mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-16 17:44:19 +00:00

We have do something for clocks gate. Fox example as the below: susped: clk_gate_con_save(); clk_gate_con_disable(); resume: clk_gate_con_restore(); -- SO, add the plls_suspend_prepare() and plls_resume_finish() are not necessary to S2R, that will save S2R time if remove them. BRANCH=none BUG=chrome-os-partner:58870,chrome-os-partner:55934 TEST=build kevin, two dogfooders with suspend_stress_test passing 3000 cycles and still going on. Change-Id: Icfbabc0b3ea8d2b5108d4f3de99a803b6d459669 Signed-off-by: Caesar Wang <wxt@rock-chips.com>
1348 lines
38 KiB
C
1348 lines
38 KiB
C
/*
|
|
* Copyright (c) 2016, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <bakery_lock.h>
|
|
#include <debug.h>
|
|
#include <delay_timer.h>
|
|
#include <errno.h>
|
|
#include <gpio.h>
|
|
#include <mmio.h>
|
|
#include <platform.h>
|
|
#include <platform_def.h>
|
|
#include <plat_params.h>
|
|
#include <plat_private.h>
|
|
#include <rk3399_def.h>
|
|
#include <pmu_sram.h>
|
|
#include <soc.h>
|
|
#include <pmu.h>
|
|
#include <pmu_com.h>
|
|
#include <pwm.h>
|
|
#include <bl31.h>
|
|
#include <rk3399m0.h>
|
|
#include <suspend.h>
|
|
|
|
DEFINE_BAKERY_LOCK(rockchip_pd_lock);
|
|
|
|
static struct psram_data_t *psram_sleep_cfg =
|
|
(struct psram_data_t *)PSRAM_DT_BASE;
|
|
|
|
static uint32_t cpu_warm_boot_addr;
|
|
|
|
/*
|
|
* There are two ways to powering on or off on core.
|
|
* 1) Control it power domain into on or off in PMU_PWRDN_CON reg,
|
|
* it is core_pwr_pd mode
|
|
* 2) Enable the core power manage in PMU_CORE_PM_CON reg,
|
|
* then, if the core enter into wfi, it power domain will be
|
|
* powered off automatically. it is core_pwr_wfi or core_pwr_wfi_int mode
|
|
* so we need core_pm_cfg_info to distinguish which method be used now.
|
|
*/
|
|
|
|
static uint32_t core_pm_cfg_info[PLATFORM_CORE_COUNT]
|
|
#if USE_COHERENT_MEM
|
|
__attribute__ ((section("tzfw_coherent_mem")))
|
|
#endif
|
|
;/* coheront */
|
|
|
|
static void pmu_bus_idle_req(uint32_t bus, uint32_t state)
|
|
{
|
|
uint32_t bus_id = BIT(bus);
|
|
uint32_t bus_req;
|
|
uint32_t wait_cnt = 0;
|
|
uint32_t bus_state, bus_ack;
|
|
|
|
if (state)
|
|
bus_req = BIT(bus);
|
|
else
|
|
bus_req = 0;
|
|
|
|
mmio_clrsetbits_32(PMU_BASE + PMU_BUS_IDLE_REQ, bus_id, bus_req);
|
|
|
|
do {
|
|
bus_state = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST) & bus_id;
|
|
bus_ack = mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK) & bus_id;
|
|
wait_cnt++;
|
|
} while ((bus_state != bus_req || bus_ack != bus_req) &&
|
|
(wait_cnt < MAX_WAIT_COUNT));
|
|
|
|
if (bus_state != bus_req || bus_ack != bus_req) {
|
|
INFO("%s:st=%x(%x)\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ST),
|
|
bus_state);
|
|
INFO("%s:st=%x(%x)\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_BUS_IDLE_ACK),
|
|
bus_ack);
|
|
}
|
|
}
|
|
|
|
struct pmu_slpdata_s pmu_slpdata;
|
|
|
|
static void qos_save(void)
|
|
{
|
|
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.gpu_qos, GPU);
|
|
if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
|
|
RESTORE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
|
|
RESTORE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
|
|
RESTORE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
|
|
RESTORE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
|
|
}
|
|
if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.hdcp_qos, HDCP);
|
|
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.gmac_qos, GMAC);
|
|
if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
|
|
RESTORE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
|
|
if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.emmc_qos, EMMC);
|
|
if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.sdio_qos, SDIO);
|
|
if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.gic_qos, GIC);
|
|
if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
|
|
RESTORE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
|
|
}
|
|
if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.iep_qos, IEP);
|
|
if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
|
|
RESTORE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
|
|
}
|
|
if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
|
|
RESTORE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
|
|
RESTORE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
|
|
}
|
|
if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
|
|
RESTORE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
|
|
RESTORE_QOS(pmu_slpdata.dcf_qos, DCF);
|
|
RESTORE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
|
|
RESTORE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
|
|
RESTORE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
|
|
RESTORE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
|
|
RESTORE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
|
|
}
|
|
if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
|
|
RESTORE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
|
|
if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
|
|
RESTORE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
|
|
RESTORE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
|
|
}
|
|
}
|
|
|
|
static void qos_restore(void)
|
|
{
|
|
if (pmu_power_domain_st(PD_GPU) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.gpu_qos, GPU);
|
|
if (pmu_power_domain_st(PD_ISP0) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.isp0_m0_qos, ISP0_M0);
|
|
SAVE_QOS(pmu_slpdata.isp0_m1_qos, ISP0_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_ISP1) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.isp1_m0_qos, ISP1_M0);
|
|
SAVE_QOS(pmu_slpdata.isp1_m1_qos, ISP1_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_VO) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.vop_big_r, VOP_BIG_R);
|
|
SAVE_QOS(pmu_slpdata.vop_big_w, VOP_BIG_W);
|
|
SAVE_QOS(pmu_slpdata.vop_little, VOP_LITTLE);
|
|
}
|
|
if (pmu_power_domain_st(PD_HDCP) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.hdcp_qos, HDCP);
|
|
if (pmu_power_domain_st(PD_GMAC) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.gmac_qos, GMAC);
|
|
if (pmu_power_domain_st(PD_CCI) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.cci_m0_qos, CCI_M0);
|
|
SAVE_QOS(pmu_slpdata.cci_m1_qos, CCI_M1);
|
|
}
|
|
if (pmu_power_domain_st(PD_SD) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.sdmmc_qos, SDMMC);
|
|
if (pmu_power_domain_st(PD_EMMC) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.emmc_qos, EMMC);
|
|
if (pmu_power_domain_st(PD_SDIOAUDIO) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.sdio_qos, SDIO);
|
|
if (pmu_power_domain_st(PD_GIC) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.gic_qos, GIC);
|
|
if (pmu_power_domain_st(PD_RGA) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.rga_r_qos, RGA_R);
|
|
SAVE_QOS(pmu_slpdata.rga_w_qos, RGA_W);
|
|
}
|
|
if (pmu_power_domain_st(PD_IEP) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.iep_qos, IEP);
|
|
if (pmu_power_domain_st(PD_USB3) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.usb_otg0_qos, USB_OTG0);
|
|
SAVE_QOS(pmu_slpdata.usb_otg1_qos, USB_OTG1);
|
|
}
|
|
if (pmu_power_domain_st(PD_PERIHP) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.usb_host0_qos, USB_HOST0);
|
|
SAVE_QOS(pmu_slpdata.usb_host1_qos, USB_HOST1);
|
|
SAVE_QOS(pmu_slpdata.perihp_nsp_qos, PERIHP_NSP);
|
|
}
|
|
if (pmu_power_domain_st(PD_PERILP) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.dmac0_qos, DMAC0);
|
|
SAVE_QOS(pmu_slpdata.dmac1_qos, DMAC1);
|
|
SAVE_QOS(pmu_slpdata.dcf_qos, DCF);
|
|
SAVE_QOS(pmu_slpdata.crypto0_qos, CRYPTO0);
|
|
SAVE_QOS(pmu_slpdata.crypto1_qos, CRYPTO1);
|
|
SAVE_QOS(pmu_slpdata.perilp_nsp_qos, PERILP_NSP);
|
|
SAVE_QOS(pmu_slpdata.perilpslv_nsp_qos, PERILPSLV_NSP);
|
|
SAVE_QOS(pmu_slpdata.peri_cm1_qos, PERI_CM1);
|
|
}
|
|
if (pmu_power_domain_st(PD_VDU) == pmu_pd_on)
|
|
SAVE_QOS(pmu_slpdata.video_m0_qos, VIDEO_M0);
|
|
if (pmu_power_domain_st(PD_VCODEC) == pmu_pd_on) {
|
|
SAVE_QOS(pmu_slpdata.video_m1_r_qos, VIDEO_M1_R);
|
|
SAVE_QOS(pmu_slpdata.video_m1_w_qos, VIDEO_M1_W);
|
|
}
|
|
}
|
|
|
|
static int pmu_set_power_domain(uint32_t pd_id, uint32_t pd_state)
|
|
{
|
|
uint32_t state;
|
|
|
|
if (pmu_power_domain_st(pd_id) == pd_state)
|
|
goto out;
|
|
|
|
if (pd_state == pmu_pd_on)
|
|
pmu_power_domain_ctr(pd_id, pd_state);
|
|
|
|
state = (pd_state == pmu_pd_off) ? BUS_IDLE : BUS_ACTIVE;
|
|
|
|
switch (pd_id) {
|
|
case PD_GPU:
|
|
pmu_bus_idle_req(BUS_ID_GPU, state);
|
|
break;
|
|
case PD_VIO:
|
|
pmu_bus_idle_req(BUS_ID_VIO, state);
|
|
break;
|
|
case PD_ISP0:
|
|
pmu_bus_idle_req(BUS_ID_ISP0, state);
|
|
break;
|
|
case PD_ISP1:
|
|
pmu_bus_idle_req(BUS_ID_ISP1, state);
|
|
break;
|
|
case PD_VO:
|
|
pmu_bus_idle_req(BUS_ID_VOPB, state);
|
|
pmu_bus_idle_req(BUS_ID_VOPL, state);
|
|
break;
|
|
case PD_HDCP:
|
|
pmu_bus_idle_req(BUS_ID_HDCP, state);
|
|
break;
|
|
case PD_TCPD0:
|
|
break;
|
|
case PD_TCPD1:
|
|
break;
|
|
case PD_GMAC:
|
|
pmu_bus_idle_req(BUS_ID_GMAC, state);
|
|
break;
|
|
case PD_CCI:
|
|
pmu_bus_idle_req(BUS_ID_CCIM0, state);
|
|
pmu_bus_idle_req(BUS_ID_CCIM1, state);
|
|
break;
|
|
case PD_SD:
|
|
pmu_bus_idle_req(BUS_ID_SD, state);
|
|
break;
|
|
case PD_EMMC:
|
|
pmu_bus_idle_req(BUS_ID_EMMC, state);
|
|
break;
|
|
case PD_EDP:
|
|
pmu_bus_idle_req(BUS_ID_EDP, state);
|
|
break;
|
|
case PD_SDIOAUDIO:
|
|
pmu_bus_idle_req(BUS_ID_SDIOAUDIO, state);
|
|
break;
|
|
case PD_GIC:
|
|
pmu_bus_idle_req(BUS_ID_GIC, state);
|
|
break;
|
|
case PD_RGA:
|
|
pmu_bus_idle_req(BUS_ID_RGA, state);
|
|
break;
|
|
case PD_VCODEC:
|
|
pmu_bus_idle_req(BUS_ID_VCODEC, state);
|
|
break;
|
|
case PD_VDU:
|
|
pmu_bus_idle_req(BUS_ID_VDU, state);
|
|
break;
|
|
case PD_IEP:
|
|
pmu_bus_idle_req(BUS_ID_IEP, state);
|
|
break;
|
|
case PD_USB3:
|
|
pmu_bus_idle_req(BUS_ID_USB3, state);
|
|
break;
|
|
case PD_PERIHP:
|
|
pmu_bus_idle_req(BUS_ID_PERIHP, state);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (pd_state == pmu_pd_off)
|
|
pmu_power_domain_ctr(pd_id, pd_state);
|
|
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t pmu_powerdomain_state;
|
|
|
|
static void pmu_power_domains_suspend(void)
|
|
{
|
|
clk_gate_con_save();
|
|
clk_gate_con_disable();
|
|
qos_save();
|
|
pmu_powerdomain_state = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
|
|
pmu_set_power_domain(PD_GPU, pmu_pd_off);
|
|
pmu_set_power_domain(PD_TCPD0, pmu_pd_off);
|
|
pmu_set_power_domain(PD_TCPD1, pmu_pd_off);
|
|
pmu_set_power_domain(PD_VO, pmu_pd_off);
|
|
pmu_set_power_domain(PD_ISP0, pmu_pd_off);
|
|
pmu_set_power_domain(PD_ISP1, pmu_pd_off);
|
|
pmu_set_power_domain(PD_HDCP, pmu_pd_off);
|
|
pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_off);
|
|
pmu_set_power_domain(PD_GMAC, pmu_pd_off);
|
|
pmu_set_power_domain(PD_EDP, pmu_pd_off);
|
|
pmu_set_power_domain(PD_IEP, pmu_pd_off);
|
|
pmu_set_power_domain(PD_RGA, pmu_pd_off);
|
|
pmu_set_power_domain(PD_VCODEC, pmu_pd_off);
|
|
pmu_set_power_domain(PD_VDU, pmu_pd_off);
|
|
clk_gate_con_restore();
|
|
}
|
|
|
|
static void pmu_power_domains_resume(void)
|
|
{
|
|
clk_gate_con_save();
|
|
clk_gate_con_disable();
|
|
if (!(pmu_powerdomain_state & BIT(PD_VDU)))
|
|
pmu_set_power_domain(PD_VDU, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_VCODEC)))
|
|
pmu_set_power_domain(PD_VCODEC, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_RGA)))
|
|
pmu_set_power_domain(PD_RGA, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_IEP)))
|
|
pmu_set_power_domain(PD_IEP, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_EDP)))
|
|
pmu_set_power_domain(PD_EDP, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_GMAC)))
|
|
pmu_set_power_domain(PD_GMAC, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_SDIOAUDIO)))
|
|
pmu_set_power_domain(PD_SDIOAUDIO, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_HDCP)))
|
|
pmu_set_power_domain(PD_HDCP, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_ISP1)))
|
|
pmu_set_power_domain(PD_ISP1, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_ISP0)))
|
|
pmu_set_power_domain(PD_ISP0, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_VO)))
|
|
pmu_set_power_domain(PD_VO, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_TCPD1)))
|
|
pmu_set_power_domain(PD_TCPD1, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_TCPD0)))
|
|
pmu_set_power_domain(PD_TCPD0, pmu_pd_on);
|
|
if (!(pmu_powerdomain_state & BIT(PD_GPU)))
|
|
pmu_set_power_domain(PD_GPU, pmu_pd_on);
|
|
qos_restore();
|
|
clk_gate_con_restore();
|
|
}
|
|
|
|
void rk3399_flash_l2_b(void)
|
|
{
|
|
uint32_t wait_cnt = 0;
|
|
|
|
mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
|
|
dsb();
|
|
|
|
while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
|
|
BIT(L2_FLUSHDONE_CLUSTER_B))) {
|
|
wait_cnt++;
|
|
if (wait_cnt >= MAX_WAIT_COUNT)
|
|
WARN("%s:reg %x,wait\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
|
|
}
|
|
|
|
mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(L2_FLUSH_REQ_CLUSTER_B));
|
|
}
|
|
|
|
static void pmu_scu_b_pwrdn(void)
|
|
{
|
|
uint32_t wait_cnt = 0;
|
|
|
|
if ((mmio_read_32(PMU_BASE + PMU_PWRDN_ST) &
|
|
(BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) !=
|
|
(BIT(PMU_A72_B0_PWRDWN_ST) | BIT(PMU_A72_B1_PWRDWN_ST))) {
|
|
ERROR("%s: not all cpus is off\n", __func__);
|
|
return;
|
|
}
|
|
|
|
rk3399_flash_l2_b();
|
|
|
|
mmio_setbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
|
|
|
|
while (!(mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST) &
|
|
BIT(STANDBY_BY_WFIL2_CLUSTER_B))) {
|
|
wait_cnt++;
|
|
if (wait_cnt >= MAX_WAIT_COUNT)
|
|
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_CORE_PWR_ST));
|
|
}
|
|
}
|
|
|
|
static void pmu_scu_b_pwrup(void)
|
|
{
|
|
mmio_clrbits_32(PMU_BASE + PMU_SFT_CON, BIT(ACINACTM_CLUSTER_B_CFG));
|
|
}
|
|
|
|
void plat_rockchip_pmusram_prepare(void)
|
|
{
|
|
uint32_t *sram_dst, *sram_src;
|
|
size_t sram_size;
|
|
|
|
/*
|
|
* pmu sram code and data prepare
|
|
*/
|
|
sram_dst = (uint32_t *)PMUSRAM_BASE;
|
|
sram_src = (uint32_t *)&pmu_cpuson_entrypoint_start;
|
|
sram_size = (uint32_t *)&pmu_cpuson_entrypoint_end -
|
|
(uint32_t *)sram_src;
|
|
|
|
u32_align_cpy(sram_dst, sram_src, sram_size);
|
|
|
|
psram_sleep_cfg->sp = PSRAM_DT_BASE;
|
|
}
|
|
|
|
static inline uint32_t get_cpus_pwr_domain_cfg_info(uint32_t cpu_id)
|
|
{
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
return core_pm_cfg_info[cpu_id];
|
|
}
|
|
|
|
static inline void set_cpus_pwr_domain_cfg_info(uint32_t cpu_id, uint32_t value)
|
|
{
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
core_pm_cfg_info[cpu_id] = value;
|
|
#if !USE_COHERENT_MEM
|
|
flush_dcache_range((uintptr_t)&core_pm_cfg_info[cpu_id],
|
|
sizeof(uint32_t));
|
|
#endif
|
|
}
|
|
|
|
static int cpus_power_domain_on(uint32_t cpu_id)
|
|
{
|
|
uint32_t cfg_info;
|
|
uint32_t cpu_pd = PD_CPUL0 + cpu_id;
|
|
/*
|
|
* There are two ways to powering on or off on core.
|
|
* 1) Control it power domain into on or off in PMU_PWRDN_CON reg
|
|
* 2) Enable the core power manage in PMU_CORE_PM_CON reg,
|
|
* then, if the core enter into wfi, it power domain will be
|
|
* powered off automatically.
|
|
*/
|
|
|
|
cfg_info = get_cpus_pwr_domain_cfg_info(cpu_id);
|
|
|
|
if (cfg_info == core_pwr_pd) {
|
|
/* disable core_pm cfg */
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
|
|
CORES_PM_DISABLE);
|
|
/* if the cores have be on, power off it firstly */
|
|
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), 0);
|
|
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
|
|
}
|
|
|
|
pmu_power_domain_ctr(cpu_pd, pmu_pd_on);
|
|
} else {
|
|
if (pmu_power_domain_st(cpu_pd) == pmu_pd_on) {
|
|
WARN("%s: cpu%d is not in off,!\n", __func__, cpu_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
|
|
BIT(core_pm_sft_wakeup_en));
|
|
dsb();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpus_power_domain_off(uint32_t cpu_id, uint32_t pd_cfg)
|
|
{
|
|
uint32_t cpu_pd;
|
|
uint32_t core_pm_value;
|
|
|
|
cpu_pd = PD_CPUL0 + cpu_id;
|
|
if (pmu_power_domain_st(cpu_pd) == pmu_pd_off)
|
|
return 0;
|
|
|
|
if (pd_cfg == core_pwr_pd) {
|
|
if (check_cpu_wfie(cpu_id, CKECK_WFEI_MSK))
|
|
return -EINVAL;
|
|
|
|
/* disable core_pm cfg */
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
|
|
CORES_PM_DISABLE);
|
|
|
|
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
|
|
pmu_power_domain_ctr(cpu_pd, pmu_pd_off);
|
|
} else {
|
|
set_cpus_pwr_domain_cfg_info(cpu_id, pd_cfg);
|
|
|
|
core_pm_value = BIT(core_pm_en);
|
|
if (pd_cfg == core_pwr_wfi_int)
|
|
core_pm_value |= BIT(core_pm_int_wakeup_en);
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
|
|
core_pm_value);
|
|
dsb();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void clst_pwr_domain_suspend(plat_local_state_t lvl_state)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
uint32_t pll_id, clst_st_msk, clst_st_chk_msk, pmu_st;
|
|
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
|
|
if (lvl_state == PLAT_MAX_OFF_STATE) {
|
|
if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT) {
|
|
pll_id = ALPLL_ID;
|
|
clst_st_msk = CLST_L_CPUS_MSK;
|
|
} else {
|
|
pll_id = ABPLL_ID;
|
|
clst_st_msk = CLST_B_CPUS_MSK <<
|
|
PLATFORM_CLUSTER0_CORE_COUNT;
|
|
}
|
|
|
|
clst_st_chk_msk = clst_st_msk & ~(BIT(cpu_id));
|
|
|
|
pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
|
|
|
|
pmu_st &= clst_st_msk;
|
|
|
|
if (pmu_st == clst_st_chk_msk) {
|
|
mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
|
|
PLL_SLOW_MODE);
|
|
|
|
clst_warmboot_data[pll_id] = PMU_CLST_RET;
|
|
|
|
pmu_st = mmio_read_32(PMU_BASE + PMU_PWRDN_ST);
|
|
pmu_st &= clst_st_msk;
|
|
if (pmu_st == clst_st_chk_msk)
|
|
return;
|
|
/*
|
|
* it is mean that others cpu is up again,
|
|
* we must resume the cfg at once.
|
|
*/
|
|
mmio_write_32(CRU_BASE + CRU_PLL_CON(pll_id, 3),
|
|
PLL_NOMAL_MODE);
|
|
clst_warmboot_data[pll_id] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int clst_pwr_domain_resume(plat_local_state_t lvl_state)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
uint32_t pll_id, pll_st;
|
|
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
|
|
if (lvl_state == PLAT_MAX_OFF_STATE) {
|
|
if (cpu_id < PLATFORM_CLUSTER0_CORE_COUNT)
|
|
pll_id = ALPLL_ID;
|
|
else
|
|
pll_id = ABPLL_ID;
|
|
|
|
pll_st = mmio_read_32(CRU_BASE + CRU_PLL_CON(pll_id, 3)) >>
|
|
PLL_MODE_SHIFT;
|
|
|
|
if (pll_st != NORMAL_MODE) {
|
|
WARN("%s: clst (%d) is in error mode (%d)\n",
|
|
__func__, pll_id, pll_st);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nonboot_cpus_off(void)
|
|
{
|
|
uint32_t boot_cpu, cpu;
|
|
|
|
boot_cpu = plat_my_core_pos();
|
|
|
|
/* turn off noboot cpus */
|
|
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++) {
|
|
if (cpu == boot_cpu)
|
|
continue;
|
|
cpus_power_domain_off(cpu, core_pwr_pd);
|
|
}
|
|
}
|
|
|
|
static int cores_pwr_domain_on(unsigned long mpidr, uint64_t entrypoint)
|
|
{
|
|
uint32_t cpu_id = plat_core_pos_by_mpidr(mpidr);
|
|
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
assert(cpuson_flags[cpu_id] == 0);
|
|
cpuson_flags[cpu_id] = PMU_CPU_HOTPLUG;
|
|
cpuson_entry_point[cpu_id] = entrypoint;
|
|
dsb();
|
|
|
|
cpus_power_domain_on(cpu_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cores_pwr_domain_off(void)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
|
|
cpus_power_domain_off(cpu_id, core_pwr_wfi);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hlvl_pwr_domain_off(uint32_t lvl, plat_local_state_t lvl_state)
|
|
{
|
|
switch (lvl) {
|
|
case MPIDR_AFFLVL1:
|
|
clst_pwr_domain_suspend(lvl_state);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cores_pwr_domain_suspend(void)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
|
|
assert(cpu_id < PLATFORM_CORE_COUNT);
|
|
assert(cpuson_flags[cpu_id] == 0);
|
|
cpuson_flags[cpu_id] = PMU_CPU_AUTO_PWRDN;
|
|
cpuson_entry_point[cpu_id] = plat_get_sec_entrypoint();
|
|
dsb();
|
|
|
|
cpus_power_domain_off(cpu_id, core_pwr_wfi_int);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hlvl_pwr_domain_suspend(uint32_t lvl, plat_local_state_t lvl_state)
|
|
{
|
|
switch (lvl) {
|
|
case MPIDR_AFFLVL1:
|
|
clst_pwr_domain_suspend(lvl_state);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cores_pwr_domain_on_finish(void)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id),
|
|
CORES_PM_DISABLE);
|
|
return 0;
|
|
}
|
|
|
|
static int hlvl_pwr_domain_on_finish(uint32_t lvl,
|
|
plat_local_state_t lvl_state)
|
|
{
|
|
switch (lvl) {
|
|
case MPIDR_AFFLVL1:
|
|
clst_pwr_domain_resume(lvl_state);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cores_pwr_domain_resume(void)
|
|
{
|
|
uint32_t cpu_id = plat_my_core_pos();
|
|
|
|
/* Disable core_pm */
|
|
mmio_write_32(PMU_BASE + PMU_CORE_PM_CON(cpu_id), CORES_PM_DISABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hlvl_pwr_domain_resume(uint32_t lvl, plat_local_state_t lvl_state)
|
|
{
|
|
switch (lvl) {
|
|
case MPIDR_AFFLVL1:
|
|
clst_pwr_domain_resume(lvl_state);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* init_pmu_counts - Init timing counts in the PMU register area
|
|
*
|
|
* At various points when we power up or down parts of the system we need
|
|
* a delay to wait for power / clocks to become stable. The PMU has counters
|
|
* to help software do the delay properly. Basically, it works like this:
|
|
* - Software sets up counter values
|
|
* - When software turns on something in the PMU, the counter kicks off
|
|
* - The hardware sets a bit automatically when the counter has finished and
|
|
* software knows that the initialization is done.
|
|
*
|
|
* It's software's job to setup these counters. The hardware power on default
|
|
* for these settings is conservative, setting everything to 0x5dc0
|
|
* (750 ms in 32 kHz counts or 1 ms in 24 MHz counts).
|
|
*
|
|
* Note that some of these counters are only really used at suspend/resume
|
|
* time (for instance, that's the only time we turn off/on the oscillator) and
|
|
* others are used during normal runtime (like turning on/off a CPU or GPU) but
|
|
* it doesn't hurt to init everything at boot.
|
|
*
|
|
* Also note that these counters can run off the 32 kHz clock or the 24 MHz
|
|
* clock. While the 24 MHz clock can give us more precision, it's not always
|
|
* available (like when we turn the oscillator off at sleep time). The
|
|
* pmu_use_lf (lf: low freq) is available in power mode. Current understanding
|
|
* is that counts work like this:
|
|
* IF (pmu_use_lf == 0) || (power_mode_en == 0)
|
|
* use the 24M OSC for counts
|
|
* ELSE
|
|
* use the 32K OSC for counts
|
|
*
|
|
* Notes:
|
|
* - There is a separate bit for the PMU called PMU_24M_EN_CFG. At the moment
|
|
* we always keep that 0. This apparently choose between using the PLL as
|
|
* the source for the PMU vs. the 24M clock. If we ever set it to 1 we
|
|
* should consider how it affects these counts (if at all).
|
|
* - The power_mode_en is documented to auto-clear automatically when we leave
|
|
* "power mode". That's why most clocks are on 24M. Only timings used when
|
|
* in "power mode" are 32k.
|
|
* - In some cases the kernel may override these counts.
|
|
*
|
|
* The PMU_STABLE_CNT / PMU_OSC_CNT / PMU_PLLLOCK_CNT are important CNTs
|
|
* in power mode, we need to ensure that they are available.
|
|
*/
|
|
static void init_pmu_counts(void)
|
|
{
|
|
/* COUNTS FOR INSIDE POWER MODE */
|
|
|
|
/*
|
|
* From limited testing, need PMU stable >= 2ms, but go overkill
|
|
* and choose 30 ms to match testing on past SoCs. Also let
|
|
* OSC have 30 ms for stabilization.
|
|
*/
|
|
mmio_write_32(PMU_BASE + PMU_STABLE_CNT, CYCL_32K_CNT_MS(30));
|
|
mmio_write_32(PMU_BASE + PMU_OSC_CNT, CYCL_32K_CNT_MS(30));
|
|
|
|
/* Unclear what these should be; try 3 ms */
|
|
mmio_write_32(PMU_BASE + PMU_WAKEUP_RST_CLR_CNT, CYCL_32K_CNT_MS(3));
|
|
|
|
/* Unclear what this should be, but set the default explicitly */
|
|
mmio_write_32(PMU_BASE + PMU_TIMEOUT_CNT, 0x5dc0);
|
|
|
|
/* COUNTS FOR OUTSIDE POWER MODE */
|
|
|
|
/* Put something sorta conservative here until we know better */
|
|
mmio_write_32(PMU_BASE + PMU_PLLLOCK_CNT, CYCL_24M_CNT_MS(3));
|
|
mmio_write_32(PMU_BASE + PMU_DDRIO_PWRON_CNT, CYCL_24M_CNT_MS(1));
|
|
mmio_write_32(PMU_BASE + PMU_CENTER_PWRDN_CNT, CYCL_24M_CNT_MS(1));
|
|
mmio_write_32(PMU_BASE + PMU_CENTER_PWRUP_CNT, CYCL_24M_CNT_MS(1));
|
|
|
|
/*
|
|
* Set CPU/GPU to 1 us.
|
|
*
|
|
* NOTE: Even though ATF doesn't configure the GPU we'll still setup
|
|
* counts here. After all ATF controls all these other bits and also
|
|
* chooses which clock these counters use.
|
|
*/
|
|
mmio_write_32(PMU_BASE + PMU_SCU_L_PWRDN_CNT, CYCL_24M_CNT_US(1));
|
|
mmio_write_32(PMU_BASE + PMU_SCU_L_PWRUP_CNT, CYCL_24M_CNT_US(1));
|
|
mmio_write_32(PMU_BASE + PMU_SCU_B_PWRDN_CNT, CYCL_24M_CNT_US(1));
|
|
mmio_write_32(PMU_BASE + PMU_SCU_B_PWRUP_CNT, CYCL_24M_CNT_US(1));
|
|
mmio_write_32(PMU_BASE + PMU_GPU_PWRDN_CNT, CYCL_24M_CNT_US(1));
|
|
mmio_write_32(PMU_BASE + PMU_GPU_PWRUP_CNT, CYCL_24M_CNT_US(1));
|
|
}
|
|
|
|
static uint32_t clk_ddrc_save;
|
|
|
|
static void sys_slp_config(void)
|
|
{
|
|
uint32_t slp_mode_cfg = 0;
|
|
|
|
/* keep enabling clk_ddrc_bpll_src_en gate for DDRC */
|
|
clk_ddrc_save = mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(3));
|
|
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3), WMSK_BIT(1));
|
|
|
|
prepare_abpll_for_ddrctrl();
|
|
sram_func_set_ddrctl_pll(ABPLL_ID);
|
|
|
|
mmio_write_32(GRF_BASE + GRF_SOC_CON4, CCI_FORCE_WAKEUP);
|
|
mmio_write_32(PMU_BASE + PMU_CCI500_CON,
|
|
BIT_WITH_WMSK(PMU_CLR_PREQ_CCI500_HW) |
|
|
BIT_WITH_WMSK(PMU_CLR_QREQ_CCI500_HW) |
|
|
BIT_WITH_WMSK(PMU_QGATING_CCI500_CFG));
|
|
|
|
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
|
|
BIT_WITH_WMSK(PMU_CLR_CORE_L_HW) |
|
|
BIT_WITH_WMSK(PMU_CLR_CORE_L_2GIC_HW) |
|
|
BIT_WITH_WMSK(PMU_CLR_GIC2_CORE_L_HW));
|
|
|
|
slp_mode_cfg = BIT(PMU_PWR_MODE_EN) |
|
|
BIT(PMU_POWER_OFF_REQ_CFG) |
|
|
BIT(PMU_CPU0_PD_EN) |
|
|
BIT(PMU_L2_FLUSH_EN) |
|
|
BIT(PMU_L2_IDLE_EN) |
|
|
BIT(PMU_SCU_PD_EN) |
|
|
BIT(PMU_CCI_PD_EN) |
|
|
BIT(PMU_CLK_CORE_SRC_GATE_EN) |
|
|
BIT(PMU_ALIVE_USE_LF) |
|
|
BIT(PMU_SREF0_ENTER_EN) |
|
|
BIT(PMU_SREF1_ENTER_EN) |
|
|
BIT(PMU_DDRC0_GATING_EN) |
|
|
BIT(PMU_DDRC1_GATING_EN) |
|
|
BIT(PMU_DDRIO0_RET_EN) |
|
|
BIT(PMU_DDRIO1_RET_EN) |
|
|
BIT(PMU_DDRIO_RET_HW_DE_REQ) |
|
|
BIT(PMU_CENTER_PD_EN) |
|
|
BIT(PMU_PLL_PD_EN) |
|
|
BIT(PMU_CLK_CENTER_SRC_GATE_EN) |
|
|
BIT(PMU_OSC_DIS) |
|
|
BIT(PMU_PMU_USE_LF);
|
|
|
|
mmio_setbits_32(PMU_BASE + PMU_WKUP_CFG4, BIT(PMU_GPIO_WKUP_EN));
|
|
mmio_write_32(PMU_BASE + PMU_PWRMODE_CON, slp_mode_cfg);
|
|
|
|
mmio_write_32(PMU_BASE + PMU_PLL_CON, PLL_PD_HW);
|
|
mmio_write_32(PMUGRF_BASE + PMUGRF_SOC_CON0, EXTERNAL_32K);
|
|
mmio_write_32(PMUGRF_BASE, IOMUX_CLK_32K); /* 32k iomux */
|
|
}
|
|
|
|
static void set_hw_idle(uint32_t hw_idle)
|
|
{
|
|
mmio_setbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
|
|
}
|
|
|
|
static void clr_hw_idle(uint32_t hw_idle)
|
|
{
|
|
mmio_clrbits_32(PMU_BASE + PMU_BUS_CLR, hw_idle);
|
|
}
|
|
|
|
static uint32_t iomux_status[12];
|
|
static uint32_t pull_mode_status[12];
|
|
static uint32_t gpio_direction[3];
|
|
static uint32_t gpio_2_4_clk_gate;
|
|
|
|
static void suspend_apio(void)
|
|
{
|
|
struct apio_info *suspend_apio;
|
|
int i;
|
|
|
|
suspend_apio = plat_get_rockchip_suspend_apio();
|
|
|
|
if (!suspend_apio)
|
|
return;
|
|
|
|
/* save gpio2 ~ gpio4 iomux and pull mode */
|
|
for (i = 0; i < 12; i++) {
|
|
iomux_status[i] = mmio_read_32(GRF_BASE +
|
|
GRF_GPIO2A_IOMUX + i * 4);
|
|
pull_mode_status[i] = mmio_read_32(GRF_BASE +
|
|
GRF_GPIO2A_P + i * 4);
|
|
}
|
|
|
|
/* store gpio2 ~ gpio4 clock gate state */
|
|
gpio_2_4_clk_gate = (mmio_read_32(CRU_BASE + CRU_CLKGATE_CON(31)) >>
|
|
PCLK_GPIO2_GATE_SHIFT) & 0x07;
|
|
|
|
/* enable gpio2 ~ gpio4 clock gate */
|
|
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
|
|
BITS_WITH_WMASK(0, 0x07, PCLK_GPIO2_GATE_SHIFT));
|
|
|
|
/* save gpio2 ~ gpio4 direction */
|
|
gpio_direction[0] = mmio_read_32(GPIO2_BASE + 0x04);
|
|
gpio_direction[1] = mmio_read_32(GPIO3_BASE + 0x04);
|
|
gpio_direction[2] = mmio_read_32(GPIO4_BASE + 0x04);
|
|
|
|
/* apio1 charge gpio3a0 ~ gpio3c7 */
|
|
if (suspend_apio->apio1) {
|
|
|
|
/* set gpio3a0 ~ gpio3c7 iomux to gpio */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3A_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3B_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3C_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
|
|
/* set gpio3a0 ~ gpio3c7 pull mode to pull none */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3A_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3B_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3C_P, REG_SOC_WMSK | 0);
|
|
|
|
/* set gpio3a0 ~ gpio3c7 to input */
|
|
mmio_clrbits_32(GPIO3_BASE + 0x04, 0x00ffffff);
|
|
}
|
|
|
|
/* apio2 charge gpio2a0 ~ gpio2b4 */
|
|
if (suspend_apio->apio2) {
|
|
|
|
/* set gpio2a0 ~ gpio2b4 iomux to gpio */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2B_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
|
|
/* set gpio2a0 ~ gpio2b4 pull mode to pull none */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2A_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2B_P, REG_SOC_WMSK | 0);
|
|
|
|
/* set gpio2a0 ~ gpio2b4 to input */
|
|
mmio_clrbits_32(GPIO2_BASE + 0x04, 0x00001fff);
|
|
}
|
|
|
|
/* apio3 charge gpio2c0 ~ gpio2d4*/
|
|
if (suspend_apio->apio3) {
|
|
|
|
/* set gpio2a0 ~ gpio2b4 iomux to gpio */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2C_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2D_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
|
|
/* set gpio2c0 ~ gpio2d4 pull mode to pull none */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2C_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2D_P, REG_SOC_WMSK | 0);
|
|
|
|
/* set gpio2c0 ~ gpio2d4 to input */
|
|
mmio_clrbits_32(GPIO2_BASE + 0x04, 0x1fff0000);
|
|
}
|
|
|
|
/* apio4 charge gpio4c0 ~ gpio4c7, gpio4d0 ~ gpio4d6 */
|
|
if (suspend_apio->apio4) {
|
|
|
|
/* set gpio4c0 ~ gpio4d6 iomux to gpio */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4C_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4D_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
|
|
/* set gpio4c0 ~ gpio4d6 pull mode to pull none */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4C_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4D_P, REG_SOC_WMSK | 0);
|
|
|
|
/* set gpio4c0 ~ gpio4d6 to input */
|
|
mmio_clrbits_32(GPIO4_BASE + 0x04, 0x7fff0000);
|
|
}
|
|
|
|
/* apio5 charge gpio3d0 ~ gpio3d7, gpio4a0 ~ gpio4a7*/
|
|
if (suspend_apio->apio5) {
|
|
/* set gpio3d0 ~ gpio4a7 iomux to gpio */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3D_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4A_IOMUX,
|
|
REG_SOC_WMSK | GRF_IOMUX_GPIO);
|
|
|
|
/* set gpio3d0 ~ gpio4a7 pull mode to pull none */
|
|
mmio_write_32(GRF_BASE + GRF_GPIO3D_P, REG_SOC_WMSK | 0);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO4A_P, REG_SOC_WMSK | 0);
|
|
|
|
/* set gpio4c0 ~ gpio4d6 to input */
|
|
mmio_clrbits_32(GPIO3_BASE + 0x04, 0xff000000);
|
|
mmio_clrbits_32(GPIO4_BASE + 0x04, 0x000000ff);
|
|
}
|
|
}
|
|
|
|
static void resume_apio(void)
|
|
{
|
|
struct apio_info *suspend_apio;
|
|
int i;
|
|
|
|
suspend_apio = plat_get_rockchip_suspend_apio();
|
|
|
|
if (!suspend_apio)
|
|
return;
|
|
|
|
for (i = 0; i < 12; i++) {
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2A_P + i * 4,
|
|
REG_SOC_WMSK | pull_mode_status[i]);
|
|
mmio_write_32(GRF_BASE + GRF_GPIO2A_IOMUX + i * 4,
|
|
REG_SOC_WMSK | iomux_status[i]);
|
|
}
|
|
|
|
/* set gpio2 ~ gpio4 direction back to store value */
|
|
mmio_write_32(GPIO2_BASE + 0x04, gpio_direction[0]);
|
|
mmio_write_32(GPIO3_BASE + 0x04, gpio_direction[1]);
|
|
mmio_write_32(GPIO4_BASE + 0x04, gpio_direction[2]);
|
|
|
|
/* set gpio2 ~ gpio4 clock gate back to store value */
|
|
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(31),
|
|
BITS_WITH_WMASK(gpio_2_4_clk_gate, 0x07,
|
|
PCLK_GPIO2_GATE_SHIFT));
|
|
}
|
|
|
|
static void suspend_gpio(void)
|
|
{
|
|
struct gpio_info *suspend_gpio;
|
|
uint32_t count;
|
|
int i;
|
|
|
|
suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
gpio_set_value(suspend_gpio[i].index, suspend_gpio[i].polarity);
|
|
gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void resume_gpio(void)
|
|
{
|
|
struct gpio_info *suspend_gpio;
|
|
uint32_t count;
|
|
int i;
|
|
|
|
suspend_gpio = plat_get_rockchip_suspend_gpio(&count);
|
|
|
|
for (i = count - 1; i >= 0; i--) {
|
|
gpio_set_value(suspend_gpio[i].index,
|
|
!suspend_gpio[i].polarity);
|
|
gpio_set_direction(suspend_gpio[i].index, GPIO_DIR_OUT);
|
|
udelay(1);
|
|
}
|
|
}
|
|
|
|
static void m0_clock_init(void)
|
|
{
|
|
/* enable clocks for M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_CLKGATE_CON2,
|
|
BITS_WITH_WMASK(0x0, 0x2f, 0));
|
|
|
|
/* switch the parent to xin24M and div == 1 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_CLKSEL_CON0,
|
|
BIT_WITH_WMSK(15) | BITS_WITH_WMASK(0x0, 0x1f, 8));
|
|
|
|
/* start M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_SOFTRST_CON0,
|
|
BITS_WITH_WMASK(0x0, 0x24, 0));
|
|
|
|
/* gating disable for M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_GATEDIS_CON0, BIT_WITH_WMSK(1));
|
|
}
|
|
|
|
static void m0_reset(void)
|
|
{
|
|
/* stop M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_SOFTRST_CON0,
|
|
BITS_WITH_WMASK(0x24, 0x24, 0));
|
|
|
|
/* recover gating bit for M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_GATEDIS_CON0, WMSK_BIT(1));
|
|
|
|
/* disable clocks for M0 */
|
|
mmio_write_32(PMUCRU_BASE + PMUCRU_CLKGATE_CON2,
|
|
BITS_WITH_WMASK(0x2f, 0x2f, 0));
|
|
}
|
|
|
|
static int sys_pwr_domain_suspend(void)
|
|
{
|
|
uint32_t wait_cnt = 0;
|
|
uint32_t status = 0;
|
|
|
|
dmc_save();
|
|
pmu_scu_b_pwrdn();
|
|
|
|
pmu_power_domains_suspend();
|
|
set_hw_idle(BIT(PMU_CLR_CENTER1) |
|
|
BIT(PMU_CLR_ALIVE) |
|
|
BIT(PMU_CLR_MSCH0) |
|
|
BIT(PMU_CLR_MSCH1) |
|
|
BIT(PMU_CLR_CCIM0) |
|
|
BIT(PMU_CLR_CCIM1) |
|
|
BIT(PMU_CLR_CENTER) |
|
|
BIT(PMU_CLR_GIC));
|
|
|
|
sys_slp_config();
|
|
|
|
m0_clock_init();
|
|
|
|
pmu_sgrf_rst_hld();
|
|
|
|
mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
|
|
(PMUSRAM_BASE >> CPU_BOOT_ADDR_ALIGN) |
|
|
CPU_BOOT_ADDR_WMASK);
|
|
|
|
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
|
|
BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
|
|
BIT_WITH_WMSK(PMU_PWRDWN_REQ_CORE_B_SW) |
|
|
BIT_WITH_WMSK(PMU_PWRDWN_REQ_GIC2_CORE_B_SW));
|
|
dsb();
|
|
status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
|
|
BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
|
|
BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
|
|
while ((mmio_read_32(PMU_BASE +
|
|
PMU_ADB400_ST) & status) != status) {
|
|
wait_cnt++;
|
|
if (wait_cnt >= MAX_WAIT_COUNT) {
|
|
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_ADB400_ST));
|
|
panic();
|
|
}
|
|
}
|
|
mmio_setbits_32(PMU_BASE + PMU_PWRDN_CON, BIT(PMU_SCU_B_PWRDWN_EN));
|
|
|
|
secure_watchdog_disable();
|
|
|
|
/*
|
|
* Disabling PLLs/PWM/DVFS is approaching WFI which is
|
|
* the last steps in suspend.
|
|
*/
|
|
disable_dvfs_plls();
|
|
disable_pwms();
|
|
disable_nodvfs_plls();
|
|
|
|
suspend_apio();
|
|
suspend_gpio();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sys_pwr_domain_resume(void)
|
|
{
|
|
uint32_t wait_cnt = 0;
|
|
uint32_t status = 0;
|
|
|
|
resume_apio();
|
|
resume_gpio();
|
|
enable_nodvfs_plls();
|
|
enable_pwms();
|
|
/* PWM regulators take time to come up; give 300us to be safe. */
|
|
udelay(300);
|
|
enable_dvfs_plls();
|
|
|
|
secure_watchdog_restore();
|
|
|
|
/* restore clk_ddrc_bpll_src_en gate */
|
|
mmio_write_32(CRU_BASE + CRU_CLKGATE_CON(3),
|
|
BITS_WITH_WMASK(clk_ddrc_save, 0xff, 0));
|
|
|
|
/*
|
|
* The wakeup status is not cleared by itself, we need to clear it
|
|
* manually. Otherwise we will alway query some interrupt next time.
|
|
*
|
|
* NOTE: If the kernel needs to query this, we might want to stash it
|
|
* somewhere.
|
|
*/
|
|
mmio_write_32(PMU_BASE + PMU_WAKEUP_STATUS, 0xffffffff);
|
|
mmio_write_32(PMU_BASE + PMU_WKUP_CFG4, 0x00);
|
|
|
|
mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
|
|
(cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
|
|
CPU_BOOT_ADDR_WMASK);
|
|
|
|
mmio_write_32(PMU_BASE + PMU_CCI500_CON,
|
|
WMSK_BIT(PMU_CLR_PREQ_CCI500_HW) |
|
|
WMSK_BIT(PMU_CLR_QREQ_CCI500_HW) |
|
|
WMSK_BIT(PMU_QGATING_CCI500_CFG));
|
|
dsb();
|
|
mmio_clrbits_32(PMU_BASE + PMU_PWRDN_CON,
|
|
BIT(PMU_SCU_B_PWRDWN_EN));
|
|
|
|
mmio_write_32(PMU_BASE + PMU_ADB400_CON,
|
|
WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW) |
|
|
WMSK_BIT(PMU_PWRDWN_REQ_CORE_B_SW) |
|
|
WMSK_BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW) |
|
|
WMSK_BIT(PMU_CLR_CORE_L_HW) |
|
|
WMSK_BIT(PMU_CLR_CORE_L_2GIC_HW) |
|
|
WMSK_BIT(PMU_CLR_GIC2_CORE_L_HW));
|
|
|
|
status = BIT(PMU_PWRDWN_REQ_CORE_B_2GIC_SW_ST) |
|
|
BIT(PMU_PWRDWN_REQ_CORE_B_SW_ST) |
|
|
BIT(PMU_PWRDWN_REQ_GIC2_CORE_B_SW_ST);
|
|
|
|
while ((mmio_read_32(PMU_BASE +
|
|
PMU_ADB400_ST) & status)) {
|
|
wait_cnt++;
|
|
if (wait_cnt >= MAX_WAIT_COUNT) {
|
|
ERROR("%s:wait cluster-b l2(%x)\n", __func__,
|
|
mmio_read_32(PMU_BASE + PMU_ADB400_ST));
|
|
panic();
|
|
}
|
|
}
|
|
|
|
pmu_sgrf_rst_hld_release();
|
|
pmu_scu_b_pwrup();
|
|
pmu_power_domains_resume();
|
|
|
|
restore_dpll();
|
|
sram_func_set_ddrctl_pll(DPLL_ID);
|
|
restore_abpll();
|
|
|
|
clr_hw_idle(BIT(PMU_CLR_CENTER1) |
|
|
BIT(PMU_CLR_ALIVE) |
|
|
BIT(PMU_CLR_MSCH0) |
|
|
BIT(PMU_CLR_MSCH1) |
|
|
BIT(PMU_CLR_CCIM0) |
|
|
BIT(PMU_CLR_CCIM1) |
|
|
BIT(PMU_CLR_CENTER) |
|
|
BIT(PMU_CLR_GIC));
|
|
|
|
plat_rockchip_gic_cpuif_enable();
|
|
|
|
m0_reset();
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __dead2 soc_soft_reset(void)
|
|
{
|
|
struct gpio_info *rst_gpio;
|
|
|
|
rst_gpio = plat_get_rockchip_gpio_reset();
|
|
|
|
if (rst_gpio) {
|
|
gpio_set_direction(rst_gpio->index, GPIO_DIR_OUT);
|
|
gpio_set_value(rst_gpio->index, rst_gpio->polarity);
|
|
} else {
|
|
soc_global_soft_reset();
|
|
}
|
|
|
|
while (1)
|
|
;
|
|
}
|
|
|
|
void __dead2 soc_system_off(void)
|
|
{
|
|
struct gpio_info *poweroff_gpio;
|
|
|
|
poweroff_gpio = plat_get_rockchip_gpio_poweroff();
|
|
|
|
if (poweroff_gpio) {
|
|
/*
|
|
* if use tsadc over temp pin(GPIO1A6) as shutdown gpio,
|
|
* need to set this pin iomux back to gpio function
|
|
*/
|
|
if (poweroff_gpio->index == TSADC_INT_PIN) {
|
|
mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO1A_IOMUX,
|
|
GPIO1A6_IOMUX);
|
|
}
|
|
gpio_set_direction(poweroff_gpio->index, GPIO_DIR_OUT);
|
|
gpio_set_value(poweroff_gpio->index, poweroff_gpio->polarity);
|
|
} else {
|
|
WARN("Do nothing when system off\n");
|
|
}
|
|
|
|
while (1)
|
|
;
|
|
}
|
|
|
|
static struct rockchip_pm_ops_cb pm_ops = {
|
|
.cores_pwr_dm_on = cores_pwr_domain_on,
|
|
.cores_pwr_dm_off = cores_pwr_domain_off,
|
|
.cores_pwr_dm_on_finish = cores_pwr_domain_on_finish,
|
|
.cores_pwr_dm_suspend = cores_pwr_domain_suspend,
|
|
.cores_pwr_dm_resume = cores_pwr_domain_resume,
|
|
.hlvl_pwr_dm_suspend = hlvl_pwr_domain_suspend,
|
|
.hlvl_pwr_dm_resume = hlvl_pwr_domain_resume,
|
|
.hlvl_pwr_dm_off = hlvl_pwr_domain_off,
|
|
.hlvl_pwr_dm_on_finish = hlvl_pwr_domain_on_finish,
|
|
.sys_pwr_dm_suspend = sys_pwr_domain_suspend,
|
|
.sys_pwr_dm_resume = sys_pwr_domain_resume,
|
|
.sys_gbl_soft_reset = soc_soft_reset,
|
|
.system_off = soc_system_off,
|
|
};
|
|
|
|
void plat_rockchip_pmu_init(void)
|
|
{
|
|
uint32_t cpu;
|
|
|
|
rockchip_pd_lock_init();
|
|
plat_setup_rockchip_pm_ops(&pm_ops);
|
|
|
|
/* register requires 32bits mode, switch it to 32 bits */
|
|
cpu_warm_boot_addr = (uint64_t)platform_cpu_warmboot;
|
|
|
|
for (cpu = 0; cpu < PLATFORM_CORE_COUNT; cpu++)
|
|
cpuson_flags[cpu] = 0;
|
|
|
|
for (cpu = 0; cpu < PLATFORM_CLUSTER_COUNT; cpu++)
|
|
clst_warmboot_data[cpu] = 0;
|
|
|
|
psram_sleep_cfg->ddr_func = (uint64_t)dmc_restore;
|
|
psram_sleep_cfg->ddr_data = (uint64_t)&sdram_config;
|
|
psram_sleep_cfg->ddr_flag = 0x01;
|
|
|
|
psram_sleep_cfg->boot_mpidr = read_mpidr_el1() & 0xffff;
|
|
|
|
/* config cpu's warm boot address */
|
|
mmio_write_32(SGRF_BASE + SGRF_SOC_CON0_1(1),
|
|
(cpu_warm_boot_addr >> CPU_BOOT_ADDR_ALIGN) |
|
|
CPU_BOOT_ADDR_WMASK);
|
|
mmio_write_32(PMU_BASE + PMU_NOC_AUTO_ENA, NOC_AUTO_ENABLE);
|
|
|
|
/*
|
|
* Enable Schmitt trigger for better 32 kHz input signal, which is
|
|
* important for suspend/resume reliability among other things.
|
|
*/
|
|
mmio_write_32(PMUGRF_BASE + PMUGRF_GPIO0A_SMT, GPIO0A0_SMT_ENABLE);
|
|
|
|
init_pmu_counts();
|
|
|
|
nonboot_cpus_off();
|
|
|
|
INFO("%s(%d): pd status %x\n", __func__, __LINE__,
|
|
mmio_read_32(PMU_BASE + PMU_PWRDN_ST));
|
|
}
|