mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 09:04:17 +00:00

To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
242 lines
8.5 KiB
C
242 lines
8.5 KiB
C
/*
|
|
* Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <debug.h>
|
|
#include <gic_common.h>
|
|
#include <gicv2.h>
|
|
#include "../common/gic_common_private.h"
|
|
#include "gicv2_private.h"
|
|
|
|
static const gicv2_driver_data_t *driver_data;
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
|
|
* and set the priority mask register to allow all interrupts to trickle in.
|
|
******************************************************************************/
|
|
void gicv2_cpuif_enable(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
/*
|
|
* Enable the Group 0 interrupts, FIQEn and disable Group 0/1
|
|
* bypass.
|
|
*/
|
|
val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
/* Program the idle priority in the PMR */
|
|
gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
|
|
gicc_write_ctlr(driver_data->gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void gicv2_cpuif_disable(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
val = gicc_read_ctlr(driver_data->gicc_base);
|
|
val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(driver_data->gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
|
|
******************************************************************************/
|
|
void gicv2_pcpu_distif_init(void)
|
|
{
|
|
assert(driver_data);
|
|
assert(driver_data->gicd_base);
|
|
assert(driver_data->g0_interrupt_array);
|
|
|
|
gicv2_secure_ppi_sgi_setup(driver_data->gicd_base,
|
|
driver_data->g0_interrupt_num,
|
|
driver_data->g0_interrupt_array);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor init which will be done by the primary cpu after a
|
|
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
|
|
* then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
void gicv2_distif_init(void)
|
|
{
|
|
unsigned int ctlr;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicd_base);
|
|
assert(driver_data->g0_interrupt_array);
|
|
|
|
/* Disable the distributor before going further */
|
|
ctlr = gicd_read_ctlr(driver_data->gicd_base);
|
|
gicd_write_ctlr(driver_data->gicd_base,
|
|
ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
|
|
|
|
/* Set the default attribute of all SPIs */
|
|
gicv2_spis_configure_defaults(driver_data->gicd_base);
|
|
|
|
/* Configure the G0 SPIs */
|
|
gicv2_secure_spis_configure(driver_data->gicd_base,
|
|
driver_data->g0_interrupt_num,
|
|
driver_data->g0_interrupt_array);
|
|
|
|
/* Re-enable the secure SPIs now that they have been configured */
|
|
gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Initialize the ARM GICv2 driver with the provided platform inputs
|
|
******************************************************************************/
|
|
void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
|
|
{
|
|
unsigned int gic_version;
|
|
assert(plat_driver_data);
|
|
assert(plat_driver_data->gicd_base);
|
|
assert(plat_driver_data->gicc_base);
|
|
|
|
/*
|
|
* The platform should provide a list of atleast one type of
|
|
* interrupts
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array);
|
|
|
|
/*
|
|
* If there are no interrupts of a particular type, then the number of
|
|
* interrupts of that type should be 0 and vice-versa.
|
|
*/
|
|
assert(plat_driver_data->g0_interrupt_array ?
|
|
plat_driver_data->g0_interrupt_num :
|
|
plat_driver_data->g0_interrupt_num == 0);
|
|
|
|
/* Ensure that this is a GICv2 system */
|
|
gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
|
|
gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
|
|
& PIDR2_ARCH_REV_MASK;
|
|
assert(gic_version == ARCH_REV_GICV2);
|
|
|
|
driver_data = plat_driver_data;
|
|
|
|
/*
|
|
* The GIC driver data is initialized by the primary CPU with caches
|
|
* enabled. When the secondary CPU boots up, it initializes the
|
|
* GICC/GICR interface with the caches disabled. Hence flush the
|
|
* driver_data to ensure coherency. This is not required if the
|
|
* platform has HW_ASSISTED_COHERENCY enabled.
|
|
*/
|
|
#if !HW_ASSISTED_COHERENCY
|
|
flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
|
|
flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
|
|
#endif
|
|
INFO("ARM GICv2 driver initialized\n");
|
|
}
|
|
|
|
/******************************************************************************
|
|
* This function returns whether FIQ is enabled in the GIC CPU interface.
|
|
*****************************************************************************/
|
|
unsigned int gicv2_is_fiq_enabled(void)
|
|
{
|
|
unsigned int gicc_ctlr;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
|
|
return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. The return values can be one of the following :
|
|
* PENDING_G1_INTID : The interrupt type is non secure Group 1.
|
|
* 0 - 1019 : The interrupt type is secure Group 0.
|
|
* GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
|
|
* sufficient priority to be signaled
|
|
******************************************************************************/
|
|
unsigned int gicv2_get_pending_interrupt_type(void)
|
|
{
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
unsigned int gicv2_get_pending_interrupt_id(void)
|
|
{
|
|
unsigned int id;
|
|
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
|
|
|
|
/*
|
|
* Find out which non-secure interrupt it is under the assumption that
|
|
* the GICC_CTLR.AckCtl bit is 0.
|
|
*/
|
|
if (id == PENDING_G1_INTID)
|
|
id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
|
|
|
|
return id;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions reads the GIC cpu interface Interrupt Acknowledge register
|
|
* to start handling the pending secure 0 interrupt. It returns the
|
|
* contents of the IAR.
|
|
******************************************************************************/
|
|
unsigned int gicv2_acknowledge_interrupt(void)
|
|
{
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
return gicc_read_IAR(driver_data->gicc_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions writes the GIC cpu interface End Of Interrupt register with
|
|
* the passed value to finish handling the active secure group 0 interrupt.
|
|
******************************************************************************/
|
|
void gicv2_end_of_interrupt(unsigned int id)
|
|
{
|
|
assert(driver_data);
|
|
assert(driver_data->gicc_base);
|
|
|
|
gicc_write_EOIR(driver_data->gicc_base, id);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 secure or group1 non secure. It returns zero for Group 0 secure and
|
|
* one for Group 1 non secure interrupt.
|
|
******************************************************************************/
|
|
unsigned int gicv2_get_interrupt_group(unsigned int id)
|
|
{
|
|
assert(driver_data);
|
|
assert(driver_data->gicd_base);
|
|
|
|
return gicd_get_igroupr(driver_data->gicd_base, id);
|
|
}
|