));
|
|
if (type == NON_SECURE) {
|
|
#if TRANSFER_LIST && !RESET_TO_BL31
|
|
next_image_info = transfer_list_set_handoff_args(
|
|
ns_tl, &bl33_image_ep_info);
|
|
#else
|
|
next_image_info = &bl33_image_ep_info;
|
|
#endif
|
|
}
|
|
#if ENABLE_RME
|
|
else if (type == REALM) {
|
|
next_image_info = &rmm_image_ep_info;
|
|
}
|
|
#endif
|
|
else {
|
|
next_image_info = &bl32_image_ep_info;
|
|
}
|
|
|
|
/*
|
|
* None of the images on the ARM development platforms can have 0x0
|
|
* as the entrypoint
|
|
*/
|
|
if (next_image_info->pc)
|
|
return next_image_info;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 early platform setup common to ARM standard platforms.
|
|
* Here is an opportunity to copy parameters passed by the calling EL (S-EL1
|
|
* in BL2 & EL3 in BL1) before they are lost (potentially). This needs to be
|
|
* done before the MMU is initialized so that the memory layout can be used
|
|
* while creating page tables. BL2 has flushed this information to memory, so
|
|
* we are guaranteed to pick up good data.
|
|
******************************************************************************/
|
|
#if TRANSFER_LIST
|
|
void __init arm_bl31_early_platform_setup(u_register_t arg0, u_register_t arg1,
|
|
u_register_t arg2, u_register_t arg3)
|
|
{
|
|
#if RESET_TO_BL31
|
|
/* Populate entry point information for BL33 */
|
|
SET_PARAM_HEAD(&bl33_image_ep_info, PARAM_EP, VERSION_1, 0);
|
|
/*
|
|
* Tell BL31 where the non-trusted software image
|
|
* is located and the entry state information
|
|
*/
|
|
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
|
|
|
|
bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
|
|
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
|
|
|
|
bl33_image_ep_info.args.arg0 = PLAT_ARM_TRANSFER_LIST_DTB_OFFSET;
|
|
bl33_image_ep_info.args.arg1 =
|
|
TRANSFER_LIST_HANDOFF_X1_VALUE(REGISTER_CONVENTION_VERSION);
|
|
bl33_image_ep_info.args.arg3 = FW_NS_HANDOFF_BASE;
|
|
#else
|
|
struct transfer_list_entry *te = NULL;
|
|
struct entry_point_info *ep;
|
|
|
|
secure_tl = (struct transfer_list_header *)arg3;
|
|
|
|
/*
|
|
* Populate the global entry point structures used to execute subsequent
|
|
* images.
|
|
*/
|
|
while ((te = transfer_list_next(secure_tl, te)) != NULL) {
|
|
ep = transfer_list_entry_data(te);
|
|
|
|
if (te->tag_id == TL_TAG_EXEC_EP_INFO64) {
|
|
switch (GET_SECURITY_STATE(ep->h.attr)) {
|
|
case NON_SECURE:
|
|
bl33_image_ep_info = *ep;
|
|
break;
|
|
#if ENABLE_RME
|
|
case REALM:
|
|
rmm_image_ep_info = *ep;
|
|
break;
|
|
#endif
|
|
case SECURE:
|
|
bl32_image_ep_info = *ep;
|
|
break;
|
|
default:
|
|
ERROR("Unrecognized Image Security State %lu\n",
|
|
GET_SECURITY_STATE(ep->h.attr));
|
|
panic();
|
|
}
|
|
}
|
|
}
|
|
#endif /* RESET_TO_BL31 */
|
|
}
|
|
#else
|
|
void __init arm_bl31_early_platform_setup(void *from_bl2, uintptr_t soc_fw_config,
|
|
uintptr_t hw_config, void *plat_params_from_bl2)
|
|
{
|
|
/* Initialize the console to provide early debug support */
|
|
arm_console_boot_init();
|
|
|
|
#if RESET_TO_BL31
|
|
/* There are no parameters from BL2 if BL31 is a reset vector */
|
|
assert(from_bl2 == NULL);
|
|
assert(plat_params_from_bl2 == NULL);
|
|
|
|
# ifdef BL32_BASE
|
|
/* Populate entry point information for BL32 */
|
|
SET_PARAM_HEAD(&bl32_image_ep_info,
|
|
PARAM_EP,
|
|
VERSION_1,
|
|
0);
|
|
SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
|
|
bl32_image_ep_info.pc = BL32_BASE;
|
|
bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();
|
|
|
|
#if defined(SPD_spmd)
|
|
bl32_image_ep_info.args.arg0 = ARM_SPMC_MANIFEST_BASE;
|
|
#endif
|
|
|
|
# endif /* BL32_BASE */
|
|
|
|
/* Populate entry point information for BL33 */
|
|
SET_PARAM_HEAD(&bl33_image_ep_info,
|
|
PARAM_EP,
|
|
VERSION_1,
|
|
0);
|
|
/*
|
|
* Tell BL31 where the non-trusted software image
|
|
* is located and the entry state information
|
|
*/
|
|
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
|
|
|
|
bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
|
|
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
|
|
|
|
#if ENABLE_RME
|
|
/*
|
|
* Populate entry point information for RMM.
|
|
* Only PC needs to be set as other fields are determined by RMMD.
|
|
*/
|
|
rmm_image_ep_info.pc = RMM_BASE;
|
|
#endif /* ENABLE_RME */
|
|
|
|
#else /* RESET_TO_BL31 */
|
|
|
|
/*
|
|
* In debug builds, we pass a special value in 'plat_params_from_bl2'
|
|
* to verify platform parameters from BL2 to BL31.
|
|
* In release builds, it's not used.
|
|
*/
|
|
assert(((unsigned long long)plat_params_from_bl2) ==
|
|
ARM_BL31_PLAT_PARAM_VAL);
|
|
|
|
/*
|
|
* Check params passed from BL2 should not be NULL,
|
|
*/
|
|
bl_params_t *params_from_bl2 = (bl_params_t *)from_bl2;
|
|
assert(params_from_bl2 != NULL);
|
|
assert(params_from_bl2->h.type == PARAM_BL_PARAMS);
|
|
assert(params_from_bl2->h.version >= VERSION_2);
|
|
|
|
bl_params_node_t *bl_params = params_from_bl2->head;
|
|
|
|
/*
|
|
* Copy BL33, BL32 and RMM (if present), entry point information.
|
|
* They are stored in Secure RAM, in BL2's address space.
|
|
*/
|
|
while (bl_params != NULL) {
|
|
if (bl_params->image_id == BL32_IMAGE_ID) {
|
|
bl32_image_ep_info = *bl_params->ep_info;
|
|
#if SPMC_AT_EL3
|
|
/*
|
|
* Populate the BL32 image base, size and max limit in
|
|
* the entry point information, since there is no
|
|
* platform function to retrieve them in generic
|
|
* code. We choose arg2, arg3 and arg4 since the generic
|
|
* code uses arg1 for stashing the SP manifest size. The
|
|
* SPMC setup uses these arguments to update SP manifest
|
|
* with actual SP's base address and it size.
|
|
*/
|
|
bl32_image_ep_info.args.arg2 =
|
|
bl_params->image_info->image_base;
|
|
bl32_image_ep_info.args.arg3 =
|
|
bl_params->image_info->image_size;
|
|
bl32_image_ep_info.args.arg4 =
|
|
bl_params->image_info->image_base +
|
|
bl_params->image_info->image_max_size;
|
|
#endif
|
|
}
|
|
#if ENABLE_RME
|
|
else if (bl_params->image_id == RMM_IMAGE_ID) {
|
|
rmm_image_ep_info = *bl_params->ep_info;
|
|
}
|
|
#endif
|
|
else if (bl_params->image_id == BL33_IMAGE_ID) {
|
|
bl33_image_ep_info = *bl_params->ep_info;
|
|
}
|
|
|
|
bl_params = bl_params->next_params_info;
|
|
}
|
|
|
|
if (bl33_image_ep_info.pc == 0U)
|
|
panic();
|
|
#if ENABLE_RME
|
|
if (rmm_image_ep_info.pc == 0U)
|
|
panic();
|
|
#endif
|
|
#endif /* RESET_TO_BL31 */
|
|
|
|
# if ARM_LINUX_KERNEL_AS_BL33
|
|
/*
|
|
* According to the file ``Documentation/arm64/booting.txt`` of the
|
|
* Linux kernel tree, Linux expects the physical address of the device
|
|
* tree blob (DTB) in x0, while x1-x3 are reserved for future use and
|
|
* must be 0.
|
|
* Repurpose the option to load Hafnium hypervisor in the normal world.
|
|
* It expects its manifest address in x0. This is essentially the linux
|
|
* dts (passed to the primary VM) by adding 'hypervisor' and chosen
|
|
* nodes specifying the Hypervisor configuration.
|
|
*/
|
|
#if RESET_TO_BL31
|
|
bl33_image_ep_info.args.arg0 = (u_register_t)ARM_PRELOADED_DTB_BASE;
|
|
#else
|
|
bl33_image_ep_info.args.arg0 = (u_register_t)hw_config;
|
|
#endif
|
|
bl33_image_ep_info.args.arg1 = 0U;
|
|
bl33_image_ep_info.args.arg2 = 0U;
|
|
bl33_image_ep_info.args.arg3 = 0U;
|
|
# endif
|
|
}
|
|
#endif
|
|
|
|
void bl31_early_platform_setup2(u_register_t arg0, u_register_t arg1,
|
|
u_register_t arg2, u_register_t arg3)
|
|
{
|
|
#if TRANSFER_LIST
|
|
arm_bl31_early_platform_setup(arg0, arg1, arg2, arg3);
|
|
#else
|
|
arm_bl31_early_platform_setup((void *)arg0, arg1, arg2, (void *)arg3);
|
|
#endif
|
|
|
|
/*
|
|
* Initialize Interconnect for this cluster during cold boot.
|
|
* No need for locks as no other CPU is active.
|
|
*/
|
|
plat_arm_interconnect_init();
|
|
|
|
/*
|
|
* Enable Interconnect coherency for the primary CPU's cluster.
|
|
* Earlier bootloader stages might already do this (e.g. Trusted
|
|
* Firmware's BL1 does it) but we can't assume so. There is no harm in
|
|
* executing this code twice anyway.
|
|
* Platform specific PSCI code will enable coherency for other
|
|
* clusters.
|
|
*/
|
|
plat_arm_interconnect_enter_coherency();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 platform setup common to ARM standard platforms
|
|
******************************************************************************/
|
|
void arm_bl31_platform_setup(void)
|
|
{
|
|
struct transfer_list_entry *te __unused;
|
|
|
|
#if TRANSFER_LIST && !RESET_TO_BL31
|
|
ns_tl = transfer_list_ensure((void *)FW_NS_HANDOFF_BASE,
|
|
PLAT_ARM_FW_HANDOFF_SIZE);
|
|
if (ns_tl == NULL) {
|
|
ERROR("Non-secure transfer list initialisation failed!\n");
|
|
panic();
|
|
}
|
|
/* BL31 may modify the HW_CONFIG so defer copying it until later. */
|
|
te = transfer_list_find(secure_tl, TL_TAG_FDT);
|
|
assert(te != NULL);
|
|
|
|
/*
|
|
* A pre-existing assumption is that FCONF is unsupported w/ RESET_TO_BL2 and
|
|
* RESET_TO_BL31. In the case of RESET_TO_BL31 this makes sense because there
|
|
* isn't a prior stage to load the device tree, but the reasoning for RESET_TO_BL2 is
|
|
* less clear. For the moment hardware properties that would normally be
|
|
* derived from the DT are statically defined.
|
|
*/
|
|
#if !RESET_TO_BL2
|
|
fconf_populate("HW_CONFIG", (uintptr_t)transfer_list_entry_data(te));
|
|
#endif
|
|
|
|
te = transfer_list_add(ns_tl, TL_TAG_FDT, te->data_size,
|
|
transfer_list_entry_data(te));
|
|
assert(te != NULL);
|
|
#endif /* TRANSFER_LIST && !RESET_TO_BL31 */
|
|
|
|
/* Initialize the GIC driver, cpu and distributor interfaces */
|
|
plat_arm_gic_driver_init();
|
|
plat_arm_gic_init();
|
|
|
|
#if RESET_TO_BL31
|
|
/*
|
|
* Do initial security configuration to allow DRAM/device access
|
|
* (if earlier BL has not already done so).
|
|
*/
|
|
plat_arm_security_setup();
|
|
|
|
#if defined(PLAT_ARM_MEM_PROT_ADDR)
|
|
arm_nor_psci_do_dyn_mem_protect();
|
|
#endif /* PLAT_ARM_MEM_PROT_ADDR */
|
|
|
|
#endif /* RESET_TO_BL31 */
|
|
|
|
/* Enable and initialize the System level generic timer */
|
|
mmio_write_32(ARM_SYS_CNTCTL_BASE + CNTCR_OFF,
|
|
CNTCR_FCREQ(0U) | CNTCR_EN);
|
|
|
|
/* Allow access to the System counter timer module */
|
|
arm_configure_sys_timer();
|
|
|
|
/* Initialize power controller before setting up topology */
|
|
plat_arm_pwrc_setup();
|
|
|
|
#if ENABLE_FEAT_RAS && FFH_SUPPORT
|
|
ras_init();
|
|
#endif
|
|
|
|
#if USE_DEBUGFS
|
|
debugfs_init();
|
|
#endif /* USE_DEBUGFS */
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 platform runtime setup prior to BL31 exit common to ARM
|
|
* standard platforms
|
|
******************************************************************************/
|
|
void arm_bl31_plat_runtime_setup(void)
|
|
{
|
|
struct transfer_list_entry *te __unused;
|
|
/* Initialize the runtime console */
|
|
arm_console_runtime_init();
|
|
|
|
#if TRANSFER_LIST && !RESET_TO_BL31
|
|
/*
|
|
* We assume BL31 has added all TE's required by BL33 at this stage, ensure
|
|
* that data is visible to all observers by performing a flush operation, so
|
|
* they can access the updated data even if caching is not enabled.
|
|
*/
|
|
flush_dcache_range((uintptr_t)ns_tl, ns_tl->size);
|
|
#endif /* TRANSFER_LIST && !RESET_TO_BL31 */
|
|
|
|
#if RECLAIM_INIT_CODE
|
|
arm_free_init_memory();
|
|
#endif
|
|
|
|
#if PLAT_RO_XLAT_TABLES
|
|
arm_xlat_make_tables_readonly();
|
|
#endif
|
|
}
|
|
|
|
#if RECLAIM_INIT_CODE
|
|
/*
|
|
* Make memory for image boot time code RW to reclaim it as stack for the
|
|
* secondary cores, or RO where it cannot be reclaimed:
|
|
*
|
|
* |-------- INIT SECTION --------|
|
|
* -----------------------------------------
|
|
* | CORE 0 | CORE 1 | CORE 2 | EXTRA |
|
|
* | STACK | STACK | STACK | SPACE |
|
|
* -----------------------------------------
|
|
* <-------------------> <------>
|
|
* MAKE RW AND XN MAKE
|
|
* FOR STACKS RO AND XN
|
|
*/
|
|
void arm_free_init_memory(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (BL_STACKS_END < BL_INIT_CODE_END) {
|
|
/* Reclaim some of the init section as stack if possible. */
|
|
if (BL_INIT_CODE_BASE < BL_STACKS_END) {
|
|
ret |= xlat_change_mem_attributes(BL_INIT_CODE_BASE,
|
|
BL_STACKS_END - BL_INIT_CODE_BASE,
|
|
MT_RW_DATA);
|
|
}
|
|
/* Make the rest of the init section read-only. */
|
|
ret |= xlat_change_mem_attributes(BL_STACKS_END,
|
|
BL_INIT_CODE_END - BL_STACKS_END,
|
|
MT_RO_DATA);
|
|
} else {
|
|
/* The stacks cover the init section, so reclaim it all. */
|
|
ret |= xlat_change_mem_attributes(BL_INIT_CODE_BASE,
|
|
BL_INIT_CODE_END - BL_INIT_CODE_BASE,
|
|
MT_RW_DATA);
|
|
}
|
|
|
|
if (ret != 0) {
|
|
ERROR("Could not reclaim initialization code");
|
|
panic();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void __init bl31_platform_setup(void)
|
|
{
|
|
arm_bl31_platform_setup();
|
|
}
|
|
|
|
void bl31_plat_runtime_setup(void)
|
|
{
|
|
arm_bl31_plat_runtime_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform the very early platform specific architectural setup shared between
|
|
* ARM standard platforms. This only does basic initialization. Later
|
|
* architectural setup (bl31_arch_setup()) does not do anything platform
|
|
* specific.
|
|
******************************************************************************/
|
|
void __init arm_bl31_plat_arch_setup(void)
|
|
{
|
|
const mmap_region_t bl_regions[] = {
|
|
MAP_BL31_TOTAL,
|
|
#if ENABLE_RME
|
|
ARM_MAP_L0_GPT_REGION,
|
|
#endif
|
|
#if RECLAIM_INIT_CODE
|
|
MAP_BL_INIT_CODE,
|
|
#endif
|
|
#if SEPARATE_NOBITS_REGION
|
|
MAP_BL31_NOBITS,
|
|
#endif
|
|
ARM_MAP_BL_RO,
|
|
#if USE_ROMLIB
|
|
ARM_MAP_ROMLIB_CODE,
|
|
ARM_MAP_ROMLIB_DATA,
|
|
#endif
|
|
#if USE_COHERENT_MEM
|
|
ARM_MAP_BL_COHERENT_RAM,
|
|
#endif
|
|
{0}
|
|
};
|
|
|
|
setup_page_tables(bl_regions, plat_arm_get_mmap());
|
|
|
|
enable_mmu_el3(0);
|
|
|
|
#if ENABLE_RME
|
|
#if RESET_TO_BL31
|
|
/* initialize GPT only when RME is enabled. */
|
|
assert(is_feat_rme_present());
|
|
|
|
/* Initialise and enable granule protection after MMU. */
|
|
arm_gpt_setup();
|
|
#endif /* RESET_TO_BL31 */
|
|
/*
|
|
* Initialise Granule Protection library and enable GPC for the primary
|
|
* processor. The tables have already been initialized by a previous BL
|
|
* stage, so there is no need to provide any PAS here. This function
|
|
* sets up pointers to those tables.
|
|
*/
|
|
if (gpt_runtime_init(BITLOCK_BASE, BITLOCK_SIZE) < 0) {
|
|
ERROR("gpt_runtime_init() failed!\n");
|
|
panic();
|
|
}
|
|
#endif /* ENABLE_RME */
|
|
|
|
arm_setup_romlib();
|
|
}
|
|
|
|
void __init bl31_plat_arch_setup(void)
|
|
{
|
|
arm_bl31_plat_arch_setup();
|
|
}
|