mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-16 09:34:18 +00:00

Currently, EL3 context registers are duplicated per-world per-cpu. Some registers have the same value across all CPUs, so this patch moves these registers out into a per-world context to reduce memory usage. Change-Id: I91294e3d5f4af21a58c23599af2bdbd2a747c54a Signed-off-by: Elizabeth Ho <elizabeth.ho@arm.com> Signed-off-by: Jayanth Dodderi Chidanand <jayanthdodderi.chidanand@arm.com>
596 lines
15 KiB
C
596 lines
15 KiB
C
/*
|
|
* Copyright (c) 2017-2023, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <cdefs.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
|
|
#include "../amu_private.h"
|
|
#include <arch.h>
|
|
#include <arch_features.h>
|
|
#include <arch_helpers.h>
|
|
#include <common/debug.h>
|
|
#include <lib/el3_runtime/pubsub_events.h>
|
|
#include <lib/extensions/amu.h>
|
|
|
|
#include <plat/common/platform.h>
|
|
|
|
#if ENABLE_AMU_FCONF
|
|
# include <lib/fconf/fconf.h>
|
|
# include <lib/fconf/fconf_amu_getter.h>
|
|
#endif
|
|
|
|
#if ENABLE_MPMM
|
|
# include <lib/mpmm/mpmm.h>
|
|
#endif
|
|
|
|
struct amu_ctx {
|
|
uint64_t group0_cnts[AMU_GROUP0_MAX_COUNTERS];
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
uint64_t group1_cnts[AMU_GROUP1_MAX_COUNTERS];
|
|
#endif
|
|
|
|
/* Architected event counter 1 does not have an offset register */
|
|
uint64_t group0_voffsets[AMU_GROUP0_MAX_COUNTERS - 1U];
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
uint64_t group1_voffsets[AMU_GROUP1_MAX_COUNTERS];
|
|
#endif
|
|
|
|
uint16_t group0_enable;
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
uint16_t group1_enable;
|
|
#endif
|
|
};
|
|
|
|
static struct amu_ctx amu_ctxs_[PLATFORM_CORE_COUNT];
|
|
|
|
CASSERT((sizeof(amu_ctxs_[0].group0_enable) * CHAR_BIT) <= AMU_GROUP0_MAX_COUNTERS,
|
|
amu_ctx_group0_enable_cannot_represent_all_group0_counters);
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
CASSERT((sizeof(amu_ctxs_[0].group1_enable) * CHAR_BIT) <= AMU_GROUP1_MAX_COUNTERS,
|
|
amu_ctx_group1_enable_cannot_represent_all_group1_counters);
|
|
#endif
|
|
|
|
static inline __unused uint64_t read_hcr_el2_amvoffen(void)
|
|
{
|
|
return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
|
|
HCR_AMVOFFEN_SHIFT;
|
|
}
|
|
|
|
static inline __unused void write_cptr_el2_tam(uint64_t value)
|
|
{
|
|
write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
|
|
((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
|
|
}
|
|
|
|
static inline __unused void ctx_write_scr_el3_amvoffen(cpu_context_t *ctx, uint64_t amvoffen)
|
|
{
|
|
uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
|
|
|
|
value &= ~SCR_AMVOFFEN_BIT;
|
|
value |= (amvoffen << SCR_AMVOFFEN_SHIFT) & SCR_AMVOFFEN_BIT;
|
|
|
|
write_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3, value);
|
|
}
|
|
|
|
static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
|
|
{
|
|
write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
|
|
((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
|
|
}
|
|
|
|
static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
|
|
{
|
|
write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
|
|
((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcfgr_el0_ncg(void)
|
|
{
|
|
return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
|
|
AMCFGR_EL0_NCG_MASK;
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcgcr_el0_cg0nc(void)
|
|
{
|
|
return (read_amcgcr_el0() >> AMCGCR_EL0_CG0NC_SHIFT) &
|
|
AMCGCR_EL0_CG0NC_MASK;
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcg1idr_el0_voff(void)
|
|
{
|
|
return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
|
|
AMCG1IDR_VOFF_MASK;
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
|
|
{
|
|
return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
|
|
AMCGCR_EL0_CG1NC_MASK;
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcntenset0_el0_px(void)
|
|
{
|
|
return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
|
|
AMCNTENSET0_EL0_Pn_MASK;
|
|
}
|
|
|
|
static inline __unused uint64_t read_amcntenset1_el0_px(void)
|
|
{
|
|
return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
|
|
AMCNTENSET1_EL0_Pn_MASK;
|
|
}
|
|
|
|
static inline __unused void write_amcntenset0_el0_px(uint64_t px)
|
|
{
|
|
uint64_t value = read_amcntenset0_el0();
|
|
|
|
value &= ~AMCNTENSET0_EL0_Pn_MASK;
|
|
value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;
|
|
|
|
write_amcntenset0_el0(value);
|
|
}
|
|
|
|
static inline __unused void write_amcntenset1_el0_px(uint64_t px)
|
|
{
|
|
uint64_t value = read_amcntenset1_el0();
|
|
|
|
value &= ~AMCNTENSET1_EL0_Pn_MASK;
|
|
value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;
|
|
|
|
write_amcntenset1_el0(value);
|
|
}
|
|
|
|
static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
|
|
{
|
|
uint64_t value = read_amcntenclr0_el0();
|
|
|
|
value &= ~AMCNTENCLR0_EL0_Pn_MASK;
|
|
value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;
|
|
|
|
write_amcntenclr0_el0(value);
|
|
}
|
|
|
|
static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
|
|
{
|
|
uint64_t value = read_amcntenclr1_el0();
|
|
|
|
value &= ~AMCNTENCLR1_EL0_Pn_MASK;
|
|
value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;
|
|
|
|
write_amcntenclr1_el0(value);
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
static __unused bool amu_group1_supported(void)
|
|
{
|
|
return read_amcfgr_el0_ncg() > 0U;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Enable counters. This function is meant to be invoked by the context
|
|
* management library before exiting from EL3.
|
|
*/
|
|
void amu_enable(cpu_context_t *ctx)
|
|
{
|
|
/* Initialize FEAT_AMUv1p1 features if present. */
|
|
if (is_feat_amuv1p1_supported()) {
|
|
/*
|
|
* Set SCR_EL3.AMVOFFEN to one so that accesses to virtual
|
|
* offset registers at EL2 do not trap to EL3
|
|
*/
|
|
ctx_write_scr_el3_amvoffen(ctx, 1U);
|
|
}
|
|
}
|
|
|
|
void amu_enable_per_world(per_world_context_t *per_world_ctx)
|
|
{
|
|
/*
|
|
* Set CPTR_EL3.TAM to zero so that any accesses to the Activity Monitor
|
|
* registers do not trap to EL3.
|
|
*/
|
|
uint64_t cptr_el3 = per_world_ctx->ctx_cptr_el3;
|
|
|
|
cptr_el3 &= ~TAM_BIT;
|
|
per_world_ctx->ctx_cptr_el3 = cptr_el3;
|
|
}
|
|
|
|
void amu_init_el3(void)
|
|
{
|
|
uint64_t group0_impl_ctr = read_amcgcr_el0_cg0nc();
|
|
uint64_t group0_en_mask = (1 << (group0_impl_ctr)) - 1U;
|
|
uint64_t num_ctr_groups = read_amcfgr_el0_ncg();
|
|
|
|
/* Enable all architected counters by default */
|
|
write_amcntenset0_el0_px(group0_en_mask);
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
if (num_ctr_groups > 0U) {
|
|
uint64_t amcntenset1_el0_px = 0x0; /* Group 1 enable mask */
|
|
const struct amu_topology *topology;
|
|
|
|
/*
|
|
* The platform may opt to enable specific auxiliary counters.
|
|
* This can be done via the common FCONF getter, or via the
|
|
* platform-implemented function.
|
|
*/
|
|
#if ENABLE_AMU_FCONF
|
|
topology = FCONF_GET_PROPERTY(amu, config, topology);
|
|
#else
|
|
topology = plat_amu_topology();
|
|
#endif /* ENABLE_AMU_FCONF */
|
|
|
|
if (topology != NULL) {
|
|
unsigned int core_pos = plat_my_core_pos();
|
|
|
|
amcntenset1_el0_px = topology->cores[core_pos].enable;
|
|
} else {
|
|
ERROR("AMU: failed to generate AMU topology\n");
|
|
}
|
|
|
|
write_amcntenset1_el0_px(amcntenset1_el0_px);
|
|
}
|
|
#else /* ENABLE_AMU_AUXILIARY_COUNTERS */
|
|
if (num_ctr_groups > 0U) {
|
|
VERBOSE("AMU: auxiliary counters detected but support is disabled\n");
|
|
}
|
|
#endif /* ENABLE_AMU_AUXILIARY_COUNTERS */
|
|
|
|
if (is_feat_amuv1p1_supported()) {
|
|
#if AMU_RESTRICT_COUNTERS
|
|
/*
|
|
* FEAT_AMUv1p1 adds a register field to restrict access to
|
|
* group 1 counters at all but the highest implemented EL. This
|
|
* is controlled with the `AMU_RESTRICT_COUNTERS` compile time
|
|
* flag, when set, system register reads at lower ELs return
|
|
* zero. Reads from the memory mapped view are unaffected.
|
|
*/
|
|
VERBOSE("AMU group 1 counter access restricted.\n");
|
|
write_amcr_el0_cg1rz(1U);
|
|
#else
|
|
write_amcr_el0_cg1rz(0U);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLE_MPMM
|
|
mpmm_enable();
|
|
#endif
|
|
}
|
|
|
|
void amu_init_el2_unused(void)
|
|
{
|
|
/*
|
|
* CPTR_EL2.TAM: Set to zero so any accesses to the Activity Monitor
|
|
* registers do not trap to EL2.
|
|
*/
|
|
write_cptr_el2_tam(0U);
|
|
|
|
/* Initialize FEAT_AMUv1p1 features if present. */
|
|
if (is_feat_amuv1p1_supported()) {
|
|
/* Make sure virtual offsets are disabled if EL2 not used. */
|
|
write_hcr_el2_amvoffen(0U);
|
|
}
|
|
}
|
|
|
|
/* Read the group 0 counter identified by the given `idx`. */
|
|
static uint64_t amu_group0_cnt_read(unsigned int idx)
|
|
{
|
|
assert(is_feat_amu_supported());
|
|
assert(idx < read_amcgcr_el0_cg0nc());
|
|
|
|
return amu_group0_cnt_read_internal(idx);
|
|
}
|
|
|
|
/* Write the group 0 counter identified by the given `idx` with `val` */
|
|
static void amu_group0_cnt_write(unsigned int idx, uint64_t val)
|
|
{
|
|
assert(is_feat_amu_supported());
|
|
assert(idx < read_amcgcr_el0_cg0nc());
|
|
|
|
amu_group0_cnt_write_internal(idx, val);
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Unlike with auxiliary counters, we cannot detect at runtime whether an
|
|
* architected counter supports a virtual offset. These are instead fixed
|
|
* according to FEAT_AMUv1p1, but this switch will need to be updated if later
|
|
* revisions of FEAT_AMU add additional architected counters.
|
|
*/
|
|
static bool amu_group0_voffset_supported(uint64_t idx)
|
|
{
|
|
switch (idx) {
|
|
case 0U:
|
|
case 2U:
|
|
case 3U:
|
|
return true;
|
|
|
|
case 1U:
|
|
return false;
|
|
|
|
default:
|
|
ERROR("AMU: can't set up virtual offset for unknown "
|
|
"architected counter %" PRIu64 "!\n", idx);
|
|
|
|
panic();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the group 0 offset register for a given index. Index must be 0, 2,
|
|
* or 3, the register for 1 does not exist.
|
|
*
|
|
* Using this function requires FEAT_AMUv1p1 support.
|
|
*/
|
|
static uint64_t amu_group0_voffset_read(unsigned int idx)
|
|
{
|
|
assert(is_feat_amuv1p1_supported());
|
|
assert(idx < read_amcgcr_el0_cg0nc());
|
|
assert(idx != 1U);
|
|
|
|
return amu_group0_voffset_read_internal(idx);
|
|
}
|
|
|
|
/*
|
|
* Write the group 0 offset register for a given index. Index must be 0, 2, or
|
|
* 3, the register for 1 does not exist.
|
|
*
|
|
* Using this function requires FEAT_AMUv1p1 support.
|
|
*/
|
|
static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
|
|
{
|
|
assert(is_feat_amuv1p1_supported());
|
|
assert(idx < read_amcgcr_el0_cg0nc());
|
|
assert(idx != 1U);
|
|
|
|
amu_group0_voffset_write_internal(idx, val);
|
|
isb();
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
/* Read the group 1 counter identified by the given `idx` */
|
|
static uint64_t amu_group1_cnt_read(unsigned int idx)
|
|
{
|
|
assert(is_feat_amu_supported());
|
|
assert(amu_group1_supported());
|
|
assert(idx < read_amcgcr_el0_cg1nc());
|
|
|
|
return amu_group1_cnt_read_internal(idx);
|
|
}
|
|
|
|
/* Write the group 1 counter identified by the given `idx` with `val` */
|
|
static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
|
|
{
|
|
assert(is_feat_amu_supported());
|
|
assert(amu_group1_supported());
|
|
assert(idx < read_amcgcr_el0_cg1nc());
|
|
|
|
amu_group1_cnt_write_internal(idx, val);
|
|
isb();
|
|
}
|
|
|
|
/*
|
|
* Read the group 1 offset register for a given index.
|
|
*
|
|
* Using this function requires FEAT_AMUv1p1 support.
|
|
*/
|
|
static uint64_t amu_group1_voffset_read(unsigned int idx)
|
|
{
|
|
assert(is_feat_amuv1p1_supported());
|
|
assert(amu_group1_supported());
|
|
assert(idx < read_amcgcr_el0_cg1nc());
|
|
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
|
|
|
|
return amu_group1_voffset_read_internal(idx);
|
|
}
|
|
|
|
/*
|
|
* Write the group 1 offset register for a given index.
|
|
*
|
|
* Using this function requires FEAT_AMUv1p1 support.
|
|
*/
|
|
static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
|
|
{
|
|
assert(is_feat_amuv1p1_supported());
|
|
assert(amu_group1_supported());
|
|
assert(idx < read_amcgcr_el0_cg1nc());
|
|
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
|
|
|
|
amu_group1_voffset_write_internal(idx, val);
|
|
isb();
|
|
}
|
|
#endif
|
|
|
|
static void *amu_context_save(const void *arg)
|
|
{
|
|
uint64_t i, j;
|
|
|
|
unsigned int core_pos;
|
|
struct amu_ctx *ctx;
|
|
|
|
uint64_t hcr_el2_amvoffen = 0; /* AMU virtual offsets enabled */
|
|
uint64_t amcgcr_el0_cg0nc; /* Number of group 0 counters */
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
uint64_t amcg1idr_el0_voff; /* Auxiliary counters with virtual offsets */
|
|
uint64_t amcfgr_el0_ncg; /* Number of counter groups */
|
|
uint64_t amcgcr_el0_cg1nc; /* Number of group 1 counters */
|
|
#endif
|
|
|
|
if (!is_feat_amu_supported()) {
|
|
return (void *)0;
|
|
}
|
|
|
|
core_pos = plat_my_core_pos();
|
|
ctx = &amu_ctxs_[core_pos];
|
|
|
|
amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
|
|
if (is_feat_amuv1p1_supported()) {
|
|
hcr_el2_amvoffen = read_hcr_el2_amvoffen();
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
amcfgr_el0_ncg = read_amcfgr_el0_ncg();
|
|
amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
|
|
amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
|
|
#endif
|
|
|
|
/*
|
|
* Disable all AMU counters.
|
|
*/
|
|
|
|
ctx->group0_enable = read_amcntenset0_el0_px();
|
|
write_amcntenclr0_el0_px(ctx->group0_enable);
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
if (amcfgr_el0_ncg > 0U) {
|
|
ctx->group1_enable = read_amcntenset1_el0_px();
|
|
write_amcntenclr1_el0_px(ctx->group1_enable);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Save the counters to the local context.
|
|
*/
|
|
|
|
isb(); /* Ensure counters have been stopped */
|
|
|
|
for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
|
|
ctx->group0_cnts[i] = amu_group0_cnt_read(i);
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
|
|
ctx->group1_cnts[i] = amu_group1_cnt_read(i);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Save virtual offsets for counters that offer them.
|
|
*/
|
|
|
|
if (hcr_el2_amvoffen != 0U) {
|
|
for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
|
|
if (!amu_group0_voffset_supported(i)) {
|
|
continue; /* No virtual offset */
|
|
}
|
|
|
|
ctx->group0_voffsets[j++] = amu_group0_voffset_read(i);
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
|
|
if ((amcg1idr_el0_voff >> i) & 1U) {
|
|
continue; /* No virtual offset */
|
|
}
|
|
|
|
ctx->group1_voffsets[j++] = amu_group1_voffset_read(i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (void *)0;
|
|
}
|
|
|
|
static void *amu_context_restore(const void *arg)
|
|
{
|
|
uint64_t i, j;
|
|
|
|
unsigned int core_pos;
|
|
struct amu_ctx *ctx;
|
|
|
|
uint64_t hcr_el2_amvoffen = 0; /* AMU virtual offsets enabled */
|
|
|
|
uint64_t amcgcr_el0_cg0nc; /* Number of group 0 counters */
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
uint64_t amcfgr_el0_ncg; /* Number of counter groups */
|
|
uint64_t amcgcr_el0_cg1nc; /* Number of group 1 counters */
|
|
uint64_t amcg1idr_el0_voff; /* Auxiliary counters with virtual offsets */
|
|
#endif
|
|
|
|
if (!is_feat_amu_supported()) {
|
|
return (void *)0;
|
|
}
|
|
|
|
core_pos = plat_my_core_pos();
|
|
ctx = &amu_ctxs_[core_pos];
|
|
|
|
amcgcr_el0_cg0nc = read_amcgcr_el0_cg0nc();
|
|
|
|
if (is_feat_amuv1p1_supported()) {
|
|
hcr_el2_amvoffen = read_hcr_el2_amvoffen();
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
amcfgr_el0_ncg = read_amcfgr_el0_ncg();
|
|
amcgcr_el0_cg1nc = (amcfgr_el0_ncg > 0U) ? read_amcgcr_el0_cg1nc() : 0U;
|
|
amcg1idr_el0_voff = (hcr_el2_amvoffen != 0U) ? read_amcg1idr_el0_voff() : 0U;
|
|
#endif
|
|
|
|
/*
|
|
* Restore the counter values from the local context.
|
|
*/
|
|
|
|
for (i = 0U; i < amcgcr_el0_cg0nc; i++) {
|
|
amu_group0_cnt_write(i, ctx->group0_cnts[i]);
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
for (i = 0U; i < amcgcr_el0_cg1nc; i++) {
|
|
amu_group1_cnt_write(i, ctx->group1_cnts[i]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Restore virtual offsets for counters that offer them.
|
|
*/
|
|
|
|
if (hcr_el2_amvoffen != 0U) {
|
|
for (i = 0U, j = 0U; i < amcgcr_el0_cg0nc; i++) {
|
|
if (!amu_group0_voffset_supported(i)) {
|
|
continue; /* No virtual offset */
|
|
}
|
|
|
|
amu_group0_voffset_write(i, ctx->group0_voffsets[j++]);
|
|
}
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
for (i = 0U, j = 0U; i < amcgcr_el0_cg1nc; i++) {
|
|
if ((amcg1idr_el0_voff >> i) & 1U) {
|
|
continue; /* No virtual offset */
|
|
}
|
|
|
|
amu_group1_voffset_write(i, ctx->group1_voffsets[j++]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Re-enable counters that were disabled during context save.
|
|
*/
|
|
|
|
write_amcntenset0_el0_px(ctx->group0_enable);
|
|
|
|
#if ENABLE_AMU_AUXILIARY_COUNTERS
|
|
if (amcfgr_el0_ncg > 0) {
|
|
write_amcntenset1_el0_px(ctx->group1_enable);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLE_MPMM
|
|
mpmm_enable();
|
|
#endif
|
|
|
|
return (void *)0;
|
|
}
|
|
|
|
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
|
|
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);
|