arm-trusted-firmware/common/bl_common.c
Dan Handley 625de1d4f0 Remove variables from .data section
Update code base to remove variables from the .data section,
mainly by using const static data where possible and adding
the const specifier as required. Most changes are to the IO
subsystem, including the framework APIs. The FVP power
management code is also affected.

Delay initialization of the global static variable,
next_image_type in bl31_main.c, until it is realy needed.
Doing this moves the variable from the .data to the .bss
section.

Also review the IO interface for inconsistencies, using
uintptr_t where possible instead of void *. Remove the
io_handle and io_dev_handle typedefs, which were
unnecessary, replacing instances with uintptr_t.

Fixes ARM-software/tf-issues#107.

Change-Id: I085a62197c82410b566e4698e5590063563ed304
2014-05-06 17:55:38 +01:00

579 lines
18 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <assert.h>
#include <bl_common.h>
#include <debug.h>
#include <io_storage.h>
#include <platform.h>
#include <stdio.h>
unsigned long page_align(unsigned long value, unsigned dir)
{
unsigned long page_size = 1 << FOUR_KB_SHIFT;
/* Round up the limit to the next page boundary */
if (value & (page_size - 1)) {
value &= ~(page_size - 1);
if (dir == UP)
value += page_size;
}
return value;
}
static inline unsigned int is_page_aligned (unsigned long addr) {
const unsigned long page_size = 1 << FOUR_KB_SHIFT;
return (addr & (page_size - 1)) == 0;
}
void change_security_state(unsigned int target_security_state)
{
unsigned long scr = read_scr();
if (target_security_state == SECURE)
scr &= ~SCR_NS_BIT;
else if (target_security_state == NON_SECURE)
scr |= SCR_NS_BIT;
else
assert(0);
write_scr(scr);
}
void __dead2 drop_el(aapcs64_params_t *args,
unsigned long spsr,
unsigned long entrypoint)
{
write_spsr_el3(spsr);
write_elr_el3(entrypoint);
eret(args->arg0,
args->arg1,
args->arg2,
args->arg3,
args->arg4,
args->arg5,
args->arg6,
args->arg7);
}
void __dead2 raise_el(aapcs64_params_t *args)
{
smc(args->arg0,
args->arg1,
args->arg2,
args->arg3,
args->arg4,
args->arg5,
args->arg6,
args->arg7);
}
/*
* TODO: If we are not EL3 then currently we only issue an SMC.
* Add support for dropping into EL0 etc. Consider adding support
* for switching from S-EL1 to S-EL0/1 etc.
*/
void __dead2 change_el(el_change_info_t *info)
{
unsigned long current_el = read_current_el();
if (GET_EL(current_el) == MODE_EL3) {
/*
* We can go anywhere from EL3. So find where.
* TODO: Lots to do if we are going non-secure.
* Flip the NS bit. Restore NS registers etc.
* Just doing the bare minimal for now.
*/
if (info->security_state == NON_SECURE)
change_security_state(info->security_state);
drop_el(&info->args, info->spsr, info->entrypoint);
} else
raise_el(&info->args);
}
/* TODO: add a parameter for DAIF. not needed right now */
unsigned long make_spsr(unsigned long target_el,
unsigned long target_sp,
unsigned long target_rw)
{
unsigned long spsr;
/* Disable all exceptions & setup the EL */
spsr = (DAIF_FIQ_BIT | DAIF_IRQ_BIT | DAIF_ABT_BIT | DAIF_DBG_BIT)
<< PSR_DAIF_SHIFT;
spsr |= PSR_MODE(target_rw, target_el, target_sp);
return spsr;
}
/*******************************************************************************
* The next two functions are the weak definitions. Platform specific
* code can override them if it wishes to.
******************************************************************************/
/*******************************************************************************
* Function that takes a memory layout into which BL31 has been either top or
* bottom loaded. Using this information, it populates bl31_mem_layout to tell
* BL31 how much memory it has access to and how much is available for use. It
* does not need the address where BL31 has been loaded as BL31 will reclaim
* all the memory used by BL2.
* TODO: Revisit if this and init_bl2_mem_layout can be replaced by a single
* routine.
******************************************************************************/
void init_bl31_mem_layout(const meminfo_t *bl2_mem_layout,
meminfo_t *bl31_mem_layout,
unsigned int load_type)
{
if (load_type == BOT_LOAD) {
/*
* ------------ ^
* | BL2 | |
* |----------| ^ | BL2
* | | | BL2 free | total
* | | | size | size
* |----------| BL2 free base v |
* | BL31 | |
* ------------ BL2 total base v
*/
unsigned long bl31_size;
bl31_mem_layout->free_base = bl2_mem_layout->free_base;
bl31_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
bl31_mem_layout->free_size = bl2_mem_layout->total_size - bl31_size;
} else {
/*
* ------------ ^
* | BL31 | |
* |----------| ^ | BL2
* | | | BL2 free | total
* | | | size | size
* |----------| BL2 free base v |
* | BL2 | |
* ------------ BL2 total base v
*/
unsigned long bl2_size;
bl31_mem_layout->free_base = bl2_mem_layout->total_base;
bl2_size = bl2_mem_layout->free_base - bl2_mem_layout->total_base;
bl31_mem_layout->free_size = bl2_mem_layout->free_size + bl2_size;
}
bl31_mem_layout->total_base = bl2_mem_layout->total_base;
bl31_mem_layout->total_size = bl2_mem_layout->total_size;
bl31_mem_layout->attr = load_type;
flush_dcache_range((unsigned long) bl31_mem_layout, sizeof(meminfo_t));
return;
}
/*******************************************************************************
* Function that takes a memory layout into which BL2 has been either top or
* bottom loaded along with the address where BL2 has been loaded in it. Using
* this information, it populates bl2_mem_layout to tell BL2 how much memory
* it has access to and how much is available for use.
******************************************************************************/
void init_bl2_mem_layout(meminfo_t *bl1_mem_layout,
meminfo_t *bl2_mem_layout,
unsigned int load_type,
unsigned long bl2_base)
{
unsigned tmp;
if (load_type == BOT_LOAD) {
bl2_mem_layout->total_base = bl2_base;
tmp = bl1_mem_layout->free_base - bl2_base;
bl2_mem_layout->total_size = bl1_mem_layout->free_size + tmp;
} else {
bl2_mem_layout->total_base = bl1_mem_layout->free_base;
tmp = bl1_mem_layout->total_base + bl1_mem_layout->total_size;
bl2_mem_layout->total_size = tmp - bl1_mem_layout->free_base;
}
bl2_mem_layout->free_base = bl1_mem_layout->free_base;
bl2_mem_layout->free_size = bl1_mem_layout->free_size;
bl2_mem_layout->attr = load_type;
flush_dcache_range((unsigned long) bl2_mem_layout, sizeof(meminfo_t));
return;
}
static void dump_load_info(unsigned long image_load_addr,
unsigned long image_size,
const meminfo_t *mem_layout)
{
#if DEBUG
printf("Trying to load image at address 0x%lx, size = 0x%lx\r\n",
image_load_addr, image_size);
printf("Current memory layout:\r\n");
printf(" total region = [0x%lx, 0x%lx]\r\n", mem_layout->total_base,
mem_layout->total_base + mem_layout->total_size);
printf(" free region = [0x%lx, 0x%lx]\r\n", mem_layout->free_base,
mem_layout->free_base + mem_layout->free_size);
#endif
}
/* Generic function to return the size of an image */
unsigned long image_size(const char *image_name)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
size_t image_size = 0;
int io_result = IO_FAIL;
assert(image_name != NULL);
/* Obtain a reference to the image by querying the platform layer */
io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
if (io_result != IO_SUCCESS) {
WARN("Failed to obtain reference to image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != IO_SUCCESS) {
WARN("Failed to access image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != IO_SUCCESS) || (image_size == 0)) {
WARN("Failed to determine the size of the image '%s' file (%i)\n",
image_name, io_result);
}
io_result = io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this
* bootloader stage
*/
io_result = io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return image_size;
}
/*******************************************************************************
* Generic function to load an image into the trusted RAM,
* given a name, extents of free memory & whether the image should be loaded at
* the bottom or top of the free memory. It updates the memory layout if the
* load is successful.
******************************************************************************/
unsigned long load_image(meminfo_t *mem_layout,
const char *image_name,
unsigned int load_type,
unsigned long fixed_addr)
{
uintptr_t dev_handle;
uintptr_t image_handle;
uintptr_t image_spec;
unsigned long temp_image_base = 0;
unsigned long image_base = 0;
long offset = 0;
size_t image_size = 0;
size_t bytes_read = 0;
int io_result = IO_FAIL;
assert(mem_layout != NULL);
assert(image_name != NULL);
/* Obtain a reference to the image by querying the platform layer */
io_result = plat_get_image_source(image_name, &dev_handle, &image_spec);
if (io_result != IO_SUCCESS) {
WARN("Failed to obtain reference to image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Attempt to access the image */
io_result = io_open(dev_handle, image_spec, &image_handle);
if (io_result != IO_SUCCESS) {
WARN("Failed to access image '%s' (%i)\n",
image_name, io_result);
return 0;
}
/* Find the size of the image */
io_result = io_size(image_handle, &image_size);
if ((io_result != IO_SUCCESS) || (image_size == 0)) {
WARN("Failed to determine the size of the image '%s' file (%i)\n",
image_name, io_result);
goto fail;
}
/* See if we have enough space */
if (image_size > mem_layout->free_size) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(0, image_size, mem_layout);
goto fail;
}
switch (load_type) {
case TOP_LOAD:
/* Load the image in the top of free memory */
temp_image_base = mem_layout->free_base + mem_layout->free_size;
temp_image_base -= image_size;
/* Page align base address and check whether the image still fits */
image_base = page_align(temp_image_base, DOWN);
assert(image_base <= temp_image_base);
if (image_base < mem_layout->free_base) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
goto fail;
}
/* Calculate the amount of extra memory used due to alignment */
offset = temp_image_base - image_base;
break;
case BOT_LOAD:
/* Load the BL2 image in the bottom of free memory */
temp_image_base = mem_layout->free_base;
image_base = page_align(temp_image_base, UP);
assert(image_base >= temp_image_base);
/* Page align base address and check whether the image still fits */
if (image_base + image_size >
mem_layout->free_base + mem_layout->free_size) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
goto fail;
}
/* Calculate the amount of extra memory used due to alignment */
offset = image_base - temp_image_base;
break;
default:
assert(0);
}
/*
* Some images must be loaded at a fixed address, not a dynamic one.
*
* This has been implemented as a hack on top of the existing dynamic
* loading mechanism, for the time being. If the 'fixed_addr' function
* argument is different from zero, then it will force the load address.
* So we still have this principle of top/bottom loading but the code
* determining the load address is bypassed and the load address is
* forced to the fixed one.
*
* This can result in quite a lot of wasted space because we still use
* 1 sole meminfo structure to represent the extents of free memory,
* where we should use some sort of linked list.
*
* E.g. we want to load BL2 at address 0x04020000, the resulting memory
* layout should look as follows:
* ------------ 0x04040000
* | | <- Free space (1)
* |----------|
* | BL2 |
* |----------| 0x04020000
* | | <- Free space (2)
* |----------|
* | BL1 |
* ------------ 0x04000000
*
* But in the current hacky implementation, we'll need to specify
* whether BL2 is loaded at the top or bottom of the free memory.
* E.g. if BL2 is considered as top-loaded, the meminfo structure
* will give the following view of the memory, hiding the chunk of
* free memory above BL2:
* ------------ 0x04040000
* | |
* | |
* | BL2 |
* |----------| 0x04020000
* | | <- Free space (2)
* |----------|
* | BL1 |
* ------------ 0x04000000
*/
if (fixed_addr != 0) {
/* Load the image at the given address. */
image_base = fixed_addr;
/* Check whether the image fits. */
if ((image_base < mem_layout->free_base) ||
(image_base + image_size >
mem_layout->free_base + mem_layout->free_size)) {
WARN("Cannot load '%s' file: Not enough space.\n",
image_name);
dump_load_info(image_base, image_size, mem_layout);
goto fail;
}
/* Check whether the fixed load address is page-aligned. */
if (!is_page_aligned(image_base)) {
WARN("Cannot load '%s' file at unaligned address 0x%lx\n",
image_name, fixed_addr);
goto fail;
}
/*
* Calculate the amount of extra memory used due to fixed
* loading.
*/
if (load_type == TOP_LOAD) {
unsigned long max_addr, space_used;
/*
* ------------ max_addr
* | /wasted/ | | offset
* |..........|..............................
* | image | | image_flen
* |----------| fixed_addr
* | |
* | |
* ------------ total_base
*/
max_addr = mem_layout->total_base + mem_layout->total_size;
/*
* Compute the amount of memory used by the image.
* Corresponds to all space above the image load
* address.
*/
space_used = max_addr - fixed_addr;
/*
* Calculate the amount of wasted memory within the
* amount of memory used by the image.
*/
offset = space_used - image_size;
} else /* BOT_LOAD */
/*
* ------------
* | |
* | |
* |----------|
* | image |
* |..........| fixed_addr
* | /wasted/ | | offset
* ------------ total_base
*/
offset = fixed_addr - mem_layout->total_base;
}
/* We have enough space so load the image now */
/* TODO: Consider whether to try to recover/retry a partially successful read */
io_result = io_read(image_handle, image_base, image_size, &bytes_read);
if ((io_result != IO_SUCCESS) || (bytes_read < image_size)) {
WARN("Failed to load '%s' file (%i)\n", image_name, io_result);
goto fail;
}
/*
* File has been successfully loaded. Update the free memory
* data structure & flush the contents of the TZRAM so that
* the next EL can see it.
*/
/* Update the memory contents */
flush_dcache_range(image_base, image_size);
mem_layout->free_size -= image_size + offset;
/* Update the base of free memory since its moved up */
if (load_type == BOT_LOAD)
mem_layout->free_base += offset + image_size;
exit:
io_result = io_close(image_handle);
/* Ignore improbable/unrecoverable error in 'close' */
/* TODO: Consider maintaining open device connection from this bootloader stage */
io_result = io_dev_close(dev_handle);
/* Ignore improbable/unrecoverable error in 'dev_close' */
return image_base;
fail: image_base = 0;
goto exit;
}
/*******************************************************************************
* Run a loaded image from the given entry point. This could result in either
* dropping into a lower exception level or jumping to a higher exception level.
* The only way of doing the latter is through an SMC. In either case, setup the
* parameters for the EL change request correctly.
******************************************************************************/
void __dead2 run_image(unsigned long entrypoint,
unsigned long spsr,
unsigned long target_security_state,
void *first_arg,
void *second_arg)
{
el_change_info_t run_image_info;
unsigned long current_el = read_current_el();
/* Tell next EL what we want done */
run_image_info.args.arg0 = RUN_IMAGE;
run_image_info.entrypoint = entrypoint;
run_image_info.spsr = spsr;
run_image_info.security_state = target_security_state;
/*
* If we are EL3 then only an eret can take us to the desired
* exception level. Else for the time being assume that we have
* to jump to a higher EL and issue an SMC. Contents of argY
* will go into the general purpose register xY e.g. arg0->x0
*/
if (GET_EL(current_el) == MODE_EL3) {
run_image_info.args.arg1 = (unsigned long) first_arg;
run_image_info.args.arg2 = (unsigned long) second_arg;
} else {
run_image_info.args.arg1 = entrypoint;
run_image_info.args.arg2 = spsr;
run_image_info.args.arg3 = (unsigned long) first_arg;
run_image_info.args.arg4 = (unsigned long) second_arg;
}
change_el(&run_image_info);
}