mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 09:04:17 +00:00

To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
401 lines
12 KiB
C
401 lines
12 KiB
C
/*
|
|
* Copyright (c) 2015-2016, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <debug.h>
|
|
#include <gic_common.h>
|
|
#include "../common/gic_common_private.h"
|
|
#include "gicv3_private.h"
|
|
|
|
/*
|
|
* Accessor to read the GIC Distributor IGRPMODR corresponding to the
|
|
* interrupt `id`, 32 interrupt IDs at a time.
|
|
*/
|
|
unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned n = id >> IGRPMODR_SHIFT;
|
|
return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
|
|
}
|
|
|
|
/*
|
|
* Accessor to write the GIC Distributor IGRPMODR corresponding to the
|
|
* interrupt `id`, 32 interrupt IDs at a time.
|
|
*/
|
|
void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
|
|
{
|
|
unsigned n = id >> IGRPMODR_SHIFT;
|
|
mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
|
|
}
|
|
|
|
/*
|
|
* Accessor to get the bit corresponding to interrupt ID
|
|
* in GIC Distributor IGRPMODR.
|
|
*/
|
|
unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicd_read_igrpmodr(base, id);
|
|
|
|
return (reg_val >> bit_num) & 0x1;
|
|
}
|
|
|
|
/*
|
|
* Accessor to set the bit corresponding to interrupt ID
|
|
* in GIC Distributor IGRPMODR.
|
|
*/
|
|
void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicd_read_igrpmodr(base, id);
|
|
|
|
gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to clear the bit corresponding to interrupt ID
|
|
* in GIC Distributor IGRPMODR.
|
|
*/
|
|
void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicd_read_igrpmodr(base, id);
|
|
|
|
gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
|
|
* interrupt `id`, 4 interrupts IDs at a time.
|
|
*/
|
|
unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned n = id >> IPRIORITYR_SHIFT;
|
|
return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
|
|
}
|
|
|
|
/*
|
|
* Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
|
|
* interrupt `id`, 4 interrupts IDs at a time.
|
|
*/
|
|
void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
|
|
{
|
|
unsigned n = id >> IPRIORITYR_SHIFT;
|
|
mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
|
|
}
|
|
|
|
/*
|
|
* Accessor to get the bit corresponding to interrupt ID
|
|
* from GIC Re-distributor IGROUPR0.
|
|
*/
|
|
unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igroupr0(base);
|
|
|
|
return (reg_val >> bit_num) & 0x1;
|
|
}
|
|
|
|
/*
|
|
* Accessor to set the bit corresponding to interrupt ID
|
|
* in GIC Re-distributor IGROUPR0.
|
|
*/
|
|
void gicr_set_igroupr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igroupr0(base);
|
|
|
|
gicr_write_igroupr0(base, reg_val | (1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to clear the bit corresponding to interrupt ID
|
|
* in GIC Re-distributor IGROUPR0.
|
|
*/
|
|
void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igroupr0(base);
|
|
|
|
gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to get the bit corresponding to interrupt ID
|
|
* from GIC Re-distributor IGRPMODR0.
|
|
*/
|
|
unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igrpmodr0(base);
|
|
|
|
return (reg_val >> bit_num) & 0x1;
|
|
}
|
|
|
|
/*
|
|
* Accessor to set the bit corresponding to interrupt ID
|
|
* in GIC Re-distributor IGRPMODR0.
|
|
*/
|
|
void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igrpmodr0(base);
|
|
|
|
gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to clear the bit corresponding to interrupt ID
|
|
* in GIC Re-distributor IGRPMODR0.
|
|
*/
|
|
void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
|
|
unsigned int reg_val = gicr_read_igrpmodr0(base);
|
|
|
|
gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to set the bit corresponding to interrupt ID
|
|
* in GIC Re-distributor ISENABLER0.
|
|
*/
|
|
void gicr_set_isenabler0(uintptr_t base, unsigned int id)
|
|
{
|
|
unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
|
|
|
|
gicr_write_isenabler0(base, (1 << bit_num));
|
|
}
|
|
|
|
/*
|
|
* Accessor to set the byte corresponding to interrupt ID
|
|
* in GIC Re-distributor IPRIORITYR.
|
|
*/
|
|
void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
|
|
{
|
|
mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* This function marks the core as awake in the re-distributor and
|
|
* ensures that the interface is active.
|
|
*****************************************************************************/
|
|
void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
|
|
{
|
|
/*
|
|
* The WAKER_PS_BIT should be changed to 0
|
|
* only when WAKER_CA_BIT is 1.
|
|
*/
|
|
assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
|
|
|
|
/* Mark the connected core as awake */
|
|
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
|
|
|
|
/* Wait till the WAKER_CA_BIT changes to 0 */
|
|
while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
|
|
;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
* This function marks the core as asleep in the re-distributor and ensures
|
|
* that the interface is quiescent.
|
|
*****************************************************************************/
|
|
void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
|
|
{
|
|
/* Mark the connected core as asleep */
|
|
gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
|
|
|
|
/* Wait till the WAKER_CA_BIT changes to 1 */
|
|
while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
|
|
;
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* This function probes the Redistributor frames when the driver is initialised
|
|
* and saves their base addresses. These base addresses are used later to
|
|
* initialise each Redistributor interface.
|
|
******************************************************************************/
|
|
void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
|
|
unsigned int rdistif_num,
|
|
uintptr_t gicr_base,
|
|
mpidr_hash_fn mpidr_to_core_pos)
|
|
{
|
|
u_register_t mpidr;
|
|
unsigned int proc_num;
|
|
unsigned long long typer_val;
|
|
uintptr_t rdistif_base = gicr_base;
|
|
|
|
assert(rdistif_base_addrs);
|
|
|
|
/*
|
|
* Iterate over the Redistributor frames. Store the base address of each
|
|
* frame in the platform provided array. Use the "Processor Number"
|
|
* field to index into the array if the platform has not provided a hash
|
|
* function to convert an MPIDR (obtained from the "Affinity Value"
|
|
* field into a linear index.
|
|
*/
|
|
do {
|
|
typer_val = gicr_read_typer(rdistif_base);
|
|
if (mpidr_to_core_pos) {
|
|
mpidr = mpidr_from_gicr_typer(typer_val);
|
|
proc_num = mpidr_to_core_pos(mpidr);
|
|
} else {
|
|
proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
|
|
TYPER_PROC_NUM_MASK;
|
|
}
|
|
assert(proc_num < rdistif_num);
|
|
rdistif_base_addrs[proc_num] = rdistif_base;
|
|
rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
|
|
} while (!(typer_val & TYPER_LAST_BIT));
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Helper function to configure the default attributes of SPIs.
|
|
******************************************************************************/
|
|
void gicv3_spis_configure_defaults(uintptr_t gicd_base)
|
|
{
|
|
unsigned int index, num_ints;
|
|
|
|
num_ints = gicd_read_typer(gicd_base);
|
|
num_ints &= TYPER_IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1) << 5;
|
|
|
|
/*
|
|
* Treat all SPIs as G1NS by default. The number of interrupts is
|
|
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
|
|
*/
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 32)
|
|
gicd_write_igroupr(gicd_base, index, ~0U);
|
|
|
|
/* Setup the default SPI priorities doing four at a time */
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 4)
|
|
gicd_write_ipriorityr(gicd_base,
|
|
index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
|
|
/*
|
|
* Treat all SPIs as level triggered by default, write 16 at
|
|
* a time
|
|
*/
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 16)
|
|
gicd_write_icfgr(gicd_base, index, 0);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Helper function to configure secure G0 and G1S SPIs.
|
|
******************************************************************************/
|
|
void gicv3_secure_spis_configure(uintptr_t gicd_base,
|
|
unsigned int num_ints,
|
|
const unsigned int *sec_intr_list,
|
|
unsigned int int_grp)
|
|
{
|
|
unsigned int index, irq_num;
|
|
unsigned long long gic_affinity_val;
|
|
|
|
assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
|
|
/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
|
|
assert(num_ints ? (uintptr_t)sec_intr_list : 1);
|
|
|
|
for (index = 0; index < num_ints; index++) {
|
|
irq_num = sec_intr_list[index];
|
|
if (irq_num >= MIN_SPI_ID) {
|
|
|
|
/* Configure this interrupt as a secure interrupt */
|
|
gicd_clr_igroupr(gicd_base, irq_num);
|
|
|
|
/* Configure this interrupt as G0 or a G1S interrupt */
|
|
if (int_grp == INTR_GROUP1S)
|
|
gicd_set_igrpmodr(gicd_base, irq_num);
|
|
else
|
|
gicd_clr_igrpmodr(gicd_base, irq_num);
|
|
|
|
/* Set the priority of this interrupt */
|
|
gicd_set_ipriorityr(gicd_base,
|
|
irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
|
|
/* Target SPIs to the primary CPU */
|
|
gic_affinity_val =
|
|
gicd_irouter_val_from_mpidr(read_mpidr(), 0);
|
|
gicd_write_irouter(gicd_base,
|
|
irq_num,
|
|
gic_affinity_val);
|
|
|
|
/* Enable this interrupt */
|
|
gicd_set_isenabler(gicd_base, irq_num);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Helper function to configure the default attributes of SPIs.
|
|
******************************************************************************/
|
|
void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
|
|
{
|
|
unsigned int index;
|
|
|
|
/*
|
|
* Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
|
|
* more scalable approach as it avoids clearing the enable bits in the
|
|
* GICD_CTLR
|
|
*/
|
|
gicr_write_icenabler0(gicr_base, ~0);
|
|
gicr_wait_for_pending_write(gicr_base);
|
|
|
|
/* Treat all SGIs/PPIs as G1NS by default. */
|
|
gicr_write_igroupr0(gicr_base, ~0U);
|
|
|
|
/* Setup the default PPI/SGI priorities doing four at a time */
|
|
for (index = 0; index < MIN_SPI_ID; index += 4)
|
|
gicr_write_ipriorityr(gicr_base,
|
|
index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
|
|
/* Configure all PPIs as level triggered by default */
|
|
gicr_write_icfgr1(gicr_base, 0);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Helper function to configure secure G0 and G1S SPIs.
|
|
******************************************************************************/
|
|
void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
|
|
unsigned int num_ints,
|
|
const unsigned int *sec_intr_list,
|
|
unsigned int int_grp)
|
|
{
|
|
unsigned int index, irq_num;
|
|
|
|
assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
|
|
/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
|
|
assert(num_ints ? (uintptr_t)sec_intr_list : 1);
|
|
|
|
for (index = 0; index < num_ints; index++) {
|
|
irq_num = sec_intr_list[index];
|
|
if (irq_num < MIN_SPI_ID) {
|
|
|
|
/* Configure this interrupt as a secure interrupt */
|
|
gicr_clr_igroupr0(gicr_base, irq_num);
|
|
|
|
/* Configure this interrupt as G0 or a G1S interrupt */
|
|
if (int_grp == INTR_GROUP1S)
|
|
gicr_set_igrpmodr0(gicr_base, irq_num);
|
|
else
|
|
gicr_clr_igrpmodr0(gicr_base, irq_num);
|
|
|
|
/* Set the priority of this interrupt */
|
|
gicr_set_ipriorityr(gicr_base,
|
|
irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
|
|
/* Enable this interrupt */
|
|
gicr_set_isenabler0(gicr_base, irq_num);
|
|
}
|
|
}
|
|
}
|