mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 09:04:17 +00:00

To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
408 lines
13 KiB
C
408 lines
13 KiB
C
/*
|
|
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <debug.h>
|
|
#include <gic_common.h>
|
|
#include <gicv3.h>
|
|
#include "../common/gic_common_private.h"
|
|
#include "gicv3_private.h"
|
|
|
|
static const gicv3_driver_data_t *driver_data;
|
|
static unsigned int gicv2_compat;
|
|
|
|
/*
|
|
* Redistributor power operations are weakly bound so that they can be
|
|
* overridden
|
|
*/
|
|
#pragma weak gicv3_rdistif_off
|
|
#pragma weak gicv3_rdistif_on
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the ARM GICv3 driver in EL3 with provided platform
|
|
* inputs.
|
|
******************************************************************************/
|
|
void gicv3_driver_init(const gicv3_driver_data_t *plat_driver_data)
|
|
{
|
|
unsigned int gic_version;
|
|
|
|
assert(plat_driver_data);
|
|
assert(plat_driver_data->gicd_base);
|
|
assert(plat_driver_data->gicr_base);
|
|
assert(plat_driver_data->rdistif_num);
|
|
assert(plat_driver_data->rdistif_base_addrs);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/*
|
|
* The platform should provide a list of at least one type of
|
|
* interrupts
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array ||
|
|
plat_driver_data->g1s_interrupt_array);
|
|
|
|
/*
|
|
* If there are no interrupts of a particular type, then the number of
|
|
* interrupts of that type should be 0 and vice-versa.
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array ?
|
|
plat_driver_data->g0_interrupt_num :
|
|
plat_driver_data->g0_interrupt_num == 0);
|
|
assert(plat_driver_data->g1s_interrupt_array ?
|
|
plat_driver_data->g1s_interrupt_num :
|
|
plat_driver_data->g1s_interrupt_num == 0);
|
|
|
|
/* Check for system register support */
|
|
#ifdef AARCH32
|
|
assert(read_id_pfr1() & (ID_PFR1_GIC_MASK << ID_PFR1_GIC_SHIFT));
|
|
#else
|
|
assert(read_id_aa64pfr0_el1() &
|
|
(ID_AA64PFR0_GIC_MASK << ID_AA64PFR0_GIC_SHIFT));
|
|
#endif /* AARCH32 */
|
|
|
|
/* The GIC version should be 3.0 */
|
|
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
|
|
gic_version >>= PIDR2_ARCH_REV_SHIFT;
|
|
gic_version &= PIDR2_ARCH_REV_MASK;
|
|
assert(gic_version == ARCH_REV_GICV3);
|
|
|
|
/*
|
|
* Find out whether the GIC supports the GICv2 compatibility mode. The
|
|
* ARE_S bit resets to 0 if supported
|
|
*/
|
|
gicv2_compat = gicd_read_ctlr(plat_driver_data->gicd_base);
|
|
gicv2_compat >>= CTLR_ARE_S_SHIFT;
|
|
gicv2_compat = !(gicv2_compat & CTLR_ARE_S_MASK);
|
|
|
|
/*
|
|
* Find the base address of each implemented Redistributor interface.
|
|
* The number of interfaces should be equal to the number of CPUs in the
|
|
* system. The memory for saving these addresses has to be allocated by
|
|
* the platform port
|
|
*/
|
|
gicv3_rdistif_base_addrs_probe(plat_driver_data->rdistif_base_addrs,
|
|
plat_driver_data->rdistif_num,
|
|
plat_driver_data->gicr_base,
|
|
plat_driver_data->mpidr_to_core_pos);
|
|
|
|
driver_data = plat_driver_data;
|
|
|
|
/*
|
|
* The GIC driver data is initialized by the primary CPU with caches
|
|
* enabled. When the secondary CPU boots up, it initializes the
|
|
* GICC/GICR interface with the caches disabled. Hence flush the
|
|
* driver_data to ensure coherency. This is not required if the
|
|
* platform has HW_ASSISTED_COHERENCY enabled.
|
|
*/
|
|
#if !HW_ASSISTED_COHERENCY
|
|
flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
|
|
flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
|
|
#endif
|
|
|
|
INFO("GICv3 %s legacy support detected."
|
|
" ARM GICV3 driver initialized in EL3\n",
|
|
gicv2_compat ? "with" : "without");
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the GIC distributor interface based upon the data
|
|
* provided by the platform while initialising the driver.
|
|
******************************************************************************/
|
|
void gicv3_distif_init(void)
|
|
{
|
|
unsigned int bitmap = 0;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicd_base);
|
|
assert(driver_data->g1s_interrupt_array ||
|
|
driver_data->g0_interrupt_array);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/*
|
|
* Clear the "enable" bits for G0/G1S/G1NS interrupts before configuring
|
|
* the ARE_S bit. The Distributor might generate a system error
|
|
* otherwise.
|
|
*/
|
|
gicd_clr_ctlr(driver_data->gicd_base,
|
|
CTLR_ENABLE_G0_BIT |
|
|
CTLR_ENABLE_G1S_BIT |
|
|
CTLR_ENABLE_G1NS_BIT,
|
|
RWP_TRUE);
|
|
|
|
/* Set the ARE_S and ARE_NS bit now that interrupts have been disabled */
|
|
gicd_set_ctlr(driver_data->gicd_base,
|
|
CTLR_ARE_S_BIT | CTLR_ARE_NS_BIT, RWP_TRUE);
|
|
|
|
/* Set the default attribute of all SPIs */
|
|
gicv3_spis_configure_defaults(driver_data->gicd_base);
|
|
|
|
/* Configure the G1S SPIs */
|
|
if (driver_data->g1s_interrupt_array) {
|
|
gicv3_secure_spis_configure(driver_data->gicd_base,
|
|
driver_data->g1s_interrupt_num,
|
|
driver_data->g1s_interrupt_array,
|
|
INTR_GROUP1S);
|
|
bitmap |= CTLR_ENABLE_G1S_BIT;
|
|
}
|
|
|
|
/* Configure the G0 SPIs */
|
|
if (driver_data->g0_interrupt_array) {
|
|
gicv3_secure_spis_configure(driver_data->gicd_base,
|
|
driver_data->g0_interrupt_num,
|
|
driver_data->g0_interrupt_array,
|
|
INTR_GROUP0);
|
|
bitmap |= CTLR_ENABLE_G0_BIT;
|
|
}
|
|
|
|
/* Enable the secure SPIs now that they have been configured */
|
|
gicd_set_ctlr(driver_data->gicd_base, bitmap, RWP_TRUE);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function initialises the GIC Redistributor interface of the calling CPU
|
|
* (identified by the 'proc_num' parameter) based upon the data provided by the
|
|
* platform while initialising the driver.
|
|
******************************************************************************/
|
|
void gicv3_rdistif_init(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
|
|
assert(driver_data);
|
|
assert(proc_num < driver_data->rdistif_num);
|
|
assert(driver_data->rdistif_base_addrs);
|
|
assert(driver_data->gicd_base);
|
|
assert(gicd_read_ctlr(driver_data->gicd_base) & CTLR_ARE_S_BIT);
|
|
assert(driver_data->g1s_interrupt_array ||
|
|
driver_data->g0_interrupt_array);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Power on redistributor */
|
|
gicv3_rdistif_on(proc_num);
|
|
|
|
gicr_base = driver_data->rdistif_base_addrs[proc_num];
|
|
|
|
/* Set the default attribute of all SGIs and PPIs */
|
|
gicv3_ppi_sgi_configure_defaults(gicr_base);
|
|
|
|
/* Configure the G1S SGIs/PPIs */
|
|
if (driver_data->g1s_interrupt_array) {
|
|
gicv3_secure_ppi_sgi_configure(gicr_base,
|
|
driver_data->g1s_interrupt_num,
|
|
driver_data->g1s_interrupt_array,
|
|
INTR_GROUP1S);
|
|
}
|
|
|
|
/* Configure the G0 SGIs/PPIs */
|
|
if (driver_data->g0_interrupt_array) {
|
|
gicv3_secure_ppi_sgi_configure(gicr_base,
|
|
driver_data->g0_interrupt_num,
|
|
driver_data->g0_interrupt_array,
|
|
INTR_GROUP0);
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Functions to perform power operations on GIC Redistributor
|
|
******************************************************************************/
|
|
void gicv3_rdistif_off(unsigned int proc_num)
|
|
{
|
|
return;
|
|
}
|
|
|
|
void gicv3_rdistif_on(unsigned int proc_num)
|
|
{
|
|
return;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function enables the GIC CPU interface of the calling CPU using only
|
|
* system register accesses.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_enable(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
unsigned int scr_el3;
|
|
unsigned int icc_sre_el3;
|
|
|
|
assert(driver_data);
|
|
assert(proc_num < driver_data->rdistif_num);
|
|
assert(driver_data->rdistif_base_addrs);
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Mark the connected core as awake */
|
|
gicr_base = driver_data->rdistif_base_addrs[proc_num];
|
|
gicv3_rdistif_mark_core_awake(gicr_base);
|
|
|
|
/* Disable the legacy interrupt bypass */
|
|
icc_sre_el3 = ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT;
|
|
|
|
/*
|
|
* Enable system register access for EL3 and allow lower exception
|
|
* levels to configure the same for themselves. If the legacy mode is
|
|
* not supported, the SRE bit is RAO/WI
|
|
*/
|
|
icc_sre_el3 |= (ICC_SRE_EN_BIT | ICC_SRE_SRE_BIT);
|
|
write_icc_sre_el3(read_icc_sre_el3() | icc_sre_el3);
|
|
|
|
scr_el3 = read_scr_el3();
|
|
|
|
/*
|
|
* Switch to NS state to write Non secure ICC_SRE_EL1 and
|
|
* ICC_SRE_EL2 registers.
|
|
*/
|
|
write_scr_el3(scr_el3 | SCR_NS_BIT);
|
|
isb();
|
|
|
|
write_icc_sre_el2(read_icc_sre_el2() | icc_sre_el3);
|
|
write_icc_sre_el1(ICC_SRE_SRE_BIT);
|
|
isb();
|
|
|
|
/* Switch to secure state. */
|
|
write_scr_el3(scr_el3 & (~SCR_NS_BIT));
|
|
isb();
|
|
|
|
/* Program the idle priority in the PMR */
|
|
write_icc_pmr_el1(GIC_PRI_MASK);
|
|
|
|
/* Enable Group0 interrupts */
|
|
write_icc_igrpen0_el1(IGRPEN1_EL1_ENABLE_G0_BIT);
|
|
|
|
/* Enable Group1 Secure interrupts */
|
|
write_icc_igrpen1_el3(read_icc_igrpen1_el3() |
|
|
IGRPEN1_EL3_ENABLE_G1S_BIT);
|
|
|
|
/* Write the secure ICC_SRE_EL1 register */
|
|
write_icc_sre_el1(ICC_SRE_SRE_BIT);
|
|
isb();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function disables the GIC CPU interface of the calling CPU using
|
|
* only system register accesses.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_disable(unsigned int proc_num)
|
|
{
|
|
uintptr_t gicr_base;
|
|
|
|
assert(driver_data);
|
|
assert(proc_num < driver_data->rdistif_num);
|
|
assert(driver_data->rdistif_base_addrs);
|
|
|
|
assert(IS_IN_EL3());
|
|
|
|
/* Disable legacy interrupt bypass */
|
|
write_icc_sre_el3(read_icc_sre_el3() |
|
|
(ICC_SRE_DIB_BIT | ICC_SRE_DFB_BIT));
|
|
|
|
/* Disable Group0 interrupts */
|
|
write_icc_igrpen0_el1(read_icc_igrpen0_el1() &
|
|
~IGRPEN1_EL1_ENABLE_G0_BIT);
|
|
|
|
/* Disable Group1 Secure and Non-Secure interrupts */
|
|
write_icc_igrpen1_el3(read_icc_igrpen1_el3() &
|
|
~(IGRPEN1_EL3_ENABLE_G1NS_BIT |
|
|
IGRPEN1_EL3_ENABLE_G1S_BIT));
|
|
|
|
/* Synchronise accesses to group enable registers */
|
|
isb();
|
|
|
|
/* Mark the connected core as asleep */
|
|
gicr_base = driver_data->rdistif_base_addrs[proc_num];
|
|
gicv3_rdistif_mark_core_asleep(gicr_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface.
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_pending_interrupt_id(void)
|
|
{
|
|
unsigned int id;
|
|
|
|
assert(IS_IN_EL3());
|
|
id = read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
|
|
|
|
/*
|
|
* If the ID is special identifier corresponding to G1S or G1NS
|
|
* interrupt, then read the highest pending group 1 interrupt.
|
|
*/
|
|
if ((id == PENDING_G1S_INTID) || (id == PENDING_G1NS_INTID))
|
|
return read_icc_hppir1_el1() & HPPIR1_EL1_INTID_MASK;
|
|
|
|
return id;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. The return values can be one of the following :
|
|
* PENDING_G1S_INTID : The interrupt type is secure Group 1.
|
|
* PENDING_G1NS_INTID : The interrupt type is non secure Group 1.
|
|
* 0 - 1019 : The interrupt type is secure Group 0.
|
|
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
|
|
* sufficient priority to be signaled
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_pending_interrupt_type(void)
|
|
{
|
|
assert(IS_IN_EL3());
|
|
return read_icc_hppir0_el1() & HPPIR0_EL1_INTID_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1 Secure / Non Secure. The return value can be one of the
|
|
* following :
|
|
* INTR_GROUP0 : The interrupt type is a Secure Group 0 interrupt
|
|
* INTR_GROUP1S : The interrupt type is a Secure Group 1 secure interrupt
|
|
* INTR_GROUP1NS: The interrupt type is a Secure Group 1 non secure
|
|
* interrupt.
|
|
******************************************************************************/
|
|
unsigned int gicv3_get_interrupt_type(unsigned int id,
|
|
unsigned int proc_num)
|
|
{
|
|
unsigned int igroup, grpmodr;
|
|
uintptr_t gicr_base;
|
|
|
|
assert(IS_IN_EL3());
|
|
assert(driver_data);
|
|
|
|
/* Ensure the parameters are valid */
|
|
assert(id < PENDING_G1S_INTID || id >= MIN_LPI_ID);
|
|
assert(proc_num < driver_data->rdistif_num);
|
|
|
|
/* All LPI interrupts are Group 1 non secure */
|
|
if (id >= MIN_LPI_ID)
|
|
return INTR_GROUP1NS;
|
|
|
|
if (id < MIN_SPI_ID) {
|
|
assert(driver_data->rdistif_base_addrs);
|
|
gicr_base = driver_data->rdistif_base_addrs[proc_num];
|
|
igroup = gicr_get_igroupr0(gicr_base, id);
|
|
grpmodr = gicr_get_igrpmodr0(gicr_base, id);
|
|
} else {
|
|
assert(driver_data->gicd_base);
|
|
igroup = gicd_get_igroupr(driver_data->gicd_base, id);
|
|
grpmodr = gicd_get_igrpmodr(driver_data->gicd_base, id);
|
|
}
|
|
|
|
/*
|
|
* If the IGROUP bit is set, then it is a Group 1 Non secure
|
|
* interrupt
|
|
*/
|
|
if (igroup)
|
|
return INTR_GROUP1NS;
|
|
|
|
/* If the GRPMOD bit is set, then it is a Group 1 Secure interrupt */
|
|
if (grpmodr)
|
|
return INTR_GROUP1S;
|
|
|
|
/* Else it is a Group 0 Secure interrupt */
|
|
return INTR_GROUP0;
|
|
}
|