mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-16 01:24:27 +00:00

Fixed internal links refrenced inside tfa/docs. Followed https://www.sphinx-doc.org/en/master/usage/restructuredtext/roles.html#ref-role for instrustion on how to link sections within other documents. Signed-off-by: Thaddeus Serna <thaddeus.gonzalez-serna@arm.com> Change-Id: I8e7c090d98951b1e3d393ab5b1d6bcdaa1865c6f
421 lines
20 KiB
ReStructuredText
421 lines
20 KiB
ReStructuredText
PSCI Performance Measurements on Arm Juno Development Platform
|
|
==============================================================
|
|
|
|
This document summarises the findings of performance measurements of key
|
|
operations in the Trusted Firmware-A Power State Coordination Interface (PSCI)
|
|
implementation, using the in-built Performance Measurement Framework (PMF) and
|
|
runtime instrumentation timestamps.
|
|
|
|
Method
|
|
------
|
|
|
|
We used the `Juno R1 platform`_ for these tests, which has 4 x Cortex-A53 and 2
|
|
x Cortex-A57 clusters running at the following frequencies:
|
|
|
|
+-----------------+--------------------+
|
|
| Domain | Frequency (MHz) |
|
|
+=================+====================+
|
|
| Cortex-A57 | 900 (nominal) |
|
|
+-----------------+--------------------+
|
|
| Cortex-A53 | 650 (underdrive) |
|
|
+-----------------+--------------------+
|
|
| AXI subsystem | 533 |
|
|
+-----------------+--------------------+
|
|
|
|
Juno supports CPU, cluster and system power down states, corresponding to power
|
|
levels 0, 1 and 2 respectively. It does not support any retention states.
|
|
|
|
Given that runtime instrumentation using PMF is invasive, there is a small
|
|
(unquantified) overhead on the results. PMF uses the generic counter for
|
|
timestamps, which runs at 50MHz on Juno.
|
|
|
|
The following source trees and binaries were used:
|
|
|
|
- TF-A [`v2.9-rc0`_]
|
|
- TFTF [`v2.9-rc0`_]
|
|
|
|
Please see the Runtime Instrumentation :ref:`Testing Methodology
|
|
<Runtime Instrumentation Methodology>`
|
|
page for more details.
|
|
|
|
Procedure
|
|
---------
|
|
|
|
#. Build TFTF with runtime instrumentation enabled:
|
|
|
|
.. code:: shell
|
|
|
|
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
|
|
TESTS=runtime-instrumentation all
|
|
|
|
#. Fetch Juno's SCP binary from TF-A's archive:
|
|
|
|
.. code:: shell
|
|
|
|
curl --fail --connect-timeout 5 --retry 5 -sLS -o scp_bl2.bin \
|
|
https://downloads.trustedfirmware.org/tf-a/css_scp_2.12.0/juno/release/juno-bl2.bin
|
|
|
|
#. Build TF-A with the following build options:
|
|
|
|
.. code:: shell
|
|
|
|
make CROSS_COMPILE=aarch64-none-elf- PLAT=juno \
|
|
BL33="/path/to/tftf.bin" SCP_BL2="scp_bl2.bin" \
|
|
ENABLE_RUNTIME_INSTRUMENTATION=1 fiptool all fip
|
|
|
|
#. Load the following images onto the development board: ``fip.bin``,
|
|
``scp_bl2.bin``.
|
|
|
|
Results
|
|
-------
|
|
|
|
``CPU_SUSPEND`` to deepest power level
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
|
|
parallel
|
|
|
|
+---------+------+-----------+---------+-------------+
|
|
| Cluster | Core | Powerdown | Wakekup | Cache Flush |
|
|
+=========+======+===========+=========+=============+
|
|
| 0 | 0 | 243.76 | 239.92 | 6.32 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 1 | 663.5 | 30.32 | 167.82 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 0 | 105.12 | 22.84 | 5.88 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 1 | 384.16 | 19.06 | 4.7 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 2 | 523.98 | 270.46 | 4.74 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 3 | 950.54 | 220.9 | 89.2 |
|
|
+---------+------+-----------+---------+-------------+
|
|
|
|
.. table:: ``CPU_SUSPEND`` latencies (µs) to deepest power level in
|
|
serial
|
|
|
|
+---------+------+-----------+---------+-------------+
|
|
| Cluster | Core | Powerdown | Wakekup | Cache Flush |
|
|
+=========+======+===========+=========+=============+
|
|
| 0 | 0 | 266.96 | 31.74 | 167.92 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 1 | 266.9 | 31.52 | 167.82 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 0 | 279.86 | 23.42 | 87.52 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 1 | 101.38 | 18.8 | 4.64 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 2 | 101.18 | 19.28 | 4.64 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 3 | 101.32 | 19.02 | 4.62 |
|
|
+---------+------+-----------+---------+-------------+
|
|
|
|
``CPU_SUSPEND`` to power level 0
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in
|
|
parallel
|
|
|
|
+---------+------+-----------+---------+-------------+
|
|
| Cluster | Core | Powerdown | Wakekup | Cache Flush |
|
|
+=========+======+===========+=========+=============+
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 0 | 661.94 | 22.88 | 9.66 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 1 | 801.64 | 23.38 | 9.62 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 0 | 105.56 | 16.02 | 8.12 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 1 | 245.42 | 16.26 | 7.78 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 2 | 384.42 | 16.1 | 7.84 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 3 | 523.74 | 15.4 | 8.02 |
|
|
+---------+------+-----------+---------+-------------+
|
|
|
|
.. table:: ``CPU_SUSPEND`` latencies (µs) to power level 0 in serial
|
|
|
|
+---------+------+-----------+---------+-------------+
|
|
| Cluster | Core | Powerdown | Wakekup | Cache Flush |
|
|
+=========+======+===========+=========+=============+
|
|
| 0 | 0 | 102.16 | 23.64 | 6.7 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 1 | 101.66 | 23.78 | 6.6 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 0 | 277.74 | 15.96 | 4.66 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 1 | 98.0 | 15.88 | 4.64 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 2 | 97.66 | 15.88 | 4.62 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 3 | 97.76 | 15.38 | 4.64 |
|
|
+---------+------+-----------+---------+-------------+
|
|
|
|
``CPU_OFF`` on all non-lead CPUs
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
``CPU_OFF`` on all non-lead CPUs in sequence then, ``CPU_SUSPEND`` on the lead
|
|
core to the deepest power level.
|
|
|
|
.. table:: ``CPU_OFF`` latencies (µs) on all non-lead CPUs
|
|
|
|
+---------+------+-----------+---------+-------------+
|
|
| Cluster | Core | Powerdown | Wakekup | Cache Flush |
|
|
+=========+======+===========+=========+=============+
|
|
| 0 | 0 | 265.38 | 34.12 | 167.36 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 0 | 1 | 265.72 | 33.98 | 167.48 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 0 | 185.3 | 23.18 | 87.42 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 1 | 101.58 | 23.46 | 4.48 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 2 | 101.66 | 22.02 | 4.72 |
|
|
+---------+------+-----------+---------+-------------+
|
|
| 1 | 3 | 101.48 | 22.22 | 4.52 |
|
|
+---------+------+-----------+---------+-------------+
|
|
|
|
``CPU_VERSION`` in parallel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
.. table:: ``CPU_VERSION`` latency (µs) in parallel on all cores
|
|
|
|
+-------------+--------+--------------+
|
|
| Cluster | Core | Latency |
|
|
+=============+========+==============+
|
|
| 0 | 0 | 1.22 |
|
|
+-------------+--------+--------------+
|
|
| 0 | 1 | 1.2 |
|
|
+-------------+--------+--------------+
|
|
| 1 | 0 | 0.6 |
|
|
+-------------+--------+--------------+
|
|
| 1 | 1 | 1.08 |
|
|
+-------------+--------+--------------+
|
|
| 1 | 2 | 1.04 |
|
|
+-------------+--------+--------------+
|
|
| 1 | 3 | 1.04 |
|
|
+-------------+--------+--------------+
|
|
|
|
Annotated Historic Results
|
|
--------------------------
|
|
|
|
The following results are based on the upstream `TF master as of 31/01/2017`_.
|
|
TF-A was built using the same build instructions as detailed in the procedure
|
|
above.
|
|
|
|
In the results below, CPUs 0-3 refer to CPUs in the little cluster (A53) and
|
|
CPUs 4-5 refer to CPUs in the big cluster (A57). In all cases CPU 4 is the lead
|
|
CPU.
|
|
|
|
``PSCI_ENTRY`` corresponds to the powerdown latency, ``PSCI_EXIT`` the wakeup latency, and
|
|
``CFLUSH_OVERHEAD`` the latency of the cache flush operation.
|
|
|
|
``CPU_SUSPEND`` to deepest power level on all CPUs in parallel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
|
|
+=======+=====================+====================+==========================+
|
|
| 0 | 27 | 20 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 1 | 114 | 86 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 2 | 202 | 58 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 3 | 375 | 29 | 94 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 4 | 20 | 22 | 6 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 5 | 290 | 18 | 206 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
|
|
A large variance in ``PSCI_ENTRY`` and ``PSCI_EXIT`` times across CPUs is
|
|
observed due to TF PSCI lock contention. In the worst case, CPU 3 has to wait
|
|
for the 3 other CPUs in the cluster (0-2) to complete ``PSCI_ENTRY`` and release
|
|
the lock before proceeding.
|
|
|
|
The ``CFLUSH_OVERHEAD`` times for CPUs 3 and 5 are higher because they are the
|
|
last CPUs in their respective clusters to power down, therefore both the L1 and
|
|
L2 caches are flushed.
|
|
|
|
The ``CFLUSH_OVERHEAD`` time for CPU 5 is a lot larger than that for CPU 3
|
|
because the L2 cache size for the big cluster is lot larger (2MB) compared to
|
|
the little cluster (1MB).
|
|
|
|
``CPU_SUSPEND`` to power level 0 on all CPUs in parallel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
|
|
+=======+=====================+====================+==========================+
|
|
| 0 | 116 | 14 | 8 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 1 | 204 | 14 | 8 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 2 | 287 | 13 | 8 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 3 | 376 | 13 | 9 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 4 | 29 | 15 | 7 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 5 | 21 | 15 | 8 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
|
|
There is no lock contention in TF generic code at power level 0 but the large
|
|
variance in ``PSCI_ENTRY`` times across CPUs is due to lock contention in Juno
|
|
platform code. The platform lock is used to mediate access to a single SCP
|
|
communication channel. This is compounded by the SCP firmware waiting for each
|
|
AP CPU to enter WFI before making the channel available to other CPUs, which
|
|
effectively serializes the SCP power down commands from all CPUs.
|
|
|
|
On platforms with a more efficient CPU power down mechanism, it should be
|
|
possible to make the ``PSCI_ENTRY`` times smaller and consistent.
|
|
|
|
The ``PSCI_EXIT`` times are consistent across all CPUs because TF does not
|
|
require locks at power level 0.
|
|
|
|
The ``CFLUSH_OVERHEAD`` times for all CPUs are small and consistent since only
|
|
the cache associated with power level 0 is flushed (L1).
|
|
|
|
``CPU_SUSPEND`` to deepest power level on all CPUs in sequence
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
|
|
+=======+=====================+====================+==========================+
|
|
| 0 | 114 | 20 | 94 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 1 | 114 | 20 | 94 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 2 | 114 | 20 | 94 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 3 | 114 | 20 | 94 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 4 | 195 | 22 | 180 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 5 | 21 | 17 | 6 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
|
|
The ``CFLUSH_OVERHEAD`` times for lead CPU 4 and all CPUs in the non-lead cluster
|
|
are large because all other CPUs in the cluster are powered down during the
|
|
test. The ``CPU_SUSPEND`` call powers down to the cluster level, requiring a
|
|
flush of both L1 and L2 caches.
|
|
|
|
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
|
|
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
|
|
to the little cluster (1MB).
|
|
|
|
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are low because lead
|
|
CPU 4 continues to run while CPU 5 is suspended. Hence CPU 5 only powers down to
|
|
level 0, which only requires L1 cache flush.
|
|
|
|
``CPU_SUSPEND`` to power level 0 on all CPUs in sequence
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
|
|
+=======+=====================+====================+==========================+
|
|
| 0 | 22 | 14 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 1 | 22 | 14 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 2 | 21 | 14 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 3 | 22 | 14 | 5 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 4 | 17 | 14 | 6 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 5 | 18 | 15 | 6 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
|
|
Here the times are small and consistent since there is no contention and it is
|
|
only necessary to flush the cache to power level 0 (L1). This is the best case
|
|
scenario.
|
|
|
|
The ``PSCI_ENTRY`` times for CPUs in the big cluster are slightly smaller than
|
|
for the CPUs in little cluster due to greater CPU performance.
|
|
|
|
The ``PSCI_EXIT`` times are generally lower than in the last test because the
|
|
cluster remains powered on throughout the test and there is less code to execute
|
|
on power on (for example, no need to enter CCI coherency)
|
|
|
|
``CPU_OFF`` on all non-lead CPUs in sequence then ``CPU_SUSPEND`` on lead CPU to deepest power level
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
The test sequence here is as follows:
|
|
|
|
1. Call ``CPU_ON`` and ``CPU_OFF`` on each non-lead CPU in sequence.
|
|
|
|
2. Program wake up timer and suspend the lead CPU to the deepest power level.
|
|
|
|
3. Call ``CPU_ON`` on non-lead CPU to get the timestamps from each CPU.
|
|
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| CPU | ``PSCI_ENTRY`` (us) | ``PSCI_EXIT`` (us) | ``CFLUSH_OVERHEAD`` (us) |
|
|
+=======+=====================+====================+==========================+
|
|
| 0 | 110 | 28 | 93 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 1 | 110 | 28 | 93 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 2 | 110 | 28 | 93 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 3 | 111 | 28 | 93 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 4 | 195 | 22 | 181 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
| 5 | 20 | 23 | 6 |
|
|
+-------+---------------------+--------------------+--------------------------+
|
|
|
|
The ``CFLUSH_OVERHEAD`` times for all little CPUs are large because all other
|
|
CPUs in that cluster are powerered down during the test. The ``CPU_OFF`` call
|
|
powers down to the cluster level, requiring a flush of both L1 and L2 caches.
|
|
|
|
The ``PSCI_ENTRY`` and ``CFLUSH_OVERHEAD`` times for CPU 5 are small because
|
|
lead CPU 4 is running and CPU 5 only powers down to level 0, which only requires
|
|
an L1 cache flush.
|
|
|
|
The ``CFLUSH_OVERHEAD`` time for CPU 4 is a lot larger than those for the little
|
|
CPUs because the L2 cache size for the big cluster is lot larger (2MB) compared
|
|
to the little cluster (1MB).
|
|
|
|
The ``PSCI_EXIT`` times for CPUs in the big cluster are slightly smaller than
|
|
for CPUs in the little cluster due to greater CPU performance. These times
|
|
generally are greater than the ``PSCI_EXIT`` times in the ``CPU_SUSPEND`` tests
|
|
because there is more code to execute in the "on finisher" compared to the
|
|
"suspend finisher" (for example, GIC redistributor register programming).
|
|
|
|
``PSCI_VERSION`` on all CPUs in parallel
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
Since very little code is associated with ``PSCI_VERSION``, this test
|
|
approximates the round trip latency for handling a fast SMC at EL3 in TF.
|
|
|
|
+-------+-------------------+
|
|
| CPU | TOTAL TIME (ns) |
|
|
+=======+===================+
|
|
| 0 | 3020 |
|
|
+-------+-------------------+
|
|
| 1 | 2940 |
|
|
+-------+-------------------+
|
|
| 2 | 2980 |
|
|
+-------+-------------------+
|
|
| 3 | 3060 |
|
|
+-------+-------------------+
|
|
| 4 | 520 |
|
|
+-------+-------------------+
|
|
| 5 | 720 |
|
|
+-------+-------------------+
|
|
|
|
The times for the big CPUs are less than the little CPUs due to greater CPU
|
|
performance.
|
|
|
|
We suspect the time for lead CPU 4 is shorter than CPU 5 due to subtle cache
|
|
effects, given that these measurements are at the nano-second level.
|
|
|
|
--------------
|
|
|
|
*Copyright (c) 2019-2023, Arm Limited and Contributors. All rights reserved.*
|
|
|
|
.. _Juno R1 platform: https://developer.arm.com/documentation/100122/latest/
|
|
.. _TF master as of 31/01/2017: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?id=c38b36d
|
|
.. _v2.9-rc0: https://git.trustedfirmware.org/TF-A/trusted-firmware-a.git/tree/?h=v2.9-rc0
|