mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 00:54:22 +00:00

Corrects typos in core code, documentation files, drivers, Arm platforms and services. None of the corrections affect code; changes are limited to comments and other documentation. Change-Id: I5c1027b06ef149864f315ccc0ea473e2a16bfd1d Signed-off-by: Paul Beesley <paul.beesley@arm.com>
603 lines
20 KiB
C
603 lines
20 KiB
C
/*
|
|
* Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdbool.h>
|
|
#include <string.h>
|
|
|
|
#include <platform_def.h>
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <bl31/interrupt_mgmt.h>
|
|
#include <common/bl_common.h>
|
|
#include <context.h>
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
#include <lib/el3_runtime/pubsub_events.h>
|
|
#include <lib/extensions/amu.h>
|
|
#include <lib/extensions/mpam.h>
|
|
#include <lib/extensions/spe.h>
|
|
#include <lib/extensions/sve.h>
|
|
#include <lib/utils.h>
|
|
#include <plat/common/platform.h>
|
|
#include <smccc_helpers.h>
|
|
|
|
|
|
/*******************************************************************************
|
|
* Context management library initialisation routine. This library is used by
|
|
* runtime services to share pointers to 'cpu_context' structures for the secure
|
|
* and non-secure states. Management of the structures and their associated
|
|
* memory is not done by the context management library e.g. the PSCI service
|
|
* manages the cpu context used for entry from and exit to the non-secure state.
|
|
* The Secure payload dispatcher service manages the context(s) corresponding to
|
|
* the secure state. It also uses this library to get access to the non-secure
|
|
* state cpu context pointers.
|
|
* Lastly, this library provides the api to make SP_EL3 point to the cpu context
|
|
* which will used for programming an entry into a lower EL. The same context
|
|
* will used to save state upon exception entry from that EL.
|
|
******************************************************************************/
|
|
void __init cm_init(void)
|
|
{
|
|
/*
|
|
* The context management library has only global data to intialize, but
|
|
* that will be done when the BSS is zeroed out
|
|
*/
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* The following function initializes the cpu_context 'ctx' for
|
|
* first use, and sets the initial entrypoint state as specified by the
|
|
* entry_point_info structure.
|
|
*
|
|
* The security state to initialize is determined by the SECURE attribute
|
|
* of the entry_point_info.
|
|
*
|
|
* The EE and ST attributes are used to configure the endianness and secure
|
|
* timer availability for the new execution context.
|
|
*
|
|
* To prepare the register state for entry call cm_prepare_el3_exit() and
|
|
* el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
|
|
* cm_e1_sysreg_context_restore().
|
|
******************************************************************************/
|
|
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
|
|
{
|
|
unsigned int security_state;
|
|
uint32_t scr_el3, pmcr_el0;
|
|
el3_state_t *state;
|
|
gp_regs_t *gp_regs;
|
|
unsigned long sctlr_elx, actlr_elx;
|
|
|
|
assert(ctx != NULL);
|
|
|
|
security_state = GET_SECURITY_STATE(ep->h.attr);
|
|
|
|
/* Clear any residual register values from the context */
|
|
zeromem(ctx, sizeof(*ctx));
|
|
|
|
/*
|
|
* SCR_EL3 was initialised during reset sequence in macro
|
|
* el3_arch_init_common. This code modifies the SCR_EL3 fields that
|
|
* affect the next EL.
|
|
*
|
|
* The following fields are initially set to zero and then updated to
|
|
* the required value depending on the state of the SPSR_EL3 and the
|
|
* Security state and entrypoint attributes of the next EL.
|
|
*/
|
|
scr_el3 = (uint32_t)read_scr();
|
|
scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
|
|
SCR_ST_BIT | SCR_HCE_BIT);
|
|
/*
|
|
* SCR_NS: Set the security state of the next EL.
|
|
*/
|
|
if (security_state != SECURE)
|
|
scr_el3 |= SCR_NS_BIT;
|
|
/*
|
|
* SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
|
|
* Exception level as specified by SPSR.
|
|
*/
|
|
if (GET_RW(ep->spsr) == MODE_RW_64)
|
|
scr_el3 |= SCR_RW_BIT;
|
|
/*
|
|
* SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
|
|
* Secure timer registers to EL3, from AArch64 state only, if specified
|
|
* by the entrypoint attributes.
|
|
*/
|
|
if (EP_GET_ST(ep->h.attr) != 0U)
|
|
scr_el3 |= SCR_ST_BIT;
|
|
|
|
#if !HANDLE_EA_EL3_FIRST
|
|
/*
|
|
* SCR_EL3.EA: Do not route External Abort and SError Interrupt External
|
|
* to EL3 when executing at a lower EL. When executing at EL3, External
|
|
* Aborts are taken to EL3.
|
|
*/
|
|
scr_el3 &= ~SCR_EA_BIT;
|
|
#endif
|
|
|
|
#if FAULT_INJECTION_SUPPORT
|
|
/* Enable fault injection from lower ELs */
|
|
scr_el3 |= SCR_FIEN_BIT;
|
|
#endif
|
|
|
|
#ifdef IMAGE_BL31
|
|
/*
|
|
* SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
|
|
* indicated by the interrupt routing model for BL31.
|
|
*/
|
|
scr_el3 |= get_scr_el3_from_routing_model(security_state);
|
|
#endif
|
|
|
|
/*
|
|
* SCR_EL3.HCE: Enable HVC instructions if next execution state is
|
|
* AArch64 and next EL is EL2, or if next execution state is AArch32 and
|
|
* next mode is Hyp.
|
|
*/
|
|
if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
|
|
|| ((GET_RW(ep->spsr) != MODE_RW_64)
|
|
&& (GET_M32(ep->spsr) == MODE32_hyp))) {
|
|
scr_el3 |= SCR_HCE_BIT;
|
|
}
|
|
|
|
/*
|
|
* Initialise SCTLR_EL1 to the reset value corresponding to the target
|
|
* execution state setting all fields rather than relying of the hw.
|
|
* Some fields have architecturally UNKNOWN reset values and these are
|
|
* set to zero.
|
|
*
|
|
* SCTLR.EE: Endianness is taken from the entrypoint attributes.
|
|
*
|
|
* SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
|
|
* required by PSCI specification)
|
|
*/
|
|
sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
|
|
if (GET_RW(ep->spsr) == MODE_RW_64)
|
|
sctlr_elx |= SCTLR_EL1_RES1;
|
|
else {
|
|
/*
|
|
* If the target execution state is AArch32 then the following
|
|
* fields need to be set.
|
|
*
|
|
* SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
|
|
* instructions are not trapped to EL1.
|
|
*
|
|
* SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
|
|
* instructions are not trapped to EL1.
|
|
*
|
|
* SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
|
|
* CP15DMB, CP15DSB, and CP15ISB instructions.
|
|
*/
|
|
sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
|
|
| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
|
|
}
|
|
|
|
/*
|
|
* Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
|
|
* and other EL2 registers are set up by cm_prepare_ns_entry() as they
|
|
* are not part of the stored cpu_context.
|
|
*/
|
|
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
|
|
|
|
/*
|
|
* Base the context ACTLR_EL1 on the current value, as it is
|
|
* implementation defined. The context restore process will write
|
|
* the value from the context to the actual register and can cause
|
|
* problems for processor cores that don't expect certain bits to
|
|
* be zero.
|
|
*/
|
|
actlr_elx = read_actlr_el1();
|
|
write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
|
|
|
|
if (security_state == SECURE) {
|
|
/*
|
|
* Initialise PMCR_EL0 for secure context only, setting all
|
|
* fields rather than relying on hw. Some fields are
|
|
* architecturally UNKNOWN on reset.
|
|
*
|
|
* PMCR_EL0.LC: Set to one so that cycle counter overflow, that
|
|
* is recorded in PMOVSCLR_EL0[31], occurs on the increment
|
|
* that changes PMCCNTR_EL0[63] from 1 to 0.
|
|
*
|
|
* PMCR_EL0.DP: Set to one so that the cycle counter,
|
|
* PMCCNTR_EL0 does not count when event counting is prohibited.
|
|
*
|
|
* PMCR_EL0.X: Set to zero to disable export of events.
|
|
*
|
|
* PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
|
|
* counts on every clock cycle.
|
|
*/
|
|
pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
|
|
| PMCR_EL0_DP_BIT)
|
|
& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
|
|
write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
|
|
}
|
|
|
|
/* Populate EL3 state so that we've the right context before doing ERET */
|
|
state = get_el3state_ctx(ctx);
|
|
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
|
|
write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
|
|
write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
|
|
|
|
/*
|
|
* Store the X0-X7 value from the entrypoint into the context
|
|
* Use memcpy as we are in control of the layout of the structures
|
|
*/
|
|
gp_regs = get_gpregs_ctx(ctx);
|
|
memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Enable architecture extensions on first entry to Non-secure world.
|
|
* When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
|
|
* it is zero.
|
|
******************************************************************************/
|
|
static void enable_extensions_nonsecure(bool el2_unused)
|
|
{
|
|
#if IMAGE_BL31
|
|
#if ENABLE_SPE_FOR_LOWER_ELS
|
|
spe_enable(el2_unused);
|
|
#endif
|
|
|
|
#if ENABLE_AMU
|
|
amu_enable(el2_unused);
|
|
#endif
|
|
|
|
#if ENABLE_SVE_FOR_NS
|
|
sve_enable(el2_unused);
|
|
#endif
|
|
|
|
#if ENABLE_MPAM_FOR_LOWER_ELS
|
|
mpam_enable(el2_unused);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* The following function initializes the cpu_context for a CPU specified by
|
|
* its `cpu_idx` for first use, and sets the initial entrypoint state as
|
|
* specified by the entry_point_info structure.
|
|
******************************************************************************/
|
|
void cm_init_context_by_index(unsigned int cpu_idx,
|
|
const entry_point_info_t *ep)
|
|
{
|
|
cpu_context_t *ctx;
|
|
ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
|
|
cm_setup_context(ctx, ep);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* The following function initializes the cpu_context for the current CPU
|
|
* for first use, and sets the initial entrypoint state as specified by the
|
|
* entry_point_info structure.
|
|
******************************************************************************/
|
|
void cm_init_my_context(const entry_point_info_t *ep)
|
|
{
|
|
cpu_context_t *ctx;
|
|
ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
|
|
cm_setup_context(ctx, ep);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Prepare the CPU system registers for first entry into secure or normal world
|
|
*
|
|
* If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
|
|
* If execution is requested to non-secure EL1 or svc mode, and the CPU supports
|
|
* EL2 then EL2 is disabled by configuring all necessary EL2 registers.
|
|
* For all entries, the EL1 registers are initialized from the cpu_context
|
|
******************************************************************************/
|
|
void cm_prepare_el3_exit(uint32_t security_state)
|
|
{
|
|
uint32_t sctlr_elx, scr_el3, mdcr_el2;
|
|
cpu_context_t *ctx = cm_get_context(security_state);
|
|
bool el2_unused = false;
|
|
uint64_t hcr_el2 = 0U;
|
|
|
|
assert(ctx != NULL);
|
|
|
|
if (security_state == NON_SECURE) {
|
|
scr_el3 = (uint32_t)read_ctx_reg(get_el3state_ctx(ctx),
|
|
CTX_SCR_EL3);
|
|
if ((scr_el3 & SCR_HCE_BIT) != 0U) {
|
|
/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
|
|
sctlr_elx = (uint32_t)read_ctx_reg(get_sysregs_ctx(ctx),
|
|
CTX_SCTLR_EL1);
|
|
sctlr_elx &= SCTLR_EE_BIT;
|
|
sctlr_elx |= SCTLR_EL2_RES1;
|
|
write_sctlr_el2(sctlr_elx);
|
|
} else if (el_implemented(2) != EL_IMPL_NONE) {
|
|
el2_unused = true;
|
|
|
|
/*
|
|
* EL2 present but unused, need to disable safely.
|
|
* SCTLR_EL2 can be ignored in this case.
|
|
*
|
|
* Set EL2 register width appropriately: Set HCR_EL2
|
|
* field to match SCR_EL3.RW.
|
|
*/
|
|
if ((scr_el3 & SCR_RW_BIT) != 0U)
|
|
hcr_el2 |= HCR_RW_BIT;
|
|
|
|
/*
|
|
* For Armv8.3 pointer authentication feature, disable
|
|
* traps to EL2 when accessing key registers or using
|
|
* pointer authentication instructions from lower ELs.
|
|
*/
|
|
hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
|
|
|
|
write_hcr_el2(hcr_el2);
|
|
|
|
/*
|
|
* Initialise CPTR_EL2 setting all fields rather than
|
|
* relying on the hw. All fields have architecturally
|
|
* UNKNOWN reset values.
|
|
*
|
|
* CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
|
|
* accesses to the CPACR_EL1 or CPACR from both
|
|
* Execution states do not trap to EL2.
|
|
*
|
|
* CPTR_EL2.TTA: Set to zero so that Non-secure System
|
|
* register accesses to the trace registers from both
|
|
* Execution states do not trap to EL2.
|
|
*
|
|
* CPTR_EL2.TFP: Set to zero so that Non-secure accesses
|
|
* to SIMD and floating-point functionality from both
|
|
* Execution states do not trap to EL2.
|
|
*/
|
|
write_cptr_el2(CPTR_EL2_RESET_VAL &
|
|
~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
|
|
| CPTR_EL2_TFP_BIT));
|
|
|
|
/*
|
|
* Initialise CNTHCTL_EL2. All fields are
|
|
* architecturally UNKNOWN on reset and are set to zero
|
|
* except for field(s) listed below.
|
|
*
|
|
* CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
|
|
* Hyp mode of Non-secure EL0 and EL1 accesses to the
|
|
* physical timer registers.
|
|
*
|
|
* CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
|
|
* Hyp mode of Non-secure EL0 and EL1 accesses to the
|
|
* physical counter registers.
|
|
*/
|
|
write_cnthctl_el2(CNTHCTL_RESET_VAL |
|
|
EL1PCEN_BIT | EL1PCTEN_BIT);
|
|
|
|
/*
|
|
* Initialise CNTVOFF_EL2 to zero as it resets to an
|
|
* architecturally UNKNOWN value.
|
|
*/
|
|
write_cntvoff_el2(0);
|
|
|
|
/*
|
|
* Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
|
|
* MPIDR_EL1 respectively.
|
|
*/
|
|
write_vpidr_el2(read_midr_el1());
|
|
write_vmpidr_el2(read_mpidr_el1());
|
|
|
|
/*
|
|
* Initialise VTTBR_EL2. All fields are architecturally
|
|
* UNKNOWN on reset.
|
|
*
|
|
* VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
|
|
* 2 address translation is disabled, cache maintenance
|
|
* operations depend on the VMID.
|
|
*
|
|
* VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
|
|
* translation is disabled.
|
|
*/
|
|
write_vttbr_el2(VTTBR_RESET_VAL &
|
|
~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
|
|
| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
|
|
|
|
/*
|
|
* Initialise MDCR_EL2, setting all fields rather than
|
|
* relying on hw. Some fields are architecturally
|
|
* UNKNOWN on reset.
|
|
*
|
|
* MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
|
|
* EL1 System register accesses to the Debug ROM
|
|
* registers are not trapped to EL2.
|
|
*
|
|
* MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
|
|
* System register accesses to the powerdown debug
|
|
* registers are not trapped to EL2.
|
|
*
|
|
* MDCR_EL2.TDA: Set to zero so that System register
|
|
* accesses to the debug registers do not trap to EL2.
|
|
*
|
|
* MDCR_EL2.TDE: Set to zero so that debug exceptions
|
|
* are not routed to EL2.
|
|
*
|
|
* MDCR_EL2.HPME: Set to zero to disable EL2 Performance
|
|
* Monitors.
|
|
*
|
|
* MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
|
|
* EL1 accesses to all Performance Monitors registers
|
|
* are not trapped to EL2.
|
|
*
|
|
* MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
|
|
* and EL1 accesses to the PMCR_EL0 or PMCR are not
|
|
* trapped to EL2.
|
|
*
|
|
* MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
|
|
* architecturally-defined reset value.
|
|
*/
|
|
mdcr_el2 = ((MDCR_EL2_RESET_VAL |
|
|
((read_pmcr_el0() & PMCR_EL0_N_BITS)
|
|
>> PMCR_EL0_N_SHIFT)) &
|
|
~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
|
|
| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
|
|
| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
|
|
| MDCR_EL2_TPMCR_BIT));
|
|
|
|
write_mdcr_el2(mdcr_el2);
|
|
|
|
/*
|
|
* Initialise HSTR_EL2. All fields are architecturally
|
|
* UNKNOWN on reset.
|
|
*
|
|
* HSTR_EL2.T<n>: Set all these fields to zero so that
|
|
* Non-secure EL0 or EL1 accesses to System registers
|
|
* do not trap to EL2.
|
|
*/
|
|
write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
|
|
/*
|
|
* Initialise CNTHP_CTL_EL2. All fields are
|
|
* architecturally UNKNOWN on reset.
|
|
*
|
|
* CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
|
|
* physical timer and prevent timer interrupts.
|
|
*/
|
|
write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
|
|
~(CNTHP_CTL_ENABLE_BIT));
|
|
}
|
|
enable_extensions_nonsecure(el2_unused);
|
|
}
|
|
|
|
cm_el1_sysregs_context_restore(security_state);
|
|
cm_set_next_eret_context(security_state);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* The next four functions are used by runtime services to save and restore
|
|
* EL1 context on the 'cpu_context' structure for the specified security
|
|
* state.
|
|
******************************************************************************/
|
|
void cm_el1_sysregs_context_save(uint32_t security_state)
|
|
{
|
|
cpu_context_t *ctx;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
el1_sysregs_context_save(get_sysregs_ctx(ctx));
|
|
|
|
#if IMAGE_BL31
|
|
if (security_state == SECURE)
|
|
PUBLISH_EVENT(cm_exited_secure_world);
|
|
else
|
|
PUBLISH_EVENT(cm_exited_normal_world);
|
|
#endif
|
|
}
|
|
|
|
void cm_el1_sysregs_context_restore(uint32_t security_state)
|
|
{
|
|
cpu_context_t *ctx;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
el1_sysregs_context_restore(get_sysregs_ctx(ctx));
|
|
|
|
#if IMAGE_BL31
|
|
if (security_state == SECURE)
|
|
PUBLISH_EVENT(cm_entering_secure_world);
|
|
else
|
|
PUBLISH_EVENT(cm_entering_normal_world);
|
|
#endif
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function populates ELR_EL3 member of 'cpu_context' pertaining to the
|
|
* given security state with the given entrypoint
|
|
******************************************************************************/
|
|
void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
|
|
{
|
|
cpu_context_t *ctx;
|
|
el3_state_t *state;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
/* Populate EL3 state so that ERET jumps to the correct entry */
|
|
state = get_el3state_ctx(ctx);
|
|
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
|
|
* pertaining to the given security state
|
|
******************************************************************************/
|
|
void cm_set_elr_spsr_el3(uint32_t security_state,
|
|
uintptr_t entrypoint, uint32_t spsr)
|
|
{
|
|
cpu_context_t *ctx;
|
|
el3_state_t *state;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
/* Populate EL3 state so that ERET jumps to the correct entry */
|
|
state = get_el3state_ctx(ctx);
|
|
write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
|
|
write_ctx_reg(state, CTX_SPSR_EL3, spsr);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
|
|
* pertaining to the given security state using the value and bit position
|
|
* specified in the parameters. It preserves all other bits.
|
|
******************************************************************************/
|
|
void cm_write_scr_el3_bit(uint32_t security_state,
|
|
uint32_t bit_pos,
|
|
uint32_t value)
|
|
{
|
|
cpu_context_t *ctx;
|
|
el3_state_t *state;
|
|
uint32_t scr_el3;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
/* Ensure that the bit position is a valid one */
|
|
assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
|
|
|
|
/* Ensure that the 'value' is only a bit wide */
|
|
assert(value <= 1U);
|
|
|
|
/*
|
|
* Get the SCR_EL3 value from the cpu context, clear the desired bit
|
|
* and set it to its new value.
|
|
*/
|
|
state = get_el3state_ctx(ctx);
|
|
scr_el3 = (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
|
|
scr_el3 &= ~(1U << bit_pos);
|
|
scr_el3 |= value << bit_pos;
|
|
write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
|
|
* given security state.
|
|
******************************************************************************/
|
|
uint32_t cm_get_scr_el3(uint32_t security_state)
|
|
{
|
|
cpu_context_t *ctx;
|
|
el3_state_t *state;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
/* Populate EL3 state so that ERET jumps to the correct entry */
|
|
state = get_el3state_ctx(ctx);
|
|
return (uint32_t)read_ctx_reg(state, CTX_SCR_EL3);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function is used to program the context that's used for exception
|
|
* return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
|
|
* the required security state
|
|
******************************************************************************/
|
|
void cm_set_next_eret_context(uint32_t security_state)
|
|
{
|
|
cpu_context_t *ctx;
|
|
|
|
ctx = cm_get_context(security_state);
|
|
assert(ctx != NULL);
|
|
|
|
cm_set_next_context(ctx);
|
|
}
|