arm-trusted-firmware/services/spd/tspd/tspd_main.c
Achin Gupta 375f538a79 Add Test Secure Payload Dispatcher (TSPD) service
This patch adds the TSPD service which is responsible for managing
communication between the non-secure state and the Test Secure Payload
(TSP) executing in S-EL1.

The TSPD does the following:

1. Determines the location of the TSP (BL3-2) image and passes control
   to it for initialization. This is done by exporting the 'bl32_init()'
   function.

2. Receives a structure containing the various entry points into the TSP
   image as a response to being initialized. The TSPD uses this
   information to determine how the TSP should be entered depending on
   the type of operation.

3. Implements a synchronous mechanism for entering into and returning
   from the TSP image. This mechanism saves the current C runtime
   context on top of the current stack and jumps to the TSP through an
   ERET instruction. The TSP issues an SMC to indicate completion of the
   previous request. The TSPD restores the saved C runtime context and
   resumes TSP execution.

This patch also introduces a Make variable 'SPD' to choose the specific
SPD to include in the build. By default, no SPDs are included in the
build.

Change-Id: I124da5695cdc510999b859a1bf007f4d049e04f3
Co-authored-by: Jeenu Viswambharan <jeenu.viswambharan@arm.com>
2014-02-20 19:06:34 +00:00

208 lines
7.4 KiB
C

/*
* Copyright (c) 2013-2014, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*******************************************************************************
* This is the Secure Payload Dispatcher (SPD). The dispatcher is meant to be a
* plug-in component to the Secure Monitor, registered as a runtime service. The
* SPD is expected to be a functional extension of the Secure Payload (SP) that
* executes in Secure EL1. The Secure Monitor will delegate all SMCs targeting
* the Trusted OS/Applications range to the dispatcher. The SPD will either
* handle the request locally or delegate it to the Secure Payload. It is also
* responsible for initialising and maintaining communication with the SP.
******************************************************************************/
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <arch_helpers.h>
#include <console.h>
#include <platform.h>
#include <psci_private.h>
#include <context_mgmt.h>
#include <runtime_svc.h>
#include <bl31.h>
#include <tsp.h>
#include <psci.h>
#include <tspd_private.h>
#include <debug.h>
/*******************************************************************************
* Single structure to hold information about the various entry points into the
* Secure Payload. It is initialised once on the primary core after a cold boot.
******************************************************************************/
entry_info *tsp_entry_info;
/*******************************************************************************
* Array to keep track of per-cpu Secure Payload state
******************************************************************************/
tsp_context tspd_sp_context[TSPD_CORE_COUNT];
/*******************************************************************************
* Secure Payload Dispatcher setup. The SPD finds out the SP entrypoint and type
* (aarch32/aarch64) if not already known and initialises the context for entry
* into the SP for its initialisation.
******************************************************************************/
int32_t tspd_setup(void)
{
el_change_info *image_info;
int32_t rc;
uint64_t mpidr = read_mpidr();
uint32_t linear_id;
linear_id = platform_get_core_pos(mpidr);
/*
* Get information about the Secure Payload (BL32) image. Its
* absence is a critical failure. TODO: Add support to
* conditionally include the SPD service
*/
image_info = bl31_get_next_image_info(SECURE);
assert(image_info);
/*
* We could inspect the SP image and determine it's execution
* state i.e whether AArch32 or AArch64. Assuming it's AArch64
* for the time being.
*/
rc = tspd_init_secure_context(image_info->entrypoint,
TSP_AARCH64,
mpidr,
&tspd_sp_context[linear_id]);
assert(rc == 0);
return rc;
}
/*******************************************************************************
* This function passes control to the Secure Payload image (BL32) for the first
* time on the primary cpu after a cold boot. It assumes that a valid secure
* context has already been created by tspd_setup() which can be directly used.
* It also assumes that a valid non-secure context has been initialised by PSCI
* so it does not need to save and restore any non-secure state. This function
* performs a synchronous entry into the Secure payload. The SP passes control
* back to this routine through a SMC. It also passes the extents of memory made
* available to BL32 by BL31.
******************************************************************************/
int32_t bl32_init(meminfo *bl32_meminfo)
{
uint64_t mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr);
uint64_t rc;
tsp_context *tsp_ctx = &tspd_sp_context[linear_id];
/*
* Arrange for passing a pointer to the meminfo structure
* describing the memory extents available to the secure
* payload.
* TODO: We are passing a pointer to BL31 internal memory
* whereas this structure should be copied to a communication
* buffer between the SP and SPD.
*/
write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx),
CTX_GPREG_X0,
(uint64_t) bl32_meminfo);
/* Arrange for an entry into the secure payload */
rc = tspd_synchronous_sp_entry(tsp_ctx);
assert(rc != 0);
if (rc)
tsp_ctx->state = TSP_STATE_ON;
return rc;
}
/*******************************************************************************
* This function is responsible for handling all SMCs in the Trusted OS/App
* range from the non-secure state as defined in the SMC Calling Convention
* Document. It is also responsible for communicating with the Secure payload
* to delegate work and return results back to the non-secure state. Lastly it
* will also return any information that the secure payload needs to do the
* work assigned to it.
******************************************************************************/
uint64_t tspd_smc_handler(uint32_t smc_fid,
uint64_t x1,
uint64_t x2,
uint64_t x3,
uint64_t x4,
void *cookie,
void *handle,
uint64_t flags)
{
unsigned long mpidr = read_mpidr();
uint32_t linear_id = platform_get_core_pos(mpidr), ns;
/* Determine which security state this SMC originated from */
ns = is_caller_non_secure(flags);
switch (smc_fid) {
/*
* This function ID is used only by the SP to indicate it has
* finished initialising itself after a cold boot
*/
case TSP_ENTRY_DONE:
if (ns)
SMC_RET1(handle, SMC_UNK);
/*
* Stash the SP entry points information. This is done
* only once on the primary cpu
*/
assert(tsp_entry_info == NULL);
tsp_entry_info = (entry_info *) x1;
/*
* SP reports completion. The SPD must have initiated
* the original request through a synchronous entry
* into the SP. Jump back to the original C runtime
* context.
*/
tspd_synchronous_sp_exit(&tspd_sp_context[linear_id], x1);
/* Should never reach here */
assert(0);
default:
panic();
}
SMC_RET1(handle, 0);
}
/* Define a SPD runtime service descriptor */
DECLARE_RT_SVC(
spd,
OEN_TOS_START,
OEN_TOS_END,
SMC_TYPE_FAST,
tspd_setup,
tspd_smc_handler
);