arm-trusted-firmware/common/psci/psci_common.c
Achin Gupta a59caa4cbd psci: replace secure context with suspend context
The secure context saved and restored across a cpu_suspend operation
can be more than just the state of the secure system registers e.g. we
also need to save the affinity level till which the cpu is being
powered down. This patch creates a suspend_context data structure
which includes the system register context. This will allow other bits
to be saved and restored as well in subsequent patches.

Change-Id: I1c1f7d25497388b54b7d6ee4fab77e8c6a9992c4
2014-01-20 18:45:04 +00:00

617 lines
21 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci.h>
#include <psci_private.h>
#include <runtime_svc.h>
/*******************************************************************************
* Arrays that contains information needs to resume a cpu's execution when woken
* out of suspend or off states. 'psci_ns_einfo_idx' keeps track of the next
* free index in the 'psci_ns_entry_info' & 'psci_suspend_context' arrays. Each
* cpu is allocated a single entry in each array during startup.
******************************************************************************/
suspend_context psci_suspend_context[PSCI_NUM_AFFS];
ns_entry_info psci_ns_entry_info[PSCI_NUM_AFFS];
unsigned int psci_ns_einfo_idx;
/*******************************************************************************
* Grand array that holds the platform's topology information for state
* management of affinity instances. Each node (aff_map_node) in the array
* corresponds to an affinity instance e.g. cluster, cpu within an mpidr
******************************************************************************/
aff_map_node psci_aff_map[PSCI_NUM_AFFS]
__attribute__ ((section("tzfw_coherent_mem")));
/*******************************************************************************
* In a system, a certain number of affinity instances are present at an
* affinity level. The cumulative number of instances across all levels are
* stored in 'psci_aff_map'. The topology tree has been flattenned into this
* array. To retrieve nodes, information about the extents of each affinity
* level i.e. start index and end index needs to be present. 'psci_aff_limits'
* stores this information.
******************************************************************************/
aff_limits_node psci_aff_limits[MPIDR_MAX_AFFLVL + 1];
/*******************************************************************************
* Pointer to functions exported by the platform to complete power mgmt. ops
******************************************************************************/
plat_pm_ops *psci_plat_pm_ops;
/*******************************************************************************
* Simple routine to retrieve the maximum affinity level supported by the
* platform and check that it makes sense.
******************************************************************************/
int get_max_afflvl()
{
int aff_lvl;
aff_lvl = plat_get_max_afflvl();
assert(aff_lvl <= MPIDR_MAX_AFFLVL && aff_lvl >= MPIDR_AFFLVL0);
return aff_lvl;
}
/*******************************************************************************
* Simple routine to set the id of an affinity instance at a given level in the
* mpidr.
******************************************************************************/
unsigned long mpidr_set_aff_inst(unsigned long mpidr,
unsigned char aff_inst,
int aff_lvl)
{
unsigned long aff_shift;
assert(aff_lvl <= MPIDR_AFFLVL3);
/*
* Decide the number of bits to shift by depending upon
* the affinity level
*/
aff_shift = get_afflvl_shift(aff_lvl);
/* Clear the existing affinity instance & set the new one*/
mpidr &= ~(MPIDR_AFFLVL_MASK << aff_shift);
mpidr |= aff_inst << aff_shift;
return mpidr;
}
/*******************************************************************************
* This function sanity checks a range of affinity levels.
******************************************************************************/
int psci_check_afflvl_range(int start_afflvl, int end_afflvl)
{
/* Sanity check the parameters passed */
if (end_afflvl > MPIDR_MAX_AFFLVL)
return PSCI_E_INVALID_PARAMS;
if (start_afflvl < MPIDR_AFFLVL0)
return PSCI_E_INVALID_PARAMS;
if (end_afflvl < start_afflvl)
return PSCI_E_INVALID_PARAMS;
return PSCI_E_SUCCESS;
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It picks up locks for each affinity level bottom
* up in the range specified.
******************************************************************************/
void psci_acquire_afflvl_locks(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
mpidr_aff_map_nodes mpidr_nodes)
{
int level;
for (level = start_afflvl; level <= end_afflvl; level++) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_get(mpidr, &mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* This function is passed an array of pointers to affinity level nodes in the
* topology tree for an mpidr. It releases the lock for each affinity level top
* down in the range specified.
******************************************************************************/
void psci_release_afflvl_locks(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
mpidr_aff_map_nodes mpidr_nodes)
{
int level;
for (level = end_afflvl; level >= start_afflvl; level--) {
if (mpidr_nodes[level] == NULL)
continue;
bakery_lock_release(mpidr, &mpidr_nodes[level]->lock);
}
}
/*******************************************************************************
* Simple routine to determine whether an affinity instance at a given level
* in an mpidr exists or not.
******************************************************************************/
int psci_validate_mpidr(unsigned long mpidr, int level)
{
aff_map_node *node;
node = psci_get_aff_map_node(mpidr, level);
if (node && (node->state & PSCI_AFF_PRESENT))
return PSCI_E_SUCCESS;
else
return PSCI_E_INVALID_PARAMS;
}
/*******************************************************************************
* Simple routine to determine the first affinity level instance that is present
* between the start and end affinity levels. This helps to skip handling of
* absent affinity levels while performing psci operations.
* The start level can be > or <= to the end level depending upon whether this
* routine is expected to search top down or bottom up.
******************************************************************************/
int psci_get_first_present_afflvl(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
aff_map_node **node)
{
int level;
/* Check whether we have to search up or down */
if (start_afflvl <= end_afflvl) {
for (level = start_afflvl; level <= end_afflvl; level++) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
} else {
for (level = start_afflvl; level >= end_afflvl; level--) {
*node = psci_get_aff_map_node(mpidr, level);
if (*node && ((*node)->state & PSCI_AFF_PRESENT))
break;
}
}
return level;
}
/*******************************************************************************
* Iteratively change the affinity state between the current and target affinity
* levels. The target state matters only if we are starting from affinity level
* 0 i.e. a cpu otherwise the state depends upon the state of the lower affinity
* levels.
******************************************************************************/
int psci_change_state(mpidr_aff_map_nodes mpidr_nodes,
int start_afflvl,
int end_afflvl,
unsigned int tgt_state)
{
int rc = PSCI_E_SUCCESS, level;
unsigned int state;
aff_map_node *node;
/*
* Get a temp pointer to the node. It is not possible that affinity
* level 0 is missing. Simply ignore higher missing levels.
*/
for (level = start_afflvl; level <= end_afflvl; level++) {
node = mpidr_nodes[level];
if (level == MPIDR_AFFLVL0) {
assert(node);
psci_set_state(node->state, tgt_state);
} else {
if (node == NULL)
continue;
state = psci_calculate_affinity_state(node);
psci_set_state(node->state, state);
}
}
/* If all went well then the cpu should be in the target state */
if (start_afflvl == MPIDR_AFFLVL0) {
node = mpidr_nodes[MPIDR_AFFLVL0];
state = psci_get_state(node->state);
assert(tgt_state == state);
}
return rc;
}
/*******************************************************************************
* This routine does the heavy lifting for psci_change_state(). It examines the
* state of each affinity instance at the next lower affinity level and decides
* its final state accordingly. If a lower affinity instance is ON then the
* higher affinity instance is ON. If all the lower affinity instances are OFF
* then the higher affinity instance is OFF. If atleast one lower affinity
* instance is SUSPENDED then the higher affinity instance is SUSPENDED. If only
* a single lower affinity instance is ON_PENDING then the higher affinity
* instance in ON_PENDING as well.
******************************************************************************/
unsigned int psci_calculate_affinity_state(aff_map_node *aff_node)
{
int ctr;
unsigned int aff_count, hi_aff_state;
unsigned long tempidr;
aff_map_node *lo_aff_node;
/* Cannot calculate lowest affinity state. It is simply assigned */
assert(aff_node->level > MPIDR_AFFLVL0);
/*
* Find the number of affinity instances at level X-1 e.g. number of
* cpus in a cluster. The level X state depends upon the state of each
* instance at level X-1
*/
hi_aff_state = PSCI_STATE_OFF;
aff_count = plat_get_aff_count(aff_node->level - 1, aff_node->mpidr);
for (ctr = 0; ctr < aff_count; ctr++) {
/*
* Create a mpidr for each lower affinity level (X-1). Use their
* states to influence the higher affinity state (X).
*/
tempidr = mpidr_set_aff_inst(aff_node->mpidr,
ctr,
aff_node->level - 1);
lo_aff_node = psci_get_aff_map_node(tempidr,
aff_node->level - 1);
assert(lo_aff_node);
/* Continue only if the cpu exists within the cluster */
if (!(lo_aff_node->state & PSCI_AFF_PRESENT))
continue;
switch (psci_get_state(lo_aff_node->state)) {
/*
* If any lower affinity is on within the cluster, then
* the higher affinity is on.
*/
case PSCI_STATE_ON:
return PSCI_STATE_ON;
/*
* At least one X-1 needs to be suspended for X to be suspended
* but it is effectively on for the affinity_info call.
* SUSPEND > ON_PENDING > OFF.
*/
case PSCI_STATE_SUSPEND:
hi_aff_state = PSCI_STATE_SUSPEND;
continue;
/*
* Atleast one X-1 needs to be on_pending & the rest off for X
* to be on_pending. ON_PENDING > OFF.
*/
case PSCI_STATE_ON_PENDING:
if (hi_aff_state != PSCI_STATE_SUSPEND)
hi_aff_state = PSCI_STATE_ON_PENDING;
continue;
/* Higher affinity is off if all lower affinities are off. */
case PSCI_STATE_OFF:
continue;
default:
assert(0);
}
}
return hi_aff_state;
}
/*******************************************************************************
* This function retrieves all the stashed information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND
******************************************************************************/
void psci_get_ns_entry_info(unsigned int index)
{
unsigned long sctlr = 0, scr, el_status, id_aa64pfr0;
gp_regs *ns_gp_regs;
scr = read_scr();
/* Switch to the non-secure view of the registers */
write_scr(scr | SCR_NS_BIT);
/* Find out which EL we are going to */
id_aa64pfr0 = read_id_aa64pfr0_el1();
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/* Restore endianess */
if (psci_ns_entry_info[index].sctlr & SCTLR_EE_BIT)
sctlr |= SCTLR_EE_BIT;
else
sctlr &= ~SCTLR_EE_BIT;
/* Turn off MMU and Caching */
sctlr &= ~(SCTLR_M_BIT | SCTLR_C_BIT | SCTLR_M_BIT);
/* Set the register width */
if (psci_ns_entry_info[index].scr & SCR_RW_BIT)
scr |= SCR_RW_BIT;
else
scr &= ~SCR_RW_BIT;
scr |= SCR_NS_BIT;
if (el_status)
write_sctlr_el2(sctlr);
else
write_sctlr_el1(sctlr);
/* Fulfill the cpu_on entry reqs. as per the psci spec */
write_scr(scr);
write_elr(psci_ns_entry_info[index].eret_info.entrypoint);
/*
* Set the general purpose registers to ~0 upon entry into the
* non-secure world except for x0 which should contain the
* context id & spsr. This is done directly on the "would be"
* stack pointer. Prior to entry into the non-secure world, an
* offset equivalent to the size of the 'gp_regs' structure is
* added to the sp. This general purpose register context is
* retrieved then.
*/
ns_gp_regs = (gp_regs *) platform_get_stack(read_mpidr());
ns_gp_regs--;
memset(ns_gp_regs, ~0, sizeof(*ns_gp_regs));
ns_gp_regs->x0 = psci_ns_entry_info[index].context_id;
ns_gp_regs->spsr = psci_ns_entry_info[index].eret_info.spsr;
}
/*******************************************************************************
* This function retrieves and stashes all the information needed to correctly
* resume a cpu's execution in the non-secure state after it has been physically
* powered on i.e. turned ON or resumed from SUSPEND. This is done prior to
* turning it on or before suspending it.
******************************************************************************/
int psci_set_ns_entry_info(unsigned int index,
unsigned long entrypoint,
unsigned long context_id)
{
int rc = PSCI_E_SUCCESS;
unsigned int rw, mode, ee, spsr = 0;
unsigned long id_aa64pfr0 = read_id_aa64pfr0_el1(), scr = read_scr();
unsigned long el_status;
/* Figure out what mode do we enter the non-secure world in */
el_status = (id_aa64pfr0 >> ID_AA64PFR0_EL2_SHIFT) &
ID_AA64PFR0_ELX_MASK;
/*
* Figure out whether the cpu enters the non-secure address space
* in aarch32 or aarch64
*/
rw = scr & SCR_RW_BIT;
if (rw) {
/*
* Check whether a Thumb entry point has been provided for an
* aarch64 EL
*/
if (entrypoint & 0x1)
return PSCI_E_INVALID_PARAMS;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = MODE_EL2;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = MODE_EL1;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
spsr = DAIF_DBG_BIT | DAIF_ABT_BIT;
spsr |= DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
spsr |= make_spsr(mode, MODE_SP_ELX, !rw);
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr |= SCR_RW_BIT;
} else {
/* Check whether aarch32 has to be entered in Thumb mode */
if (entrypoint & 0x1)
spsr = SPSR32_T_BIT;
if (el_status && (scr & SCR_HCE_BIT)) {
mode = AARCH32_MODE_HYP;
ee = read_sctlr_el2() & SCTLR_EE_BIT;
} else {
mode = AARCH32_MODE_SVC;
ee = read_sctlr_el1() & SCTLR_EE_BIT;
}
/*
* TODO: Choose async. exception bits if HYP mode is not
* implemented according to the values of SCR.{AW, FW} bits
*/
spsr |= DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
spsr <<= PSR_DAIF_SHIFT;
if(ee)
spsr |= SPSR32_EE_BIT;
spsr |= mode;
/* Ensure that the CSPR.E and SCTLR.EE bits match */
psci_ns_entry_info[index].sctlr |= ee;
psci_ns_entry_info[index].scr &= ~SCR_RW_BIT;
}
psci_ns_entry_info[index].eret_info.entrypoint = entrypoint;
psci_ns_entry_info[index].eret_info.spsr = spsr;
psci_ns_entry_info[index].context_id = context_id;
return rc;
}
/*******************************************************************************
* An affinity level could be on, on_pending, suspended or off. These are the
* logical states it can be in. Physically either it is off or on. When it is in
* the state on_pending then it is about to be turned on. It is not possible to
* tell whether that's actually happenned or not. So we err on the side of
* caution & treat the affinity level as being turned off.
******************************************************************************/
inline unsigned int psci_get_phys_state(unsigned int aff_state)
{
return (aff_state != PSCI_STATE_ON ? PSCI_STATE_OFF : PSCI_STATE_ON);
}
unsigned int psci_get_aff_phys_state(aff_map_node *aff_node)
{
unsigned int aff_state;
aff_state = psci_get_state(aff_node->state);
return psci_get_phys_state(aff_state);
}
/*******************************************************************************
* This function takes an array of pointers to affinity instance nodes in the
* topology tree and calls the physical power on handler for the corresponding
* affinity levels
******************************************************************************/
static int psci_call_power_on_handlers(mpidr_aff_map_nodes mpidr_nodes,
int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher *pon_handlers,
unsigned long mpidr)
{
int rc = PSCI_E_INVALID_PARAMS, level;
aff_map_node *node;
for (level = end_afflvl; level >= start_afflvl; level--) {
node = mpidr_nodes[level];
if (node == NULL)
continue;
/*
* If we run into any trouble while powering up an
* affinity instance, then there is no recovery path
* so simply return an error and let the caller take
* care of the situation.
*/
rc = pon_handlers[level](mpidr, node);
if (rc != PSCI_E_SUCCESS)
break;
}
return rc;
}
/*******************************************************************************
* Generic handler which is called when a cpu is physically powered on. It
* traverses through all the affinity levels performing generic, architectural,
* platform setup and state management e.g. for a cluster that's been powered
* on, it will call the platform specific code which will enable coherency at
* the interconnect level. For a cpu it could mean turning on the MMU etc.
*
* The state of all the relevant affinity levels is changed after calling the
* affinity level specific handlers as their actions would depend upon the state
* the affinity level is exiting from.
*
* The affinity level specific handlers are called in descending order i.e. from
* the highest to the lowest affinity level implemented by the platform because
* to turn on affinity level X it is neccesary to turn on affinity level X + 1
* first.
*
* CAUTION: This function is called with coherent stacks so that coherency and
* the mmu can be turned on safely.
******************************************************************************/
void psci_afflvl_power_on_finish(unsigned long mpidr,
int start_afflvl,
int end_afflvl,
afflvl_power_on_finisher *pon_handlers)
{
mpidr_aff_map_nodes mpidr_nodes;
int rc;
mpidr &= MPIDR_AFFINITY_MASK;;
/*
* Collect the pointers to the nodes in the topology tree for
* each affinity instance in the mpidr. If this function does
* not return successfully then either the mpidr or the affinity
* levels are incorrect. Either case is an irrecoverable error.
*/
rc = psci_get_aff_map_nodes(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
assert (rc == PSCI_E_SUCCESS);
/*
* This function acquires the lock corresponding to each affinity
* level so that by the time all locks are taken, the system topology
* is snapshot and state management can be done safely.
*/
psci_acquire_afflvl_locks(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
/* Perform generic, architecture and platform specific handling */
rc = psci_call_power_on_handlers(mpidr_nodes,
start_afflvl,
end_afflvl,
pon_handlers,
mpidr);
assert (rc == PSCI_E_SUCCESS);
/*
* State management: Update the state of each affinity instance
* between the start and end affinity levels
*/
psci_change_state(mpidr_nodes,
start_afflvl,
end_afflvl,
PSCI_STATE_ON);
/*
* This loop releases the lock corresponding to each affinity level
* in the reverse order to which they were acquired.
*/
psci_release_afflvl_locks(mpidr,
start_afflvl,
end_afflvl,
mpidr_nodes);
}