mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-18 18:44:22 +00:00

Previously, platform.h contained many declarations and definitions used for different purposes. This file has been split so that: * Platform definitions used by common code that must be defined by the platform are now in platform_def.h. The exact include path is exported through $PLAT_INCLUDES in the platform makefile. * Platform definitions specific to the FVP platform are now in /plat/fvp/fvp_def.h. * Platform API declarations specific to the FVP platform are now in /plat/fvp/fvp_private.h. * The remaining platform API declarations that must be ported by each platform are still in platform.h but this file has been moved to /include/plat/common since this can be shared by all platforms. Change-Id: Ieb3bb22fbab3ee8027413c6b39a783534aee474a
408 lines
14 KiB
C
408 lines
14 KiB
C
/*
|
|
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice, this
|
|
* list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of ARM nor the names of its contributors may be used
|
|
* to endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <arch_helpers.h>
|
|
#include <assert.h>
|
|
#include <bl_common.h>
|
|
#include <debug.h>
|
|
#include <gic_v2.h>
|
|
#include <gic_v3.h>
|
|
#include <interrupt_mgmt.h>
|
|
#include <platform.h>
|
|
#include <stdint.h>
|
|
#include "fvp_def.h"
|
|
#include "fvp_private.h"
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration. The Firmware itself does
|
|
* not fully support GICv3 at this time and relies on GICv2 emulation as
|
|
* provided by GICv3. This function allows software (like Linux) in later stages
|
|
* to use full GICv3 features.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_setup(void)
|
|
{
|
|
unsigned int scr_val, val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When CPUs come out of reset they have their GICR_WAKER.ProcessorSleep
|
|
* bit set. In order to allow interrupts to get routed to the CPU we
|
|
* need to clear this bit if set and wait for GICR_WAKER.ChildrenAsleep
|
|
* to clear (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
|
|
val &= ~WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to clear. */
|
|
val = gicr_read_waker(base);
|
|
while (val & WAKER_CA) {
|
|
val = gicr_read_waker(base);
|
|
}
|
|
|
|
/*
|
|
* We need to set SCR_EL3.NS in order to see GICv3 non-secure state.
|
|
* Restore SCR_EL3.NS again before exit.
|
|
*/
|
|
scr_val = read_scr();
|
|
write_scr(scr_val | SCR_NS_BIT);
|
|
isb(); /* ensure NS=1 takes effect before accessing ICC_SRE_EL2 */
|
|
|
|
/*
|
|
* By default EL2 and NS-EL1 software should be able to enable GICv3
|
|
* System register access without any configuration at EL3. But it turns
|
|
* out that GICC PMR as set in GICv2 mode does not affect GICv3 mode. So
|
|
* we need to set it here again. In order to do that we need to enable
|
|
* register access. We leave it enabled as it should be fine and might
|
|
* prevent problems with later software trying to access GIC System
|
|
* Registers.
|
|
*/
|
|
val = read_icc_sre_el3();
|
|
write_icc_sre_el3(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
|
|
val = read_icc_sre_el2();
|
|
write_icc_sre_el2(val | ICC_SRE_EN | ICC_SRE_SRE);
|
|
|
|
write_icc_pmr_el1(GIC_PRI_MASK);
|
|
isb(); /* commite ICC_* changes before setting NS=0 */
|
|
|
|
/* Restore SCR_EL3 */
|
|
write_scr(scr_val);
|
|
isb(); /* ensure NS=0 takes effect immediately */
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function does some minimal GICv3 configuration when cores go
|
|
* down.
|
|
******************************************************************************/
|
|
void gicv3_cpuif_deactivate(void)
|
|
{
|
|
unsigned int val;
|
|
uintptr_t base;
|
|
|
|
/*
|
|
* When taking CPUs down we need to set GICR_WAKER.ProcessorSleep and
|
|
* wait for GICR_WAKER.ChildrenAsleep to get set.
|
|
* (GICv3 Architecture specification 5.4.23).
|
|
* GICR_WAKER is NOT banked per CPU, compute the correct base address
|
|
* per CPU.
|
|
*/
|
|
base = gicv3_get_rdist(BASE_GICR_BASE, read_mpidr());
|
|
if (base == (uintptr_t)NULL) {
|
|
/* No re-distributor base address. This interface cannot be
|
|
* configured.
|
|
*/
|
|
panic();
|
|
}
|
|
|
|
val = gicr_read_waker(base);
|
|
val |= WAKER_PS;
|
|
gicr_write_waker(base, val);
|
|
dsb();
|
|
|
|
/* We need to wait for ChildrenAsleep to set. */
|
|
val = gicr_read_waker(base);
|
|
while ((val & WAKER_CA) == 0) {
|
|
val = gicr_read_waker(base);
|
|
}
|
|
}
|
|
|
|
|
|
/*******************************************************************************
|
|
* Enable secure interrupts and use FIQs to route them. Disable legacy bypass
|
|
* and set the priority mask register to allow all interrupts to trickle in.
|
|
******************************************************************************/
|
|
void gic_cpuif_setup(unsigned int gicc_base)
|
|
{
|
|
unsigned int val;
|
|
|
|
val = gicc_read_iidr(gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. We want to
|
|
* allow default GICv2 behaviour but allow the next stage to
|
|
* enable full gicv3 features.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
gicv3_cpuif_setup();
|
|
}
|
|
|
|
val = ENABLE_GRP0 | FIQ_EN | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
|
|
|
|
gicc_write_pmr(gicc_base, GIC_PRI_MASK);
|
|
gicc_write_ctlr(gicc_base, val);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Place the cpu interface in a state where it can never make a cpu exit wfi as
|
|
* as result of an asserted interrupt. This is critical for powering down a cpu
|
|
******************************************************************************/
|
|
void gic_cpuif_deactivate(unsigned int gicc_base)
|
|
{
|
|
unsigned int val;
|
|
|
|
/* Disable secure, non-secure interrupts and disable their bypass */
|
|
val = gicc_read_ctlr(gicc_base);
|
|
val &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
|
|
val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
|
|
gicc_write_ctlr(gicc_base, val);
|
|
|
|
val = gicc_read_iidr(gicc_base);
|
|
|
|
/*
|
|
* If GICv3 we need to do a bit of additional setup. Make sure the
|
|
* RDIST is put to sleep.
|
|
*/
|
|
if (((val >> GICC_IIDR_ARCH_SHIFT) & GICC_IIDR_ARCH_MASK) >= 3) {
|
|
gicv3_cpuif_deactivate();
|
|
}
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Per cpu gic distributor setup which will be done by all cpus after a cold
|
|
* boot/hotplug. This marks out the secure interrupts & enables them.
|
|
******************************************************************************/
|
|
void gic_pcpu_distif_setup(unsigned int gicd_base)
|
|
{
|
|
gicd_write_igroupr(gicd_base, 0, ~0);
|
|
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_PHY_TIMER);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_0);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_1);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_2);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_3);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_4);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_5);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_6);
|
|
gicd_clr_igroupr(gicd_base, IRQ_SEC_SGI_7);
|
|
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_PHY_TIMER, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_0, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_1, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_2, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_3, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_4, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_5, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_6, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_SEC_SGI_7, GIC_HIGHEST_SEC_PRIORITY);
|
|
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_PHY_TIMER);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_0);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_1);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_2);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_3);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_4);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_5);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_6);
|
|
gicd_set_isenabler(gicd_base, IRQ_SEC_SGI_7);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Global gic distributor setup which will be done by the primary cpu after a
|
|
* cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
|
|
* then enables the secure GIC distributor interface.
|
|
******************************************************************************/
|
|
void gic_distif_setup(unsigned int gicd_base)
|
|
{
|
|
unsigned int ctr, num_ints, ctlr;
|
|
|
|
/* Disable the distributor before going further */
|
|
ctlr = gicd_read_ctlr(gicd_base);
|
|
ctlr &= ~(ENABLE_GRP0 | ENABLE_GRP1);
|
|
gicd_write_ctlr(gicd_base, ctlr);
|
|
|
|
/*
|
|
* Mark out non-secure interrupts. Calculate number of
|
|
* IGROUPR registers to consider. Will be equal to the
|
|
* number of IT_LINES
|
|
*/
|
|
num_ints = gicd_read_typer(gicd_base) & IT_LINES_NO_MASK;
|
|
num_ints++;
|
|
for (ctr = 0; ctr < num_ints; ctr++)
|
|
gicd_write_igroupr(gicd_base, ctr << IGROUPR_SHIFT, ~0);
|
|
|
|
/* Configure secure interrupts now */
|
|
gicd_clr_igroupr(gicd_base, IRQ_TZ_WDOG);
|
|
gicd_set_ipriorityr(gicd_base, IRQ_TZ_WDOG, GIC_HIGHEST_SEC_PRIORITY);
|
|
gicd_set_itargetsr(gicd_base, IRQ_TZ_WDOG,
|
|
platform_get_core_pos(read_mpidr()));
|
|
gicd_set_isenabler(gicd_base, IRQ_TZ_WDOG);
|
|
gic_pcpu_distif_setup(gicd_base);
|
|
|
|
gicd_write_ctlr(gicd_base, ctlr | ENABLE_GRP0);
|
|
}
|
|
|
|
void gic_setup(void)
|
|
{
|
|
unsigned int gicd_base, gicc_base;
|
|
|
|
gicd_base = platform_get_cfgvar(CONFIG_GICD_ADDR);
|
|
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
|
|
|
|
gic_cpuif_setup(gicc_base);
|
|
gic_distif_setup(gicd_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* An ARM processor signals interrupt exceptions through the IRQ and FIQ pins.
|
|
* The interrupt controller knows which pin/line it uses to signal a type of
|
|
* interrupt. The platform knows which interrupt controller type is being used
|
|
* in a particular security state e.g. with an ARM GIC, normal world could use
|
|
* the GICv2 features while the secure world could use GICv3 features and vice
|
|
* versa.
|
|
* This function is exported by the platform to let the interrupt management
|
|
* framework determine for a type of interrupt and security state, which line
|
|
* should be used in the SCR_EL3 to control its routing to EL3. The interrupt
|
|
* line is represented as the bit position of the IRQ or FIQ bit in the SCR_EL3.
|
|
******************************************************************************/
|
|
uint32_t plat_interrupt_type_to_line(uint32_t type, uint32_t security_state)
|
|
{
|
|
uint32_t gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
|
|
|
|
assert(type == INTR_TYPE_S_EL1 ||
|
|
type == INTR_TYPE_EL3 ||
|
|
type == INTR_TYPE_NS);
|
|
|
|
assert(security_state == NON_SECURE || security_state == SECURE);
|
|
|
|
/*
|
|
* We ignore the security state parameter under the assumption that
|
|
* both normal and secure worlds are using ARM GICv2. This parameter
|
|
* will be used when the secure world starts using GICv3.
|
|
*/
|
|
#if FVP_GIC_ARCH == 2
|
|
return gicv2_interrupt_type_to_line(gicc_base, type);
|
|
#else
|
|
#error "Invalid GIC architecture version specified for FVP port"
|
|
#endif
|
|
}
|
|
|
|
#if FVP_GIC_ARCH == 2
|
|
/*******************************************************************************
|
|
* This function returns the type of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_TYPE_INVAL is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t ic_get_pending_interrupt_type()
|
|
{
|
|
uint32_t id, gicc_base;
|
|
|
|
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
|
|
id = gicc_read_hppir(gicc_base);
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (id < 1022)
|
|
return INTR_TYPE_S_EL1;
|
|
|
|
if (id == GIC_SPURIOUS_INTERRUPT)
|
|
return INTR_TYPE_INVAL;
|
|
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the id of the highest priority pending interrupt at
|
|
* the GIC cpu interface. INTR_ID_UNAVAILABLE is returned when there is no
|
|
* interrupt pending.
|
|
******************************************************************************/
|
|
uint32_t ic_get_pending_interrupt_id()
|
|
{
|
|
uint32_t id, gicc_base;
|
|
|
|
gicc_base = platform_get_cfgvar(CONFIG_GICC_ADDR);
|
|
id = gicc_read_hppir(gicc_base);
|
|
|
|
if (id < 1022)
|
|
return id;
|
|
|
|
if (id == 1023)
|
|
return INTR_ID_UNAVAILABLE;
|
|
|
|
/*
|
|
* Find out which non-secure interrupt it is under the assumption that
|
|
* the GICC_CTLR.AckCtl bit is 0.
|
|
*/
|
|
return gicc_read_ahppir(gicc_base);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions reads the GIC cpu interface Interrupt Acknowledge register
|
|
* to start handling the pending interrupt. It returns the contents of the IAR.
|
|
******************************************************************************/
|
|
uint32_t ic_acknowledge_interrupt()
|
|
{
|
|
return gicc_read_IAR(platform_get_cfgvar(CONFIG_GICC_ADDR));
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This functions writes the GIC cpu interface End Of Interrupt register with
|
|
* the passed value to finish handling the active interrupt
|
|
******************************************************************************/
|
|
void ic_end_of_interrupt(uint32_t id)
|
|
{
|
|
gicc_write_EOIR(platform_get_cfgvar(CONFIG_GICC_ADDR), id);
|
|
return;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function returns the type of the interrupt id depending upon the group
|
|
* this interrupt has been configured under by the interrupt controller i.e.
|
|
* group0 or group1.
|
|
******************************************************************************/
|
|
uint32_t ic_get_interrupt_type(uint32_t id)
|
|
{
|
|
uint32_t group;
|
|
|
|
group = gicd_get_igroupr(platform_get_cfgvar(CONFIG_GICD_ADDR), id);
|
|
|
|
/* Assume that all secure interrupts are S-EL1 interrupts */
|
|
if (group == GRP0)
|
|
return INTR_TYPE_S_EL1;
|
|
else
|
|
return INTR_TYPE_NS;
|
|
}
|
|
|
|
#else
|
|
#error "Invalid GIC architecture version specified for FVP port"
|
|
#endif
|