mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-16 17:44:19 +00:00

In a system enabled with RME, the function 'xlat_get_mem_attributes_internal' fails to accurately provide 'output PA space' for Realm and Root memory because it does not consider the 'nse' bit in page table descriptor. This patch resolves the issue by extracting the 'nse' bit value. As a result, it ensures correct retrieval of attributes in RME-enabled systems while maintaining unaffected attribute retrieval for non-RME systems. Change-Id: If2d01545b921c9074f48c52a98027ff331e14237 Signed-off-by: Manish V Badarkhe <Manish.Badarkhe@arm.com>
642 lines
16 KiB
C
642 lines
16 KiB
C
/*
|
|
* Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
|
|
#include <platform_def.h>
|
|
|
|
#include <arch_features.h>
|
|
#include <arch_helpers.h>
|
|
#include <common/debug.h>
|
|
#include <lib/utils_def.h>
|
|
#include <lib/xlat_tables/xlat_tables_defs.h>
|
|
#include <lib/xlat_tables/xlat_tables_v2.h>
|
|
|
|
#include "xlat_tables_private.h"
|
|
|
|
#if LOG_LEVEL < LOG_LEVEL_VERBOSE
|
|
|
|
void xlat_mmap_print(__unused const mmap_region_t *mmap)
|
|
{
|
|
/* Empty */
|
|
}
|
|
|
|
void xlat_tables_print(__unused xlat_ctx_t *ctx)
|
|
{
|
|
/* Empty */
|
|
}
|
|
|
|
#else /* if LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
|
|
void xlat_mmap_print(const mmap_region_t *mmap)
|
|
{
|
|
printf("mmap:\n");
|
|
const mmap_region_t *mm = mmap;
|
|
|
|
while (mm->size != 0U) {
|
|
printf(" VA:0x%lx PA:0x%llx size:0x%zx attr:0x%x granularity:0x%zx\n",
|
|
mm->base_va, mm->base_pa, mm->size, mm->attr,
|
|
mm->granularity);
|
|
++mm;
|
|
};
|
|
printf("\n");
|
|
}
|
|
|
|
/* Print the attributes of the specified block descriptor. */
|
|
static void xlat_desc_print(const xlat_ctx_t *ctx, uint64_t desc)
|
|
{
|
|
uint64_t mem_type_index = ATTR_INDEX_GET(desc);
|
|
int xlat_regime = ctx->xlat_regime;
|
|
|
|
if (mem_type_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
|
|
printf("MEM");
|
|
} else if (mem_type_index == ATTR_NON_CACHEABLE_INDEX) {
|
|
printf("NC");
|
|
} else {
|
|
assert(mem_type_index == ATTR_DEVICE_INDEX);
|
|
printf("DEV");
|
|
}
|
|
|
|
if ((xlat_regime == EL3_REGIME) || (xlat_regime == EL2_REGIME)) {
|
|
/* For EL3 and EL2 only check the AP[2] and XN bits. */
|
|
printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
|
|
printf(((desc & UPPER_ATTRS(XN)) != 0ULL) ? "-XN" : "-EXEC");
|
|
} else {
|
|
assert(xlat_regime == EL1_EL0_REGIME);
|
|
/*
|
|
* For EL0 and EL1:
|
|
* - In AArch64 PXN and UXN can be set independently but in
|
|
* AArch32 there is no UXN (XN affects both privilege levels).
|
|
* For consistency, we set them simultaneously in both cases.
|
|
* - RO and RW permissions must be the same in EL1 and EL0. If
|
|
* EL0 can access that memory region, so can EL1, with the
|
|
* same permissions.
|
|
*/
|
|
#if ENABLE_ASSERTIONS
|
|
uint64_t xn_mask = xlat_arch_regime_get_xn_desc(EL1_EL0_REGIME);
|
|
uint64_t xn_perm = desc & xn_mask;
|
|
|
|
assert((xn_perm == xn_mask) || (xn_perm == 0ULL));
|
|
#endif
|
|
printf(((desc & LOWER_ATTRS(AP_RO)) != 0ULL) ? "-RO" : "-RW");
|
|
/* Only check one of PXN and UXN, the other one is the same. */
|
|
printf(((desc & UPPER_ATTRS(PXN)) != 0ULL) ? "-XN" : "-EXEC");
|
|
/*
|
|
* Privileged regions can only be accessed from EL1, user
|
|
* regions can be accessed from EL1 and EL0.
|
|
*/
|
|
printf(((desc & LOWER_ATTRS(AP_ACCESS_UNPRIVILEGED)) != 0ULL)
|
|
? "-USER" : "-PRIV");
|
|
}
|
|
|
|
#if ENABLE_RME
|
|
switch (desc & LOWER_ATTRS(EL3_S1_NSE | NS)) {
|
|
case 0ULL:
|
|
printf("-S");
|
|
break;
|
|
case LOWER_ATTRS(NS):
|
|
printf("-NS");
|
|
break;
|
|
case LOWER_ATTRS(EL3_S1_NSE):
|
|
printf("-RT");
|
|
break;
|
|
default: /* LOWER_ATTRS(EL3_S1_NSE | NS) */
|
|
printf("-RL");
|
|
}
|
|
#else
|
|
printf(((LOWER_ATTRS(NS) & desc) != 0ULL) ? "-NS" : "-S");
|
|
#endif
|
|
|
|
#ifdef __aarch64__
|
|
/* Check Guarded Page bit */
|
|
if ((desc & GP) != 0ULL) {
|
|
printf("-GP");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static const char * const level_spacers[] = {
|
|
"[LV0] ",
|
|
" [LV1] ",
|
|
" [LV2] ",
|
|
" [LV3] "
|
|
};
|
|
|
|
static const char *invalid_descriptors_ommited =
|
|
"%s(%d invalid descriptors omitted)\n";
|
|
|
|
/*
|
|
* Recursive function that reads the translation tables passed as an argument
|
|
* and prints their status.
|
|
*/
|
|
static void xlat_tables_print_internal(xlat_ctx_t *ctx, uintptr_t table_base_va,
|
|
const uint64_t *table_base, unsigned int table_entries,
|
|
unsigned int level)
|
|
{
|
|
assert(level <= XLAT_TABLE_LEVEL_MAX);
|
|
|
|
uint64_t desc;
|
|
uintptr_t table_idx_va = table_base_va;
|
|
unsigned int table_idx = 0U;
|
|
size_t level_size = XLAT_BLOCK_SIZE(level);
|
|
|
|
/*
|
|
* Keep track of how many invalid descriptors are counted in a row.
|
|
* Whenever multiple invalid descriptors are found, only the first one
|
|
* is printed, and a line is added to inform about how many descriptors
|
|
* have been omitted.
|
|
*/
|
|
int invalid_row_count = 0;
|
|
|
|
while (table_idx < table_entries) {
|
|
|
|
desc = table_base[table_idx];
|
|
|
|
if ((desc & DESC_MASK) == INVALID_DESC) {
|
|
|
|
if (invalid_row_count == 0) {
|
|
printf("%sVA:0x%lx size:0x%zx\n",
|
|
level_spacers[level],
|
|
table_idx_va, level_size);
|
|
}
|
|
invalid_row_count++;
|
|
|
|
} else {
|
|
|
|
if (invalid_row_count > 1) {
|
|
printf(invalid_descriptors_ommited,
|
|
level_spacers[level],
|
|
invalid_row_count - 1);
|
|
}
|
|
invalid_row_count = 0;
|
|
|
|
/*
|
|
* Check if this is a table or a block. Tables are only
|
|
* allowed in levels other than 3, but DESC_PAGE has the
|
|
* same value as DESC_TABLE, so we need to check.
|
|
*/
|
|
if (((desc & DESC_MASK) == TABLE_DESC) &&
|
|
(level < XLAT_TABLE_LEVEL_MAX)) {
|
|
/*
|
|
* Do not print any PA for a table descriptor,
|
|
* as it doesn't directly map physical memory
|
|
* but instead points to the next translation
|
|
* table in the translation table walk.
|
|
*/
|
|
printf("%sVA:0x%lx size:0x%zx\n",
|
|
level_spacers[level],
|
|
table_idx_va, level_size);
|
|
|
|
uintptr_t addr_inner = desc & TABLE_ADDR_MASK;
|
|
|
|
xlat_tables_print_internal(ctx, table_idx_va,
|
|
(uint64_t *)addr_inner,
|
|
XLAT_TABLE_ENTRIES, level + 1U);
|
|
} else {
|
|
printf("%sVA:0x%lx PA:0x%" PRIx64 " size:0x%zx ",
|
|
level_spacers[level], table_idx_va,
|
|
(uint64_t)(desc & TABLE_ADDR_MASK),
|
|
level_size);
|
|
xlat_desc_print(ctx, desc);
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
table_idx++;
|
|
table_idx_va += level_size;
|
|
}
|
|
|
|
if (invalid_row_count > 1) {
|
|
printf(invalid_descriptors_ommited,
|
|
level_spacers[level], invalid_row_count - 1);
|
|
}
|
|
}
|
|
|
|
void xlat_tables_print(xlat_ctx_t *ctx)
|
|
{
|
|
const char *xlat_regime_str;
|
|
int used_page_tables;
|
|
|
|
if (ctx->xlat_regime == EL1_EL0_REGIME) {
|
|
xlat_regime_str = "1&0";
|
|
} else if (ctx->xlat_regime == EL2_REGIME) {
|
|
xlat_regime_str = "2";
|
|
} else {
|
|
assert(ctx->xlat_regime == EL3_REGIME);
|
|
xlat_regime_str = "3";
|
|
}
|
|
VERBOSE("Translation tables state:\n");
|
|
VERBOSE(" Xlat regime: EL%s\n", xlat_regime_str);
|
|
VERBOSE(" Max allowed PA: 0x%llx\n", ctx->pa_max_address);
|
|
VERBOSE(" Max allowed VA: 0x%lx\n", ctx->va_max_address);
|
|
VERBOSE(" Max mapped PA: 0x%llx\n", ctx->max_pa);
|
|
VERBOSE(" Max mapped VA: 0x%lx\n", ctx->max_va);
|
|
|
|
VERBOSE(" Initial lookup level: %u\n", ctx->base_level);
|
|
VERBOSE(" Entries @initial lookup level: %u\n",
|
|
ctx->base_table_entries);
|
|
|
|
#if PLAT_XLAT_TABLES_DYNAMIC
|
|
used_page_tables = 0;
|
|
for (int i = 0; i < ctx->tables_num; ++i) {
|
|
if (ctx->tables_mapped_regions[i] != 0)
|
|
++used_page_tables;
|
|
}
|
|
#else
|
|
used_page_tables = ctx->next_table;
|
|
#endif
|
|
VERBOSE(" Used %d sub-tables out of %d (spare: %d)\n",
|
|
used_page_tables, ctx->tables_num,
|
|
ctx->tables_num - used_page_tables);
|
|
|
|
xlat_tables_print_internal(ctx, 0U, ctx->base_table,
|
|
ctx->base_table_entries, ctx->base_level);
|
|
}
|
|
|
|
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
|
|
/*
|
|
* Do a translation table walk to find the block or page descriptor that maps
|
|
* virtual_addr.
|
|
*
|
|
* On success, return the address of the descriptor within the translation
|
|
* table. Its lookup level is stored in '*out_level'.
|
|
* On error, return NULL.
|
|
*
|
|
* xlat_table_base
|
|
* Base address for the initial lookup level.
|
|
* xlat_table_base_entries
|
|
* Number of entries in the translation table for the initial lookup level.
|
|
* virt_addr_space_size
|
|
* Size in bytes of the virtual address space.
|
|
*/
|
|
static uint64_t *find_xlat_table_entry(uintptr_t virtual_addr,
|
|
void *xlat_table_base,
|
|
unsigned int xlat_table_base_entries,
|
|
unsigned long long virt_addr_space_size,
|
|
unsigned int *out_level)
|
|
{
|
|
unsigned int start_level;
|
|
uint64_t *table;
|
|
unsigned int entries;
|
|
|
|
start_level = GET_XLAT_TABLE_LEVEL_BASE(virt_addr_space_size);
|
|
|
|
table = xlat_table_base;
|
|
entries = xlat_table_base_entries;
|
|
|
|
for (unsigned int level = start_level;
|
|
level <= XLAT_TABLE_LEVEL_MAX;
|
|
++level) {
|
|
uint64_t idx, desc, desc_type;
|
|
|
|
idx = XLAT_TABLE_IDX(virtual_addr, level);
|
|
if (idx >= entries) {
|
|
WARN("Missing xlat table entry at address 0x%lx\n",
|
|
virtual_addr);
|
|
return NULL;
|
|
}
|
|
|
|
desc = table[idx];
|
|
desc_type = desc & DESC_MASK;
|
|
|
|
if (desc_type == INVALID_DESC) {
|
|
VERBOSE("Invalid entry (memory not mapped)\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (level == XLAT_TABLE_LEVEL_MAX) {
|
|
/*
|
|
* Only page descriptors allowed at the final lookup
|
|
* level.
|
|
*/
|
|
assert(desc_type == PAGE_DESC);
|
|
*out_level = level;
|
|
return &table[idx];
|
|
}
|
|
|
|
if (desc_type == BLOCK_DESC) {
|
|
*out_level = level;
|
|
return &table[idx];
|
|
}
|
|
|
|
assert(desc_type == TABLE_DESC);
|
|
table = (uint64_t *)(uintptr_t)(desc & TABLE_ADDR_MASK);
|
|
entries = XLAT_TABLE_ENTRIES;
|
|
}
|
|
|
|
/*
|
|
* This shouldn't be reached, the translation table walk should end at
|
|
* most at level XLAT_TABLE_LEVEL_MAX and return from inside the loop.
|
|
*/
|
|
assert(false);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static int xlat_get_mem_attributes_internal(const xlat_ctx_t *ctx,
|
|
uintptr_t base_va, uint32_t *attributes, uint64_t **table_entry,
|
|
unsigned long long *addr_pa, unsigned int *table_level)
|
|
{
|
|
uint64_t *entry;
|
|
uint64_t desc;
|
|
unsigned int level;
|
|
unsigned long long virt_addr_space_size;
|
|
|
|
/*
|
|
* Sanity-check arguments.
|
|
*/
|
|
assert(ctx != NULL);
|
|
assert(ctx->initialized);
|
|
assert((ctx->xlat_regime == EL1_EL0_REGIME) ||
|
|
(ctx->xlat_regime == EL2_REGIME) ||
|
|
(ctx->xlat_regime == EL3_REGIME));
|
|
|
|
virt_addr_space_size = (unsigned long long)ctx->va_max_address + 1ULL;
|
|
assert(virt_addr_space_size > 0U);
|
|
|
|
entry = find_xlat_table_entry(base_va,
|
|
ctx->base_table,
|
|
ctx->base_table_entries,
|
|
virt_addr_space_size,
|
|
&level);
|
|
if (entry == NULL) {
|
|
WARN("Address 0x%lx is not mapped.\n", base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (addr_pa != NULL) {
|
|
*addr_pa = *entry & TABLE_ADDR_MASK;
|
|
}
|
|
|
|
if (table_entry != NULL) {
|
|
*table_entry = entry;
|
|
}
|
|
|
|
if (table_level != NULL) {
|
|
*table_level = level;
|
|
}
|
|
|
|
desc = *entry;
|
|
|
|
#if LOG_LEVEL >= LOG_LEVEL_VERBOSE
|
|
VERBOSE("Attributes: ");
|
|
xlat_desc_print(ctx, desc);
|
|
printf("\n");
|
|
#endif /* LOG_LEVEL >= LOG_LEVEL_VERBOSE */
|
|
|
|
assert(attributes != NULL);
|
|
*attributes = 0U;
|
|
|
|
uint64_t attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
|
|
|
|
if (attr_index == ATTR_IWBWA_OWBWA_NTR_INDEX) {
|
|
*attributes |= MT_MEMORY;
|
|
} else if (attr_index == ATTR_NON_CACHEABLE_INDEX) {
|
|
*attributes |= MT_NON_CACHEABLE;
|
|
} else {
|
|
assert(attr_index == ATTR_DEVICE_INDEX);
|
|
*attributes |= MT_DEVICE;
|
|
}
|
|
|
|
uint64_t ap2_bit = (desc >> AP2_SHIFT) & 1U;
|
|
|
|
if (ap2_bit == AP2_RW)
|
|
*attributes |= MT_RW;
|
|
|
|
if (ctx->xlat_regime == EL1_EL0_REGIME) {
|
|
uint64_t ap1_bit = (desc >> AP1_SHIFT) & 1U;
|
|
|
|
if (ap1_bit == AP1_ACCESS_UNPRIVILEGED)
|
|
*attributes |= MT_USER;
|
|
}
|
|
|
|
uint64_t ns_bit = (desc >> NS_SHIFT) & 1ULL;
|
|
|
|
#if ENABLE_RME
|
|
uint64_t nse_bit = (desc >> NSE_SHIFT) & 1ULL;
|
|
uint32_t sec_state = (uint32_t)(ns_bit | (nse_bit << 1ULL));
|
|
|
|
/*
|
|
* =========================================================
|
|
* NSE NS | Output PA space
|
|
* =========================================================
|
|
* 0 0 | Secure (if S-EL2 is present, else invalid)
|
|
* 0 1 | Non-secure
|
|
* 1 0 | Root
|
|
* 1 1 | Realm
|
|
*==========================================================
|
|
*/
|
|
switch (sec_state) {
|
|
case 0U:
|
|
/*
|
|
* We expect to get Secure mapping on an RME system only if
|
|
* S-EL2 is enabled.
|
|
* Hence panic() if we hit the case without EEL2 being enabled.
|
|
*/
|
|
if ((read_scr_el3() & SCR_EEL2_BIT) == 0ULL) {
|
|
ERROR("A secure descriptor is not supported when"
|
|
"FEAT_RME is implemented and FEAT_SEL2 is"
|
|
"not enabled\n");
|
|
panic();
|
|
} else {
|
|
*attributes |= MT_SECURE;
|
|
}
|
|
break;
|
|
case 1U:
|
|
*attributes |= MT_NS;
|
|
break;
|
|
case 2U:
|
|
*attributes |= MT_ROOT;
|
|
break;
|
|
case 3U:
|
|
*attributes |= MT_REALM;
|
|
break;
|
|
default:
|
|
/* unreachable code */
|
|
assert(false);
|
|
break;
|
|
}
|
|
#else /* !ENABLE_RME */
|
|
if (ns_bit == 1ULL) {
|
|
*attributes |= MT_NS;
|
|
} else {
|
|
*attributes |= MT_SECURE;
|
|
}
|
|
#endif /* ENABLE_RME */
|
|
|
|
uint64_t xn_mask = xlat_arch_regime_get_xn_desc(ctx->xlat_regime);
|
|
|
|
if ((desc & xn_mask) == xn_mask) {
|
|
*attributes |= MT_EXECUTE_NEVER;
|
|
} else {
|
|
assert((desc & xn_mask) == 0U);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int xlat_get_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
|
|
uint32_t *attr)
|
|
{
|
|
return xlat_get_mem_attributes_internal(ctx, base_va, attr,
|
|
NULL, NULL, NULL);
|
|
}
|
|
|
|
|
|
int xlat_change_mem_attributes_ctx(const xlat_ctx_t *ctx, uintptr_t base_va,
|
|
size_t size, uint32_t attr)
|
|
{
|
|
/* Note: This implementation isn't optimized. */
|
|
|
|
assert(ctx != NULL);
|
|
assert(ctx->initialized);
|
|
|
|
unsigned long long virt_addr_space_size =
|
|
(unsigned long long)ctx->va_max_address + 1U;
|
|
assert(virt_addr_space_size > 0U);
|
|
|
|
if (!IS_PAGE_ALIGNED(base_va)) {
|
|
WARN("%s: Address 0x%lx is not aligned on a page boundary.\n",
|
|
__func__, base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (size == 0U) {
|
|
WARN("%s: Size is 0.\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((size % PAGE_SIZE) != 0U) {
|
|
WARN("%s: Size 0x%zx is not a multiple of a page size.\n",
|
|
__func__, size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (((attr & MT_EXECUTE_NEVER) == 0U) && ((attr & MT_RW) != 0U)) {
|
|
WARN("%s: Mapping memory as read-write and executable not allowed.\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
size_t pages_count = size / PAGE_SIZE;
|
|
|
|
VERBOSE("Changing memory attributes of %zu pages starting from address 0x%lx...\n",
|
|
pages_count, base_va);
|
|
|
|
uintptr_t base_va_original = base_va;
|
|
|
|
/*
|
|
* Sanity checks.
|
|
*/
|
|
for (unsigned int i = 0U; i < pages_count; ++i) {
|
|
const uint64_t *entry;
|
|
uint64_t desc, attr_index;
|
|
unsigned int level;
|
|
|
|
entry = find_xlat_table_entry(base_va,
|
|
ctx->base_table,
|
|
ctx->base_table_entries,
|
|
virt_addr_space_size,
|
|
&level);
|
|
if (entry == NULL) {
|
|
WARN("Address 0x%lx is not mapped.\n", base_va);
|
|
return -EINVAL;
|
|
}
|
|
|
|
desc = *entry;
|
|
|
|
/*
|
|
* Check that all the required pages are mapped at page
|
|
* granularity.
|
|
*/
|
|
if (((desc & DESC_MASK) != PAGE_DESC) ||
|
|
(level != XLAT_TABLE_LEVEL_MAX)) {
|
|
WARN("Address 0x%lx is not mapped at the right granularity.\n",
|
|
base_va);
|
|
WARN("Granularity is 0x%lx, should be 0x%lx.\n",
|
|
XLAT_BLOCK_SIZE(level), PAGE_SIZE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the region type is device, it shouldn't be executable.
|
|
*/
|
|
attr_index = (desc >> ATTR_INDEX_SHIFT) & ATTR_INDEX_MASK;
|
|
if (attr_index == ATTR_DEVICE_INDEX) {
|
|
if ((attr & MT_EXECUTE_NEVER) == 0U) {
|
|
WARN("Setting device memory as executable at address 0x%lx.",
|
|
base_va);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
base_va += PAGE_SIZE;
|
|
}
|
|
|
|
/* Restore original value. */
|
|
base_va = base_va_original;
|
|
|
|
for (unsigned int i = 0U; i < pages_count; ++i) {
|
|
|
|
uint32_t old_attr = 0U, new_attr;
|
|
uint64_t *entry = NULL;
|
|
unsigned int level = 0U;
|
|
unsigned long long addr_pa = 0ULL;
|
|
|
|
(void) xlat_get_mem_attributes_internal(ctx, base_va, &old_attr,
|
|
&entry, &addr_pa, &level);
|
|
|
|
/*
|
|
* From attr, only MT_RO/MT_RW, MT_EXECUTE/MT_EXECUTE_NEVER and
|
|
* MT_USER/MT_PRIVILEGED are taken into account. Any other
|
|
* information is ignored.
|
|
*/
|
|
|
|
/* Clean the old attributes so that they can be rebuilt. */
|
|
new_attr = old_attr & ~(MT_RW | MT_EXECUTE_NEVER | MT_USER);
|
|
|
|
/*
|
|
* Update attributes, but filter out the ones this function
|
|
* isn't allowed to change.
|
|
*/
|
|
new_attr |= attr & (MT_RW | MT_EXECUTE_NEVER | MT_USER);
|
|
|
|
/*
|
|
* The break-before-make sequence requires writing an invalid
|
|
* descriptor and making sure that the system sees the change
|
|
* before writing the new descriptor.
|
|
*/
|
|
*entry = INVALID_DESC;
|
|
#if !HW_ASSISTED_COHERENCY
|
|
dccvac((uintptr_t)entry);
|
|
#endif
|
|
/* Invalidate any cached copy of this mapping in the TLBs. */
|
|
xlat_arch_tlbi_va(base_va, ctx->xlat_regime);
|
|
|
|
/* Ensure completion of the invalidation. */
|
|
xlat_arch_tlbi_va_sync();
|
|
|
|
/* Write new descriptor */
|
|
*entry = xlat_desc(ctx, new_attr, addr_pa, level);
|
|
#if !HW_ASSISTED_COHERENCY
|
|
dccvac((uintptr_t)entry);
|
|
#endif
|
|
base_va += PAGE_SIZE;
|
|
}
|
|
|
|
/* Ensure that the last descriptor written is seen by the system. */
|
|
dsbish();
|
|
|
|
return 0;
|
|
}
|