arm-trusted-firmware/drivers/auth/mbedtls/mbedtls_psa_crypto.c
Manish V Badarkhe 255ce97d60 feat(mbedtls-psa): mbedTLS PSA Crypto with ECDSA
The ECDSA algorithm signature verification in the PSA differs
from the RSA algorithm in its handling of data formats. In the
case of RSA, an encoded ASN1.0 buffer is passed to the PSA API,
which then decodes the buffer. However, for ECDSA, the PSA API
expects a raw format.

To accomodate this requirement, introduce several static APIs
that allows to retrieve -

1. ECDSA public key data pointer along with its size, and also,
   the ECC family in PSA format from the public key.
2. R and S pair of the ECDSA signature along with its size

Change-Id: Icc7d5659aeb3d5c1ab63c3a12c001e68b11a3a86
Signed-off-by: Manish V Badarkhe <Manish.Badarkhe@arm.com>
2023-10-26 08:52:33 +01:00

696 lines
18 KiB
C

/*
* Copyright (c) 2023, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stddef.h>
#include <string.h>
/* mbed TLS headers */
#include <mbedtls/gcm.h>
#include <mbedtls/md.h>
#include <mbedtls/memory_buffer_alloc.h>
#include <mbedtls/oid.h>
#include <mbedtls/platform.h>
#include <mbedtls/version.h>
#include <mbedtls/x509.h>
#include <psa/crypto.h>
#include <psa/crypto_platform.h>
#include <psa/crypto_types.h>
#include <psa/crypto_values.h>
#include <common/debug.h>
#include <drivers/auth/crypto_mod.h>
#include <drivers/auth/mbedtls/mbedtls_common.h>
#include <plat/common/platform.h>
#define LIB_NAME "mbed TLS PSA"
/* Maximum length of R_S pair in the ECDSA signature in bytes */
#define MAX_ECDSA_R_S_PAIR_LEN 64U
/* Size of ASN.1 length and tag in bytes*/
#define SIZE_OF_ASN1_LEN 1U
#define SIZE_OF_ASN1_TAG 1U
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* CRYPTO_MD_MAX_SIZE value is as per current stronger algorithm available
* so make sure that mbed TLS MD maximum size must be lesser than this.
*/
CASSERT(CRYPTO_MD_MAX_SIZE >= MBEDTLS_MD_MAX_SIZE,
assert_mbedtls_md_size_overflow);
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
static inline psa_algorithm_t mbedtls_md_psa_alg_from_type(
mbedtls_md_type_t md_type)
{
assert((md_type == MBEDTLS_MD_SHA256) ||
(md_type == MBEDTLS_MD_SHA384) ||
(md_type == MBEDTLS_MD_SHA512));
return PSA_ALG_CATEGORY_HASH | (psa_algorithm_t) (md_type + 0x5);
}
/*
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER,
* parameters ANY DEFINED BY algorithm OPTIONAL
* }
*
* SubjectPublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* subjectPublicKey BIT STRING
* }
*
* DigestInfo ::= SEQUENCE {
* digestAlgorithm AlgorithmIdentifier,
* digest OCTET STRING
* }
*/
/*
* We pretend using an external RNG (through MBEDTLS_PSA_CRYPTO_EXTERNAL_RNG
* mbedTLS config option) so we need to provide an implementation of
* mbedtls_psa_external_get_random(). Provide a fake one, since we do not
* actually have any external RNG and TF-A itself doesn't engage in
* cryptographic operations that demands randomness.
*/
psa_status_t mbedtls_psa_external_get_random(
mbedtls_psa_external_random_context_t *context,
uint8_t *output, size_t output_size,
size_t *output_length)
{
return PSA_ERROR_INSUFFICIENT_ENTROPY;
}
/*
* Initialize the library and export the descriptor
*/
static void init(void)
{
/* Initialize mbed TLS */
mbedtls_init();
/* Initialise PSA mbedTLS */
psa_status_t status = psa_crypto_init();
if (status != PSA_SUCCESS) {
ERROR("Failed to initialize %s crypto (%d).\n", LIB_NAME, status);
panic();
}
INFO("PSA crypto initialized successfully!\n");
}
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
static void construct_psa_key_alg_and_type(mbedtls_pk_type_t pk_alg,
mbedtls_md_type_t md_alg,
psa_ecc_family_t psa_ecc_family,
psa_algorithm_t *psa_alg,
psa_key_type_t *psa_key_type)
{
psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
switch (pk_alg) {
case MBEDTLS_PK_RSASSA_PSS:
*psa_alg = PSA_ALG_RSA_PSS(psa_md_alg);
*psa_key_type = PSA_KEY_TYPE_RSA_PUBLIC_KEY;
break;
case MBEDTLS_PK_ECDSA:
*psa_alg = PSA_ALG_ECDSA(psa_md_alg);
*psa_key_type = PSA_KEY_TYPE_ECC_PUBLIC_KEY(psa_ecc_family);
break;
default:
*psa_alg = PSA_ALG_NONE;
*psa_key_type = PSA_KEY_TYPE_NONE;
break;
}
}
#if TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
/*
* This is a helper function to detect padding byte (if the MSB bit of the
* first data byte is set to 1, for example 0x80) and on detection, ignore the
* padded byte(0x00) and increase the buffer pointer beyond padded byte and
* decrease the length of the buffer by 1.
*
* On Success returns 0, error otherwise.
**/
static inline int ignore_asn1_int_padding_byte(unsigned char **buf_start,
size_t *buf_len)
{
unsigned char *local_buf = *buf_start;
/* Check for negative number */
if ((local_buf[0] & 0x80U) != 0U) {
return -1;
}
if ((local_buf[0] == 0U) && (local_buf[1] > 0x7FU) &&
(*buf_len > 1U)) {
*buf_start = &local_buf[1];
(*buf_len)--;
}
return 0;
}
/*
* This is a helper function that gets a pointer to the encoded ECDSA publicKey
* and its length (as per RFC5280) and returns corresponding decoded publicKey
* and its length. As well, it retrieves the family of ECC key in the PSA
* format.
*
* This function returns error(CRYPTO_ERR_SIGNATURE) on ASN.1 parsing failure,
* otherwise success(0).
**/
static int get_ecdsa_pkinfo_from_asn1(unsigned char **pk_start,
unsigned int *pk_len,
psa_ecc_family_t *psa_ecc_family)
{
mbedtls_asn1_buf alg_oid, alg_params;
mbedtls_ecp_group_id grp_id;
int rc;
unsigned char *pk_end;
size_t len;
size_t curve_bits;
unsigned char *pk_ptr = *pk_start;
pk_end = pk_ptr + *pk_len;
rc = mbedtls_asn1_get_tag(&pk_ptr, pk_end, &len,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len;
rc = mbedtls_asn1_get_alg(&pk_ptr, pk_end, &alg_oid, &alg_params);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (alg_params.tag == MBEDTLS_ASN1_OID) {
if (mbedtls_oid_get_ec_grp(&alg_params, &grp_id) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
*psa_ecc_family = mbedtls_ecc_group_to_psa(grp_id,
&curve_bits);
} else {
return CRYPTO_ERR_SIGNATURE;
}
pk_end = pk_ptr + len - (alg_oid.len + alg_params.len +
2 * (SIZE_OF_ASN1_LEN + SIZE_OF_ASN1_TAG));
rc = mbedtls_asn1_get_bitstring_null(&pk_ptr, pk_end, &len);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
*pk_start = pk_ptr;
*pk_len = len;
return rc;
}
/*
* Ecdsa-Sig-Value ::= SEQUENCE {
* r INTEGER,
* s INTEGER
* }
*
* This helper function that gets a pointer to the encoded ECDSA signature and
* its length (as per RFC5280) and returns corresponding decoded signature
* (R_S pair) and its size.
*
* This function returns error(CRYPTO_ERR_SIGNATURE) on ASN.1 parsing failure,
* otherwise success(0).
**/
static int get_ecdsa_signature_from_asn1(unsigned char *sig_ptr,
size_t *sig_len,
unsigned char *r_s_pair)
{
int rc;
unsigned char *sig_end;
size_t len, r_len, s_len;
sig_end = sig_ptr + *sig_len;
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &len,
MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
sig_end = sig_ptr + len;
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &r_len,
MBEDTLS_ASN1_INTEGER);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (ignore_asn1_int_padding_byte(&sig_ptr, &r_len) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
(void)memcpy((void *)&r_s_pair[0], (const void *)sig_ptr, r_len);
sig_ptr = sig_ptr + r_len;
sig_end = sig_ptr + len - (r_len + (SIZE_OF_ASN1_LEN +
SIZE_OF_ASN1_TAG));
rc = mbedtls_asn1_get_tag(&sig_ptr, sig_end, &s_len,
MBEDTLS_ASN1_INTEGER);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
if (ignore_asn1_int_padding_byte(&sig_ptr, &s_len) != 0) {
return CRYPTO_ERR_SIGNATURE;
}
(void)memcpy((void *)&r_s_pair[r_len], (const void *)sig_ptr, s_len);
*sig_len = s_len + r_len;
return 0;
}
#endif /*
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
**/
/*
* Verify a signature.
*
* Parameters are passed using the DER encoding format following the ASN.1
* structures detailed above.
*/
static int verify_signature(void *data_ptr, unsigned int data_len,
void *sig_ptr, unsigned int sig_len,
void *sig_alg, unsigned int sig_alg_len,
void *pk_ptr, unsigned int pk_len)
{
mbedtls_asn1_buf sig_oid, sig_params;
mbedtls_asn1_buf signature;
mbedtls_md_type_t md_alg;
mbedtls_pk_type_t pk_alg;
int rc;
void *sig_opts = NULL;
unsigned char *p, *end;
unsigned char *local_sig_ptr;
size_t local_sig_len;
psa_ecc_family_t psa_ecc_family = 0U;
__unused unsigned char reformatted_sig[MAX_ECDSA_R_S_PAIR_LEN] = {0};
/* construct PSA key algo and type */
psa_status_t status = PSA_SUCCESS;
psa_key_attributes_t psa_key_attr = PSA_KEY_ATTRIBUTES_INIT;
psa_key_id_t psa_key_id = PSA_KEY_ID_NULL;
psa_key_type_t psa_key_type;
psa_algorithm_t psa_alg;
/* Get pointers to signature OID and parameters */
p = (unsigned char *)sig_alg;
end = (unsigned char *)(p + sig_alg_len);
rc = mbedtls_asn1_get_alg(&p, end, &sig_oid, &sig_params);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
/* Get the actual signature algorithm (MD + PK) */
rc = mbedtls_x509_get_sig_alg(&sig_oid, &sig_params, &md_alg, &pk_alg, &sig_opts);
if (rc != 0) {
return CRYPTO_ERR_SIGNATURE;
}
/* Get the signature (bitstring) */
p = (unsigned char *)sig_ptr;
end = (unsigned char *)(p + sig_len);
signature.tag = *p;
rc = mbedtls_asn1_get_bitstring_null(&p, end, &signature.len);
if ((rc != 0) || ((size_t)(end - p) != signature.len)) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
local_sig_ptr = p;
local_sig_len = signature.len;
#if TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
if (pk_alg == MBEDTLS_PK_ECDSA) {
rc = get_ecdsa_signature_from_asn1(local_sig_ptr,
&local_sig_len,
reformatted_sig);
if (rc != 0) {
goto end2;
}
local_sig_ptr = reformatted_sig;
rc = get_ecdsa_pkinfo_from_asn1((unsigned char **)&pk_ptr,
&pk_len,
&psa_ecc_family);
if (rc != 0) {
goto end2;
}
}
#endif /*
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_ECDSA || \
* TF_MBEDTLS_KEY_ALG_ID == TF_MBEDTLS_RSA_AND_ECDSA
**/
/* Convert this pk_alg and md_alg to PSA key type and key algorithm */
construct_psa_key_alg_and_type(pk_alg, md_alg, psa_ecc_family,
&psa_alg, &psa_key_type);
if ((psa_alg == PSA_ALG_NONE) || (psa_key_type == PSA_KEY_TYPE_NONE)) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
/* filled-in key_attributes */
psa_set_key_algorithm(&psa_key_attr, psa_alg);
psa_set_key_type(&psa_key_attr, psa_key_type);
psa_set_key_usage_flags(&psa_key_attr, PSA_KEY_USAGE_VERIFY_MESSAGE);
/* Get the key_id using import API */
status = psa_import_key(&psa_key_attr,
pk_ptr,
(size_t)pk_len,
&psa_key_id);
if (status != PSA_SUCCESS) {
rc = CRYPTO_ERR_SIGNATURE;
goto end2;
}
/*
* Hash calculation and Signature verification of the given data payload
* is wrapped under the psa_verify_message function.
*/
status = psa_verify_message(psa_key_id, psa_alg,
data_ptr, data_len,
local_sig_ptr, local_sig_len);
if (status != PSA_SUCCESS) {
rc = CRYPTO_ERR_SIGNATURE;
goto end1;
}
/* Signature verification success */
rc = CRYPTO_SUCCESS;
end1:
/*
* Destroy the key if it is created successfully
*/
psa_destroy_key(psa_key_id);
end2:
mbedtls_free(sig_opts);
return rc;
}
/*
* Match a hash
*
* Digest info is passed in DER format following the ASN.1 structure detailed
* above.
*/
static int verify_hash(void *data_ptr, unsigned int data_len,
void *digest_info_ptr, unsigned int digest_info_len)
{
mbedtls_asn1_buf hash_oid, params;
mbedtls_md_type_t md_alg;
unsigned char *p, *end, *hash;
size_t len;
int rc;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/*
* Digest info should be an MBEDTLS_ASN1_SEQUENCE, but padding after
* it is allowed. This is necessary to support multiple hash
* algorithms.
*/
p = (unsigned char *)digest_info_ptr;
end = p + digest_info_len;
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_CONSTRUCTED |
MBEDTLS_ASN1_SEQUENCE);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
end = p + len;
/* Get the hash algorithm */
rc = mbedtls_asn1_get_alg(&p, end, &hash_oid, &params);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* Hash should be octet string type and consume all bytes */
rc = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING);
if ((rc != 0) || ((size_t)(end - p) != len)) {
return CRYPTO_ERR_HASH;
}
hash = p;
rc = mbedtls_oid_get_md_alg(&hash_oid, &md_alg);
if (rc != 0) {
return CRYPTO_ERR_HASH;
}
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
/* Length of hash must match the algorithm's size */
if (len != PSA_HASH_LENGTH(psa_md_alg)) {
return CRYPTO_ERR_HASH;
}
/*
* Calculate Hash and compare it against the retrieved hash from
* the certificate (one shot API).
*/
status = psa_hash_compare(psa_md_alg,
data_ptr, (size_t)data_len,
(const uint8_t *)hash, len);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
/*
* Map a generic crypto message digest algorithm to the corresponding macro used
* by Mbed TLS.
*/
static inline mbedtls_md_type_t md_type(enum crypto_md_algo algo)
{
switch (algo) {
case CRYPTO_MD_SHA512:
return MBEDTLS_MD_SHA512;
case CRYPTO_MD_SHA384:
return MBEDTLS_MD_SHA384;
case CRYPTO_MD_SHA256:
return MBEDTLS_MD_SHA256;
default:
/* Invalid hash algorithm. */
return MBEDTLS_MD_NONE;
}
}
/*
* Calculate a hash
*
* output points to the computed hash
*/
static int calc_hash(enum crypto_md_algo md_algo, void *data_ptr,
unsigned int data_len,
unsigned char output[CRYPTO_MD_MAX_SIZE])
{
size_t hash_length;
psa_status_t status;
psa_algorithm_t psa_md_alg;
/* convert the md_alg to psa_algo */
psa_md_alg = mbedtls_md_psa_alg_from_type(md_type(md_algo));
/*
* Calculate the hash of the data, it is safe to pass the
* 'output' hash buffer pointer considering its size is always
* bigger than or equal to MBEDTLS_MD_MAX_SIZE.
*/
status = psa_hash_compute(psa_md_alg, data_ptr, (size_t)data_len,
(uint8_t *)output, CRYPTO_MD_MAX_SIZE,
&hash_length);
if (status != PSA_SUCCESS) {
return CRYPTO_ERR_HASH;
}
return CRYPTO_SUCCESS;
}
#endif /*
* CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY || \
* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
*/
#if TF_MBEDTLS_USE_AES_GCM
/*
* Stack based buffer allocation for decryption operation. It could
* be configured to balance stack usage vs execution speed.
*/
#define DEC_OP_BUF_SIZE 128
static int aes_gcm_decrypt(void *data_ptr, size_t len, const void *key,
unsigned int key_len, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
mbedtls_gcm_context ctx;
mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
unsigned char buf[DEC_OP_BUF_SIZE];
unsigned char tag_buf[CRYPTO_MAX_TAG_SIZE];
unsigned char *pt = data_ptr;
size_t dec_len;
int diff, i, rc;
size_t output_length __unused;
mbedtls_gcm_init(&ctx);
rc = mbedtls_gcm_setkey(&ctx, cipher, key, key_len * 8);
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len, NULL, 0);
#else
rc = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT, iv, iv_len);
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
while (len > 0) {
dec_len = MIN(sizeof(buf), len);
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_update(&ctx, dec_len, pt, buf);
#else
rc = mbedtls_gcm_update(&ctx, pt, dec_len, buf, sizeof(buf), &output_length);
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
memcpy(pt, buf, dec_len);
pt += dec_len;
len -= dec_len;
}
#if (MBEDTLS_VERSION_MAJOR < 3)
rc = mbedtls_gcm_finish(&ctx, tag_buf, sizeof(tag_buf));
#else
rc = mbedtls_gcm_finish(&ctx, NULL, 0, &output_length, tag_buf, sizeof(tag_buf));
#endif
if (rc != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
/* Check tag in "constant-time" */
for (diff = 0, i = 0; i < tag_len; i++)
diff |= ((const unsigned char *)tag)[i] ^ tag_buf[i];
if (diff != 0) {
rc = CRYPTO_ERR_DECRYPTION;
goto exit_gcm;
}
/* GCM decryption success */
rc = CRYPTO_SUCCESS;
exit_gcm:
mbedtls_gcm_free(&ctx);
return rc;
}
/*
* Authenticated decryption of an image
*/
static int auth_decrypt(enum crypto_dec_algo dec_algo, void *data_ptr,
size_t len, const void *key, unsigned int key_len,
unsigned int key_flags, const void *iv,
unsigned int iv_len, const void *tag,
unsigned int tag_len)
{
int rc;
assert((key_flags & ENC_KEY_IS_IDENTIFIER) == 0);
switch (dec_algo) {
case CRYPTO_GCM_DECRYPT:
rc = aes_gcm_decrypt(data_ptr, len, key, key_len, iv, iv_len,
tag, tag_len);
if (rc != 0)
return rc;
break;
default:
return CRYPTO_ERR_DECRYPTION;
}
return CRYPTO_SUCCESS;
}
#endif /* TF_MBEDTLS_USE_AES_GCM */
/*
* Register crypto library descriptor
*/
#if CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, calc_hash,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_ONLY
#if TF_MBEDTLS_USE_AES_GCM
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
auth_decrypt, NULL);
#else
REGISTER_CRYPTO_LIB(LIB_NAME, init, verify_signature, verify_hash, NULL,
NULL, NULL);
#endif
#elif CRYPTO_SUPPORT == CRYPTO_HASH_CALC_ONLY
REGISTER_CRYPTO_LIB(LIB_NAME, init, NULL, NULL, calc_hash, NULL, NULL);
#endif /* CRYPTO_SUPPORT == CRYPTO_AUTH_VERIFY_AND_HASH_CALC */