mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 09:04:17 +00:00

To make software license auditing simpler, use SPDX[0] license identifiers instead of duplicating the license text in every file. NOTE: Files that have been imported by FreeBSD have not been modified. [0]: https://spdx.org/ Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
435 lines
14 KiB
C
435 lines
14 KiB
C
/*
|
|
* Copyright (c) 2014-2016, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <arm_gic.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <debug.h>
|
|
#include <gic_v2.h>
|
|
#include <gic_v3.h>
|
|
#include <interrupt_mgmt.h>
|
|
#include <platform.h>
|
|
#include <stdint.h>
|
|
|
|
/* Value used to initialize Non-Secure IRQ priorities four at a time */
|
|
#define GICD_IPRIORITYR_DEF_VAL \
|
|
(GIC_HIGHEST_NS_PRIORITY | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 8) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 16) | \
|
|
(GIC_HIGHEST_NS_PRIORITY << 24))
|
|
|
|
static uintptr_t g_gicc_base;
|
|
static uintptr_t g_gicd_base;
|
|
static uintptr_t g_gicr_base;
|
|
static const unsigned int *g_irq_sec_ptr;
|
|
static unsigned int g_num_irqs;
|
|
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration. The Firmware itself does
|
|
* not fully support GICv3 at this time and relies on GICv2 emulation as
|
|
* provided by GICv3. This function allows software (like Linux) in later stages
|
|
* to use full GICv3 features.
|
|
******************************************************************************/
|
|
static void gicv3_cpuif_setup(void)
|
|
{
|
|
unsigned int val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
|
|
* bit set. In order to allow interrupts to get routed to the CPU we
|
|
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
|
|
* to clear (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
assert(g_gicr_base);
|
|
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
|
|
val &= ~WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to clear. */
|
|
val = gicr_read_waker(base);
|
|
while (val & WAKER_CA)
|
|
val = gicr_read_waker(base);
|
|
|
|
val = read_icc_sre_el3();
|
|
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
isb();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration when cores go
|
|
* down.
|
|
******************************************************************************/
|
|
static void gicv3_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
|
|
* wait for GICR_WAKER.ChildrenAsleep to get set.
|
|
* (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
assert(g_gicr_base);
|
|
base = gicv3_get_rdist(g_gicr_base, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
val |= WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to set. */
|
|
val = gicr_read_waker(base);
|
|
while ((val & WAKER_CA) == 0)
|
|
val = gicr_read_waker(base);
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
|
|
* and set the priority mask register to allow all interrupts to trickle in.
|
|
******************************************************************************/
|
|
void arm_gic_cpuif_setup(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(g_gicc_base);
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. We want to
|
|
* allow default GICv2 behaviour but allow the next stage to
|
|
* enable full gicv3 features.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
|
|
gicv3_cpuif_setup();
|
|
|
|
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
gicc_write_pmr(g_gicc_base, GIC_PRI_MASK);
|
|
gicc_write_ctlr(g_gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void arm_gic_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
assert(g_gicc_base);
|
|
val = gicc_read_ctlr(g_gicc_base);
|
|
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(g_gicc_base, val);
|
|
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. Make sure the
|
|
* RDIST is put to sleep.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3)
|
|
gicv3_cpuif_deactivate();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure interrupts & enables them.
|
|
******************************************************************************/
|
|
void arm_gic_pcpu_distif_setup(void)
|
|
{
|
|
unsigned int index, irq_num, sec_ppi_sgi_mask;
|
|
|
|
assert(g_gicd_base);
|
|
|
|
/* Setup PPI priorities doing four at a time */
|
|
for (index = 0; index < 32; index += 4) {
|
|
gicd_write_ipriorityr(g_gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
assert(g_irq_sec_ptr);
|
|
sec_ppi_sgi_mask = 0;
|
|
|
|
/* Ensure all SGIs and PPIs are Group0 to begin with */
|
|
gicd_write_igroupr(g_gicd_base, 0, 0);
|
|
|
|
for (index = 0; index < g_num_irqs; index++) {
|
|
irq_num = g_irq_sec_ptr[index];
|
|
if (irq_num < MIN_SPI_ID) {
|
|
/* We have an SGI or a PPI */
|
|
sec_ppi_sgi_mask |= 1U << irq_num;
|
|
gicd_set_ipriorityr(g_gicd_base, irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_isenabler(g_gicd_base, irq_num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Invert the bitmask to create a mask for non-secure PPIs and
|
|
* SGIs. Program the GICD_IGROUPR0 with this bit mask. This write will
|
|
* update the GICR_IGROUPR0 as well in case we are running on a GICv3
|
|
* system. This is critical if GICD_CTLR.ARE_NS=1.
|
|
*/
|
|
gicd_write_igroupr(g_gicd_base, 0, ~sec_ppi_sgi_mask);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Get the current CPU bit mask from GICD_ITARGETSR0
|
|
******************************************************************************/
|
|
static unsigned int arm_gic_get_cpuif_id(void)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = gicd_read_itargetsr(g_gicd_base, 0);
|
|
return val & GIC_TARGET_CPU_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor setup which will be done by the primary cpu after a
|
|
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
|
|
* then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
static void arm_gic_distif_setup(void)
|
|
{
|
|
unsigned int num_ints, ctlr, index, irq_num;
|
|
uint8_t target_cpu;
|
|
|
|
/* Disable the distributor before going further */
|
|
assert(g_gicd_base);
|
|
ctlr = gicd_read_ctlr(g_gicd_base);
|
|
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
gicd_write_ctlr(g_gicd_base, ctlr);
|
|
|
|
/*
|
|
* Mark out non-secure SPI interrupts. The number of interrupts is
|
|
* calculated as 32 * (IT_LINES + 1). We do 32 at a time.
|
|
*/
|
|
num_ints = gicd_read_typer(g_gicd_base) & IT_LINES_NO_MASK;
|
|
num_ints = (num_ints + 1) << 5;
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 32)
|
|
gicd_write_igroupr(g_gicd_base, index, ~0);
|
|
|
|
/* Setup SPI priorities doing four at a time */
|
|
for (index = MIN_SPI_ID; index < num_ints; index += 4) {
|
|
gicd_write_ipriorityr(g_gicd_base, index,
|
|
GICD_IPRIORITYR_DEF_VAL);
|
|
}
|
|
|
|
/* Read the target CPU mask */
|
|
target_cpu = arm_gic_get_cpuif_id();
|
|
|
|
/* Configure SPI secure interrupts now */
|
|
assert(g_irq_sec_ptr);
|
|
for (index = 0; index < g_num_irqs; index++) {
|
|
irq_num = g_irq_sec_ptr[index];
|
|
if (irq_num >= MIN_SPI_ID) {
|
|
/* We have an SPI */
|
|
gicd_clr_igroupr(g_gicd_base, irq_num);
|
|
gicd_set_ipriorityr(g_gicd_base, irq_num,
|
|
GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_itargetsr(g_gicd_base, irq_num, target_cpu);
|
|
gicd_set_isenabler(g_gicd_base, irq_num);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Configure the SGI and PPI. This is done in a separated function
|
|
* because each CPU is responsible for initializing its own private
|
|
* interrupts.
|
|
*/
|
|
arm_gic_pcpu_distif_setup();
|
|
|
|
gicd_write_ctlr(g_gicd_base, ctlr | ENABLE_GRP0);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Initialize the ARM GIC driver with the provided platform inputs
|
|
******************************************************************************/
|
|
void arm_gic_init(uintptr_t gicc_base,
|
|
uintptr_t gicd_base,
|
|
uintptr_t gicr_base,
|
|
const unsigned int *irq_sec_ptr,
|
|
unsigned int num_irqs)
|
|
{
|
|
unsigned int val;
|
|
|
|
assert(gicc_base);
|
|
assert(gicd_base);
|
|
assert(irq_sec_ptr);
|
|
|
|
g_gicc_base = gicc_base;
|
|
g_gicd_base = gicd_base;
|
|
|
|
val = gicc_read_iidr(g_gicc_base);
|
|
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
assert(gicr_base);
|
|
g_gicr_base = gicr_base;
|
|
}
|
|
|
|
g_irq_sec_ptr = irq_sec_ptr;
|
|
g_num_irqs = num_irqs;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Setup the ARM GIC CPU and distributor interfaces.
|
|
******************************************************************************/
|
|
void arm_gic_setup(void)
|
|
{
|
|
arm_gic_cpuif_setup();
|
|
arm_gic_distif_setup();
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
|
|
* The interrupt controller knows which pin/line it uses to signal a type of
|
|
* interrupt. This function provides a common implementation of
|
|
* plat_interrupt_type_to_line() in an ARM GIC environment for optional re-use
|
|
* across platforms. It lets the interrupt management framework determine
|
|
* for a type of interrupt and security state, which line should be used in the
|
|
* SCR_EL3 to control its routing to EL3. The interrupt line is represented as
|
|
* the bit position of the IRQ or FIQ bit in the SCR_EL3.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_interrupt_type_to_line(uint32_t type,
|
|
uint32_t security_state)
|
|
{
|
|
assert(type == INTR_TYPE_S_EL1 ||
|
|
type == INTR_TYPE_EL3 ||
|
|
type == INTR_TYPE_NS);
|
|
|
|
assert(sec_state_is_valid(security_state));
|
|
|
|
/*
|
|
* We ignore the security state parameter under the assumption that
|
|
* both normal and secure worlds are using ARM GICv2. This parameter
|
|
* will be used when the secure world starts using GICv3.
|
|
*/
|
|
#if ARM_GIC_ARCH == 2
|
|
return gicv2_interrupt_type_to_line(g_gicc_base, type);
|
|
#else
|
|
#error "Invalid ARM GIC architecture version specified for platform port"
|
|
#endif /* ARM_GIC_ARCH */
|
|
}
|
|
|
|
#if ARM_GIC_ARCH == 2
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_pending_interrupt_type(void)
|
|
{
|
|
uint32_t id;
|
|
|
|
assert(g_gicc_base);
|
|
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (id < 1022)
|
|
return INTR_TYPE_S_EL1;
|
|
|
|
if (id == GIC_SPURIOUS_INTERRUPT)
|
|
return INTR_TYPE_INVAL;
|
|
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_pending_interrupt_id(void)
|
|
{
|
|
uint32_t id;
|
|
|
|
assert(g_gicc_base);
|
|
id = gicc_read_hppir(g_gicc_base) & INT_ID_MASK;
|
|
|
|
if (id < 1022)
|
|
return id;
|
|
|
|
if (id == 1023)
|
|
return INTR_ID_UNAVAILABLE;
|
|
|
|
/*
|
|
* Find out which non-secure interrupt it is under the assumption that
|
|
* the GICC_CTLR.AckCtl bit is 0.
|
|
*/
|
|
return gicc_read_ahppir(g_gicc_base) & INT_ID_MASK;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions reads the GIC cpu interface Interrupt Acknowledge register
|
|
* to start handling the pending interrupt. It returns the contents of the IAR.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_acknowledge_interrupt(void)
|
|
{
|
|
assert(g_gicc_base);
|
|
return gicc_read_IAR(g_gicc_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions writes the GIC cpu interface End Of Interrupt register with
|
|
* the passed value to finish handling the active interrupt
|
|
******************************************************************************/
|
|
void arm_gic_end_of_interrupt(uint32_t id)
|
|
{
|
|
assert(g_gicc_base);
|
|
gicc_write_EOIR(g_gicc_base, id);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1.
|
|
******************************************************************************/
|
|
uint32_t arm_gic_get_interrupt_type(uint32_t id)
|
|
{
|
|
uint32_t group;
|
|
|
|
assert(g_gicd_base);
|
|
group = gicd_get_igroupr(g_gicd_base, id);
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (group == GRP0)
|
|
return INTR_TYPE_S_EL1;
|
|
else
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
#else
|
|
#error "Invalid ARM GIC architecture version specified for platform port"
|
|
#endif /* ARM_GIC_ARCH */
|