mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-18 02:24:18 +00:00

- Add instructions for contributing to ARM Trusted Firmware. - Update copyright text in all files to acknowledge contributors. Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
426 lines
16 KiB
C
426 lines
16 KiB
C
/*
|
|
* Copyright (c) 2013, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <arch_helpers.h>
|
|
#include <platform.h>
|
|
#include <bl31.h>
|
|
#include <bl_common.h>
|
|
#include <pl011.h>
|
|
#include <bakery_lock.h>
|
|
#include <cci400.h>
|
|
#include <gic.h>
|
|
#include <fvp_pwrc.h>
|
|
|
|
/*******************************************************************************
|
|
* Declarations of linker defined symbols which will help us find the layout
|
|
* of trusted SRAM
|
|
******************************************************************************/
|
|
extern unsigned long __RO_START__;
|
|
extern unsigned long __RO_END__;
|
|
|
|
extern unsigned long __COHERENT_RAM_START__;
|
|
extern unsigned long __COHERENT_RAM_END__;
|
|
|
|
/*
|
|
* The next 2 constants identify the extents of the code & RO data region.
|
|
* These addresses are used by the MMU setup code and therefore they must be
|
|
* page-aligned. It is the responsibility of the linker script to ensure that
|
|
* __RO_START__ and __RO_END__ linker symbols refer to page-aligned addresses.
|
|
*/
|
|
#define BL31_RO_BASE (unsigned long)(&__RO_START__)
|
|
#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
|
|
|
|
/*
|
|
* The next 2 constants identify the extents of the coherent memory region.
|
|
* These addresses are used by the MMU setup code and therefore they must be
|
|
* page-aligned. It is the responsibility of the linker script to ensure that
|
|
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
|
|
* refer to page-aligned addresses.
|
|
*/
|
|
#define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
|
|
#define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
|
|
|
|
/*******************************************************************************
|
|
* This data structures holds information copied by BL31 from BL2 to pass
|
|
* control to the non-trusted software images. A per-cpu entry was created to
|
|
* use the same structure in the warm boot path but that's not the case right
|
|
* now. Persisting with this approach for the time being. TODO: Can this be
|
|
* moved out of device memory.
|
|
******************************************************************************/
|
|
el_change_info ns_entry_info[PLATFORM_CORE_COUNT]
|
|
__attribute__ ((aligned(PLATFORM_CACHE_LINE_SIZE),
|
|
section("tzfw_coherent_mem")));
|
|
|
|
/* Data structure which holds the extents of the trusted SRAM for BL31 */
|
|
static meminfo bl31_tzram_layout
|
|
__attribute__ ((aligned(PLATFORM_CACHE_LINE_SIZE),
|
|
section("tzfw_coherent_mem")));
|
|
|
|
meminfo bl31_get_sec_mem_layout(void)
|
|
{
|
|
return bl31_tzram_layout;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Return information about passing control to the non-trusted software images
|
|
* to common code.TODO: In the initial architecture, the image after BL31 will
|
|
* always run in the non-secure state. In the final architecture there
|
|
* will be a series of images. This function will need enhancement then
|
|
******************************************************************************/
|
|
el_change_info *bl31_get_next_image_info(unsigned long mpidr)
|
|
{
|
|
return &ns_entry_info[platform_get_core_pos(mpidr)];
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform any BL31 specific platform actions. Here we copy parameters passed
|
|
* by the calling EL (S-EL1 in BL2 & S-EL3 in BL1) before they are lost
|
|
* (potentially). This is done before the MMU is initialized so that the memory
|
|
* layout can be used while creating page tables.
|
|
******************************************************************************/
|
|
void bl31_early_platform_setup(meminfo *mem_layout,
|
|
void *data,
|
|
unsigned long mpidr)
|
|
{
|
|
el_change_info *image_info = (el_change_info *) data;
|
|
unsigned int lin_index = platform_get_core_pos(mpidr);
|
|
|
|
/* Setup the BL31 memory layout */
|
|
bl31_tzram_layout.total_base = mem_layout->total_base;
|
|
bl31_tzram_layout.total_size = mem_layout->total_size;
|
|
bl31_tzram_layout.free_base = mem_layout->free_base;
|
|
bl31_tzram_layout.free_size = mem_layout->free_size;
|
|
bl31_tzram_layout.attr = mem_layout->attr;
|
|
bl31_tzram_layout.next = 0;
|
|
|
|
/* Save information about jumping into the NS world */
|
|
ns_entry_info[lin_index].entrypoint = image_info->entrypoint;
|
|
ns_entry_info[lin_index].spsr = image_info->spsr;
|
|
ns_entry_info[lin_index].args = image_info->args;
|
|
ns_entry_info[lin_index].security_state = image_info->security_state;
|
|
ns_entry_info[lin_index].next = image_info->next;
|
|
|
|
/* Initialize the platform config for future decision making */
|
|
platform_config_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Initialize the gic, configure the CLCD and zero out variables needed by the
|
|
* secondaries to boot up correctly.
|
|
******************************************************************************/
|
|
void bl31_platform_setup()
|
|
{
|
|
unsigned int reg_val;
|
|
|
|
/* Initialize the gic cpu and distributor interfaces */
|
|
gic_setup();
|
|
|
|
/*
|
|
* TODO: Configure the CLCD before handing control to
|
|
* linux. Need to see if a separate driver is needed
|
|
* instead.
|
|
*/
|
|
mmio_write_32(VE_SYSREGS_BASE + V2M_SYS_CFGDATA, 0);
|
|
mmio_write_32(VE_SYSREGS_BASE + V2M_SYS_CFGCTRL,
|
|
(1ull << 31) | (1 << 30) | (7 << 20) | (0 << 16));
|
|
|
|
/* Allow access to the System counter timer module */
|
|
reg_val = (1 << CNTACR_RPCT_SHIFT) | (1 << CNTACR_RVCT_SHIFT);
|
|
reg_val |= (1 << CNTACR_RFRQ_SHIFT) | (1 << CNTACR_RVOFF_SHIFT);
|
|
reg_val |= (1 << CNTACR_RWVT_SHIFT) | (1 << CNTACR_RWPT_SHIFT);
|
|
mmio_write_32(SYS_TIMCTL_BASE + CNTACR_BASE(0), reg_val);
|
|
mmio_write_32(SYS_TIMCTL_BASE + CNTACR_BASE(1), reg_val);
|
|
|
|
reg_val = (1 << CNTNSAR_NS_SHIFT(0)) | (1 << CNTNSAR_NS_SHIFT(1));
|
|
mmio_write_32(SYS_TIMCTL_BASE + CNTNSAR, reg_val);
|
|
|
|
/* Intialize the power controller */
|
|
fvp_pwrc_setup();
|
|
|
|
/* Topologies are best known to the platform. */
|
|
plat_setup_topology();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Perform the very early platform specific architectural setup here. At the
|
|
* moment this is only intializes the mmu in a quick and dirty way.
|
|
******************************************************************************/
|
|
void bl31_plat_arch_setup()
|
|
{
|
|
configure_mmu(&bl31_tzram_layout,
|
|
BL31_RO_BASE,
|
|
BL31_RO_LIMIT,
|
|
BL31_COHERENT_RAM_BASE,
|
|
BL31_COHERENT_RAM_LIMIT);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* TODO: Move GIC setup to a separate file in case it is needed by other BL
|
|
* stages or ELs
|
|
* TODO: Revisit if priorities are being set such that no non-secure interrupt
|
|
* can have a higher priority than a secure one as recommended in the GICv2 spec
|
|
*******************************************************************************/
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration. The Firmware itself does
|
|
* not fully support GICv3 at this time and relies on GICv2 emulation as
|
|
* provided by GICv3. This function allows software (like Linux) in later stages
|
|
* to use full GICv3 features.
|
|
*******************************************************************************/
|
|
void gicv3_cpuif_setup(void)
|
|
{
|
|
unsigned int scr_val, val, base;
|
|
|
|
/*
|
|
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
|
|
* bit set. In order to allow interrupts to get routed to the CPU we
|
|
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
|
|
* to clear (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*
|
|
* TODO:
|
|
* For GICv4 we also need to adjust the Base address based on
|
|
* GICR_TYPER.VLPIS
|
|
*/
|
|
base = BASE_GICR_BASE +
|
|
(platform_get_core_pos(read_mpidr()) << GICR_PCPUBASE_SHIFT);
|
|
val = gicr_read_waker(base);
|
|
|
|
val &= ~WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to clear. */
|
|
val = gicr_read_waker(base);
|
|
while (val & WAKER_CA) {
|
|
val = gicr_read_waker(base);
|
|
}
|
|
|
|
/*
|
|
* We need to set SCR_EL3.NS in order to see GICv3 non-secure state.
|
|
* Restore SCR_EL3.NS again before exit.
|
|
*/
|
|
scr_val = read_scr();
|
|
write_scr(scr_val | SCR_NS_BIT);
|
|
|
|
/*
|
|
* By default EL2 and NS-EL1 software should be able to enable GICv3
|
|
* System register access without any configuration at EL3. But it turns
|
|
* out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So
|
|
* we need to set it here again. In order to do that we need to enable
|
|
* register access. We leave it enabled as it should be fine and might
|
|
* prevent problems with later software trying to access GIC System
|
|
* Registers.
|
|
*/
|
|
val = read_icc_sre_el3();
|
|
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
|
|
val = read_icc_sre_el2();
|
|
write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
|
|
write_icc_pmr_el1(MAX_PRI_VAL);
|
|
|
|
/* Restore SCR_EL3 */
|
|
write_scr(scr_val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration when cores go
|
|
* down.
|
|
*******************************************************************************/
|
|
void gicv3_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val, base;
|
|
|
|
/*
|
|
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
|
|
* wait for GICR_WAKER.ChildrenAsleep to get set.
|
|
* (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*
|
|
* TODO:
|
|
* For GICv4 we also need to adjust the Base address based on
|
|
* GICR_TYPER.VLPIS
|
|
*/
|
|
base = BASE_GICR_BASE +
|
|
(platform_get_core_pos(read_mpidr()) << GICR_PCPUBASE_SHIFT);
|
|
val = gicr_read_waker(base);
|
|
val |= WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to set. */
|
|
val = gicr_read_waker(base);
|
|
while ((val & WAKER_CA) == 0) {
|
|
val = gicr_read_waker(base);
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
|
|
* and set the priority mask register to allow all interrupts to trickle in.
|
|
******************************************************************************/
|
|
void gic_cpuif_setup(unsigned int gicc_base)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = gicc_read_iidr(gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. We want to
|
|
* allow default GICv2 behaviour but allow the next stage to
|
|
* enable full gicv3 features.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
gicv3_cpuif_setup();
|
|
}
|
|
|
|
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
gicc_write_pmr(gicc_base, MAX_PRI_VAL);
|
|
gicc_write_ctlr(gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void gic_cpuif_deactivate(unsigned int gicc_base)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
val = gicc_read_ctlr(gicc_base);
|
|
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(gicc_base, val);
|
|
|
|
val = gicc_read_iidr(gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. Make sure the
|
|
* RDIST is put to sleep.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
gicv3_cpuif_deactivate();
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure interrupts & enables them.
|
|
******************************************************************************/
|
|
void gic_pcpu_distif_setup(unsigned int gicd_base)
|
|
{
|
|
gicd_write_igroupr(gicd_base, 0, ~0);
|
|
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_PHY_TIMER);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_0);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_1);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_2);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_3);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_4);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_5);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_6);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_7);
|
|
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_PHY_TIMER, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_0, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_1, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_2, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_3, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_4, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_5, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_6, MAX_PRI_VAL);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_7, MAX_PRI_VAL);
|
|
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_PHY_TIMER);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_0);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_1);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_2);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_3);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_4);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_5);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_6);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_7);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor setup which will be done by the primary cpu after a
|
|
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
|
|
* then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
void gic_distif_setup(unsigned int gicd_base)
|
|
{
|
|
unsigned int ctr, num_ints, ctlr;
|
|
|
|
/* Disable the distributor before going further */
|
|
ctlr = gicd_read_ctlr(gicd_base);
|
|
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
gicd_write_ctlr(gicd_base, ctlr);
|
|
|
|
/*
|
|
* Mark out non-secure interrupts. Calculate number of
|
|
* IGROUPR registers to consider. Will be equal to the
|
|
* number of IT_LINES
|
|
*/
|
|
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
|
|
num_ints++;
|
|
for (ctr = 0; ctr < num_ints; ctr++)
|
|
gicd_write_igroupr(gicd_base, ctr << IGROUPR_SHIFT, ~0);
|
|
|
|
/* Configure secure interrupts now */
|
|
gicd_clr_igroupr(gicd_base, IRQ_TZ_WDOG);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_TZ_WDOG, MAX_PRI_VAL);
|
|
gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
|
|
platform_get_core_pos(read_mpidr()));
|
|
gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);
|
|
gic_pcpu_distif_setup(gicd_base);
|
|
|
|
gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
|
|
}
|
|
|
|
void gic_setup(void)
|
|
{
|
|
unsigned int gicd_base, gicc_base;
|
|
|
|
gicd_base = platform_get_cfgvar(CONFIG_GICD_ADDR);
|
|
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
|
|
|
|
gic_cpuif_setup(gicc_base);
|
|
gic_distif_setup(gicd_base);
|
|
}
|