mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-17 10:04:26 +00:00

According to Platform Initialization (PI) Specification [1] and Discussion on edk2 mailing list [2], StandaloneMm shouldn't create Hob but it should be passed from TF-A. IOW, TF-A should pass boot information via PHIT Hob to initialise StandaloneMm properly. This patch applies using transfer list with PHIT Hob list [3] for delivering boot information to StandaloneMm. Link: https://uefi.org/sites/default/files/resources/PI_Spec_1_6.pdf [1] Link: https://edk2.groups.io/g/devel/topic/103675962#114283 [2] Link: https://github.com/FirmwareHandoff/firmware_handoff [3] Signed-off-by: Levi Yun <yeoreum.yun@arm.com> Change-Id: I3df71a7679abf9859612afc8a5be7b2381007311
391 lines
12 KiB
C
391 lines
12 KiB
C
/*
|
|
* Copyright (c) 2017-2024, Arm Limited and Contributors. All rights reserved.
|
|
* Copyright (c) 2021, NVIDIA Corporation. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <context.h>
|
|
#include <common/debug.h>
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
#if HOB_LIST
|
|
#include <lib/hob/hob.h>
|
|
#include <lib/hob/hob_guid.h>
|
|
#include <lib/hob/mmram.h>
|
|
#include <lib/hob/mpinfo.h>
|
|
#endif
|
|
#if TRANSFER_LIST
|
|
#include <lib/transfer_list.h>
|
|
#endif
|
|
#include <lib/xlat_tables/xlat_tables_v2.h>
|
|
#include <platform_def.h>
|
|
#include <plat/common/common_def.h>
|
|
#include <plat/common/platform.h>
|
|
#include <services/spm_mm_partition.h>
|
|
|
|
#include "spm_common.h"
|
|
#include "spm_mm_private.h"
|
|
#include "spm_shim_private.h"
|
|
|
|
#if HOB_LIST && TRANSFER_LIST
|
|
static struct efi_hob_handoff_info_table *build_sp_boot_hob_list(
|
|
const spm_mm_boot_info_t *sp_boot_info, uint16_t *hob_table_size)
|
|
{
|
|
int ret;
|
|
struct efi_hob_handoff_info_table *hob_table;
|
|
struct efi_guid ns_buf_guid = MM_NS_BUFFER_GUID;
|
|
struct efi_guid mmram_resv_guid = MM_PEI_MMRAM_MEMORY_RESERVE_GUID;
|
|
struct efi_mmram_descriptor *mmram_desc_data;
|
|
uint16_t mmram_resv_data_size;
|
|
struct efi_mmram_hob_descriptor_block *mmram_hob_desc_data;
|
|
uint64_t hob_table_offset;
|
|
|
|
hob_table_offset = sizeof(struct transfer_list_header) +
|
|
sizeof(struct transfer_list_entry);
|
|
|
|
*hob_table_size = 0U;
|
|
|
|
hob_table = create_hob_list(sp_boot_info->sp_mem_base,
|
|
sp_boot_info->sp_mem_limit - sp_boot_info->sp_mem_base,
|
|
sp_boot_info->sp_shared_buf_base + hob_table_offset,
|
|
sp_boot_info->sp_shared_buf_size);
|
|
if (hob_table == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = create_fv_hob(hob_table, sp_boot_info->sp_image_base,
|
|
sp_boot_info->sp_image_size);
|
|
if (ret) {
|
|
return NULL;
|
|
}
|
|
|
|
ret = create_guid_hob(hob_table, &ns_buf_guid,
|
|
sizeof(struct efi_mmram_descriptor), (void **) &mmram_desc_data);
|
|
if (ret) {
|
|
return NULL;
|
|
}
|
|
|
|
mmram_desc_data->physical_start = sp_boot_info->sp_ns_comm_buf_base;
|
|
mmram_desc_data->physical_size = sp_boot_info->sp_ns_comm_buf_size;
|
|
mmram_desc_data->cpu_start = sp_boot_info->sp_ns_comm_buf_base;
|
|
mmram_desc_data->region_state = EFI_CACHEABLE | EFI_ALLOCATED;
|
|
|
|
mmram_resv_data_size = sizeof(struct efi_mmram_hob_descriptor_block) +
|
|
sizeof(struct efi_mmram_descriptor) * sp_boot_info->num_sp_mem_regions;
|
|
|
|
ret = create_guid_hob(hob_table, &mmram_resv_guid,
|
|
mmram_resv_data_size, (void **) &mmram_hob_desc_data);
|
|
if (ret) {
|
|
return NULL;
|
|
}
|
|
|
|
*hob_table_size = hob_table->efi_free_memory_bottom -
|
|
(efi_physical_address_t) hob_table;
|
|
|
|
mmram_hob_desc_data->number_of_mm_reserved_regions = 4U;
|
|
mmram_desc_data = &mmram_hob_desc_data->descriptor[0];
|
|
|
|
/* First, should be image mm range. */
|
|
mmram_desc_data[0].physical_start = sp_boot_info->sp_image_base;
|
|
mmram_desc_data[0].physical_size = sp_boot_info->sp_image_size;
|
|
mmram_desc_data[0].cpu_start = sp_boot_info->sp_image_base;
|
|
mmram_desc_data[0].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
|
|
|
|
/* Second, should be shared buffer mm range. */
|
|
mmram_desc_data[1].physical_start = sp_boot_info->sp_shared_buf_base;
|
|
mmram_desc_data[1].physical_size = sp_boot_info->sp_shared_buf_size;
|
|
mmram_desc_data[1].cpu_start = sp_boot_info->sp_shared_buf_base;
|
|
mmram_desc_data[1].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
|
|
|
|
/* Ns Buffer mm range */
|
|
mmram_desc_data[2].physical_start = sp_boot_info->sp_ns_comm_buf_base;
|
|
mmram_desc_data[2].physical_size = sp_boot_info->sp_ns_comm_buf_size;
|
|
mmram_desc_data[2].cpu_start = sp_boot_info->sp_ns_comm_buf_base;
|
|
mmram_desc_data[2].region_state = EFI_CACHEABLE | EFI_ALLOCATED;
|
|
|
|
/* Heap mm range */
|
|
mmram_desc_data[3].physical_start = sp_boot_info->sp_heap_base;
|
|
mmram_desc_data[3].physical_size = sp_boot_info->sp_heap_size;
|
|
mmram_desc_data[3].cpu_start = sp_boot_info->sp_heap_base;
|
|
mmram_desc_data[3].region_state = EFI_CACHEABLE;
|
|
|
|
return hob_table;
|
|
}
|
|
#endif
|
|
|
|
/* Setup context of the Secure Partition */
|
|
void spm_sp_setup(sp_context_t *sp_ctx)
|
|
{
|
|
cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
|
|
u_register_t sctlr_el1_val;
|
|
/* Pointer to the MP information from the platform port. */
|
|
const spm_mm_boot_info_t *sp_boot_info =
|
|
plat_get_secure_partition_boot_info(NULL);
|
|
|
|
#if HOB_LIST && TRANSFER_LIST
|
|
struct efi_hob_handoff_info_table *hob_table;
|
|
struct transfer_list_header *sp_boot_tl;
|
|
struct transfer_list_entry *sp_boot_te;
|
|
uint16_t hob_table_size;
|
|
#endif
|
|
|
|
assert(sp_boot_info != NULL);
|
|
|
|
/*
|
|
* Initialize CPU context
|
|
* ----------------------
|
|
*/
|
|
|
|
entry_point_info_t ep_info = {0};
|
|
|
|
SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
|
|
|
|
/* Setup entrypoint and SPSR */
|
|
ep_info.pc = sp_boot_info->sp_image_base;
|
|
ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
|
|
|
|
/*
|
|
* X0: Virtual address of a buffer shared between EL3 and Secure EL0.
|
|
* The buffer will be mapped in the Secure EL1 translation regime
|
|
* with Normal IS WBWA attributes and RO data and Execute Never
|
|
* instruction access permissions.
|
|
*
|
|
* X1: Size of the buffer in bytes
|
|
*
|
|
* X2: cookie value (Implementation Defined)
|
|
*
|
|
* X3: cookie value (Implementation Defined)
|
|
*
|
|
* X4 to X7 = 0
|
|
*/
|
|
ep_info.args.arg0 = sp_boot_info->sp_shared_buf_base;
|
|
ep_info.args.arg1 = sp_boot_info->sp_shared_buf_size;
|
|
ep_info.args.arg2 = PLAT_SPM_COOKIE_0;
|
|
ep_info.args.arg3 = PLAT_SPM_COOKIE_1;
|
|
|
|
cm_setup_context(ctx, &ep_info);
|
|
|
|
/*
|
|
* SP_EL0: A non-zero value will indicate to the SP that the SPM has
|
|
* initialized the stack pointer for the current CPU through
|
|
* implementation defined means. The value will be 0 otherwise.
|
|
*/
|
|
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_SP_EL0,
|
|
sp_boot_info->sp_stack_base + sp_boot_info->sp_pcpu_stack_size);
|
|
|
|
/*
|
|
* Setup translation tables
|
|
* ------------------------
|
|
*/
|
|
|
|
#if ENABLE_ASSERTIONS
|
|
|
|
/* Get max granularity supported by the platform. */
|
|
unsigned int max_granule = xlat_arch_get_max_supported_granule_size();
|
|
|
|
VERBOSE("Max translation granule size supported: %u KiB\n",
|
|
max_granule / 1024U);
|
|
|
|
unsigned int max_granule_mask = max_granule - 1U;
|
|
|
|
/* Base must be aligned to the max granularity */
|
|
assert((sp_boot_info->sp_ns_comm_buf_base & max_granule_mask) == 0);
|
|
|
|
/* Size must be a multiple of the max granularity */
|
|
assert((sp_boot_info->sp_ns_comm_buf_size & max_granule_mask) == 0);
|
|
|
|
#endif /* ENABLE_ASSERTIONS */
|
|
|
|
/* This region contains the exception vectors used at S-EL1. */
|
|
const mmap_region_t sel1_exception_vectors =
|
|
MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
|
|
SPM_SHIM_EXCEPTIONS_SIZE,
|
|
MT_CODE | MT_SECURE | MT_PRIVILEGED);
|
|
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
|
|
&sel1_exception_vectors);
|
|
|
|
mmap_add_ctx(sp_ctx->xlat_ctx_handle,
|
|
plat_get_secure_partition_mmap(NULL));
|
|
|
|
init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
|
|
|
|
/*
|
|
* MMU-related registers
|
|
* ---------------------
|
|
*/
|
|
xlat_ctx_t *xlat_ctx = sp_ctx->xlat_ctx_handle;
|
|
|
|
uint64_t mmu_cfg_params[MMU_CFG_PARAM_MAX];
|
|
|
|
setup_mmu_cfg((uint64_t *)&mmu_cfg_params, 0, xlat_ctx->base_table,
|
|
xlat_ctx->pa_max_address, xlat_ctx->va_max_address,
|
|
EL1_EL0_REGIME);
|
|
|
|
write_el1_ctx_common(get_el1_sysregs_ctx(ctx), mair_el1,
|
|
mmu_cfg_params[MMU_CFG_MAIR]);
|
|
write_ctx_tcr_el1_reg_errata(ctx, mmu_cfg_params[MMU_CFG_TCR]);
|
|
|
|
write_el1_ctx_common(get_el1_sysregs_ctx(ctx), ttbr0_el1,
|
|
mmu_cfg_params[MMU_CFG_TTBR0]);
|
|
|
|
/* Setup SCTLR_EL1 */
|
|
sctlr_el1_val = read_ctx_sctlr_el1_reg_errata(ctx);
|
|
|
|
sctlr_el1_val |=
|
|
/*SCTLR_EL1_RES1 |*/
|
|
/* Don't trap DC CVAU, DC CIVAC, DC CVAC, DC CVAP, or IC IVAU */
|
|
SCTLR_UCI_BIT |
|
|
/* RW regions at xlat regime EL1&0 are forced to be XN. */
|
|
SCTLR_WXN_BIT |
|
|
/* Don't trap to EL1 execution of WFI or WFE at EL0. */
|
|
SCTLR_NTWI_BIT | SCTLR_NTWE_BIT |
|
|
/* Don't trap to EL1 accesses to CTR_EL0 from EL0. */
|
|
SCTLR_UCT_BIT |
|
|
/* Don't trap to EL1 execution of DZ ZVA at EL0. */
|
|
SCTLR_DZE_BIT |
|
|
/* Enable SP Alignment check for EL0 */
|
|
SCTLR_SA0_BIT |
|
|
/* Don't change PSTATE.PAN on taking an exception to EL1 */
|
|
SCTLR_SPAN_BIT |
|
|
/* Allow cacheable data and instr. accesses to normal memory. */
|
|
SCTLR_C_BIT | SCTLR_I_BIT |
|
|
/* Enable MMU. */
|
|
SCTLR_M_BIT
|
|
;
|
|
|
|
sctlr_el1_val &= ~(
|
|
/* Explicit data accesses at EL0 are little-endian. */
|
|
SCTLR_E0E_BIT |
|
|
/*
|
|
* Alignment fault checking disabled when at EL1 and EL0 as
|
|
* the UEFI spec permits unaligned accesses.
|
|
*/
|
|
SCTLR_A_BIT |
|
|
/* Accesses to DAIF from EL0 are trapped to EL1. */
|
|
SCTLR_UMA_BIT
|
|
);
|
|
|
|
/* Store the initialised SCTLR_EL1 value in the cpu_context */
|
|
write_ctx_sctlr_el1_reg_errata(ctx, sctlr_el1_val);
|
|
|
|
/*
|
|
* Setup other system registers
|
|
* ----------------------------
|
|
*/
|
|
|
|
/* Shim Exception Vector Base Address */
|
|
write_el1_ctx_common(get_el1_sysregs_ctx(ctx), vbar_el1,
|
|
SPM_SHIM_EXCEPTIONS_PTR);
|
|
|
|
write_el1_ctx_arch_timer(get_el1_sysregs_ctx(ctx), cntkctl_el1,
|
|
EL0PTEN_BIT | EL0VTEN_BIT | EL0PCTEN_BIT | EL0VCTEN_BIT);
|
|
|
|
/*
|
|
* FPEN: Allow the Secure Partition to access FP/SIMD registers.
|
|
* Note that SPM will not do any saving/restoring of these registers on
|
|
* behalf of the SP. This falls under the SP's responsibility.
|
|
* TTA: Enable access to trace registers.
|
|
* ZEN (v8.2): Trap SVE instructions and access to SVE registers.
|
|
*/
|
|
write_el1_ctx_common(get_el1_sysregs_ctx(ctx), cpacr_el1,
|
|
CPACR_EL1_FPEN(CPACR_EL1_FP_TRAP_NONE));
|
|
|
|
/*
|
|
* Prepare information in buffer shared between EL3 and S-EL0
|
|
* ----------------------------------------------------------
|
|
*/
|
|
#if HOB_LIST && TRANSFER_LIST
|
|
sp_boot_tl = transfer_list_init((void *) sp_boot_info->sp_shared_buf_base,
|
|
sp_boot_info->sp_shared_buf_size);
|
|
assert(sp_boot_tl != NULL);
|
|
|
|
hob_table = build_sp_boot_hob_list(sp_boot_info, &hob_table_size);
|
|
assert(hob_table != NULL);
|
|
|
|
transfer_list_update_checksum(sp_boot_tl);
|
|
|
|
sp_boot_te = transfer_list_add(sp_boot_tl, TL_TAG_HOB_LIST,
|
|
hob_table_size, hob_table);
|
|
if (sp_boot_te == NULL) {
|
|
ERROR("Failed to add HOB list to xfer list\n");
|
|
}
|
|
|
|
transfer_list_set_handoff_args(sp_boot_tl, &ep_info);
|
|
|
|
transfer_list_dump(sp_boot_tl);
|
|
|
|
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X0,
|
|
ep_info.args.arg0);
|
|
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X1,
|
|
ep_info.args.arg1);
|
|
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X2,
|
|
ep_info.args.arg2);
|
|
write_ctx_reg(get_gpregs_ctx(ctx), CTX_GPREG_X3,
|
|
ep_info.args.arg3);
|
|
#else
|
|
void *shared_buf_ptr = (void *) sp_boot_info->sp_shared_buf_base;
|
|
|
|
/* Copy the boot information into the shared buffer with the SP. */
|
|
assert((uintptr_t)shared_buf_ptr + sizeof(spm_mm_boot_info_t)
|
|
<= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size));
|
|
|
|
assert(sp_boot_info->sp_shared_buf_base <=
|
|
(UINTPTR_MAX - sp_boot_info->sp_shared_buf_size + 1));
|
|
|
|
|
|
memcpy((void *) shared_buf_ptr, (const void *) sp_boot_info,
|
|
sizeof(spm_mm_boot_info_t));
|
|
|
|
/* Pointer to the MP information from the platform port. */
|
|
spm_mm_mp_info_t *sp_mp_info =
|
|
((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
|
|
|
|
assert(sp_mp_info != NULL);
|
|
|
|
/*
|
|
* Point the shared buffer MP information pointer to where the info will
|
|
* be populated, just after the boot info.
|
|
*/
|
|
((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info =
|
|
(spm_mm_mp_info_t *) ((uintptr_t)shared_buf_ptr
|
|
+ sizeof(spm_mm_boot_info_t));
|
|
|
|
/*
|
|
* Update the shared buffer pointer to where the MP information for the
|
|
* payload will be populated
|
|
*/
|
|
shared_buf_ptr = ((spm_mm_boot_info_t *) shared_buf_ptr)->mp_info;
|
|
|
|
/*
|
|
* Copy the cpu information into the shared buffer area after the boot
|
|
* information.
|
|
*/
|
|
assert(sp_boot_info->num_cpus <= PLATFORM_CORE_COUNT);
|
|
|
|
assert((uintptr_t)shared_buf_ptr
|
|
<= (sp_boot_info->sp_shared_buf_base + sp_boot_info->sp_shared_buf_size -
|
|
(sp_boot_info->num_cpus * sizeof(*sp_mp_info))));
|
|
|
|
memcpy(shared_buf_ptr, (const void *) sp_mp_info,
|
|
sp_boot_info->num_cpus * sizeof(*sp_mp_info));
|
|
|
|
/*
|
|
* Calculate the linear indices of cores in boot information for the
|
|
* secure partition and flag the primary CPU
|
|
*/
|
|
sp_mp_info = (spm_mm_mp_info_t *) shared_buf_ptr;
|
|
|
|
for (unsigned int index = 0; index < sp_boot_info->num_cpus; index++) {
|
|
u_register_t mpidr = sp_mp_info[index].mpidr;
|
|
|
|
sp_mp_info[index].linear_id = plat_core_pos_by_mpidr(mpidr);
|
|
if (plat_my_core_pos() == sp_mp_info[index].linear_id)
|
|
sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
|
|
}
|
|
#endif
|
|
}
|