arm-trusted-firmware/plat/arm/css/sgi/sgi_plat.c
Manish Pandey 9202d51990 refactor(ras): replace RAS_EXTENSION with FEAT_RAS
The current usage of RAS_EXTENSION in TF-A codebase is to cater for two
things in TF-A :
1. Pull in necessary framework and platform hooks for Firmware first
   handling(FFH) of RAS errors.
2. Manage the FEAT_RAS extension when switching the worlds.

FFH means that all the EAs from NS are trapped in EL3 first and signaled
to NS world later after the first handling is done in firmware. There is
an alternate way of handling RAS errors viz Kernel First handling(KFH).
Tying FEAT_RAS to RAS_EXTENSION build flag was not correct as the
feature is needed for proper handling KFH in as well.

This patch breaks down the RAS_EXTENSION flag into a flag to denote the
CPU architecture `ENABLE_FEAT_RAS` which is used in context management
during world switch and another flag `RAS_FFH_SUPPORT` to pull in
required framework and platform hooks for FFH.

Proper support for KFH will be added in future patches.

BREAKING CHANGE: The previous RAS_EXTENSION is now deprecated. The
equivalent functionality can be achieved by the following
2 options:
 - ENABLE_FEAT_RAS
 - RAS_FFH_SUPPORT

Signed-off-by: Manish Pandey <manish.pandey2@arm.com>
Change-Id: I1abb9ab6622b8f1b15712b12f17612804d48a6ec
2023-05-09 13:19:22 +01:00

176 lines
4.2 KiB
C

/*
* Copyright (c) 2018-2023, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <platform_def.h>
#include <common/bl_common.h>
#include <common/debug.h>
#include <drivers/arm/ccn.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include <drivers/arm/sbsa.h>
#include <sgi_base_platform_def.h>
#if SPM_MM
#include <services/spm_mm_partition.h>
#endif
#define SGI_MAP_FLASH0_RO MAP_REGION_FLAT(V2M_FLASH0_BASE,\
V2M_FLASH0_SIZE, \
MT_DEVICE | MT_RO | MT_SECURE)
/*
* Table of regions for different BL stages to map using the MMU.
* This doesn't include Trusted RAM as the 'mem_layout' argument passed to
* arm_configure_mmu_elx() will give the available subset of that.
*
* Replace or extend the below regions as required
*/
#if IMAGE_BL1
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
SGI_MAP_FLASH0_RO,
CSS_SGI_MAP_DEVICE,
SOC_CSS_MAP_DEVICE,
{0}
};
#endif
#if IMAGE_BL2
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
SGI_MAP_FLASH0_RO,
#ifdef PLAT_ARM_MEM_PROT_ADDR
ARM_V2M_MAP_MEM_PROTECT,
#endif
CSS_SGI_MAP_DEVICE,
SOC_CSS_MAP_DEVICE,
ARM_MAP_NS_DRAM1,
#if CSS_SGI_CHIP_COUNT > 1
CSS_SGI_MAP_DEVICE_REMOTE_CHIP(1),
#endif
#if CSS_SGI_CHIP_COUNT > 2
CSS_SGI_MAP_DEVICE_REMOTE_CHIP(2),
#endif
#if CSS_SGI_CHIP_COUNT > 3
CSS_SGI_MAP_DEVICE_REMOTE_CHIP(3),
#endif
#if ARM_BL31_IN_DRAM
ARM_MAP_BL31_SEC_DRAM,
#endif
#if SPM_MM
ARM_SP_IMAGE_MMAP,
#endif
#if TRUSTED_BOARD_BOOT && !RESET_TO_BL2
ARM_MAP_BL1_RW,
#endif
{0}
};
#endif
#if IMAGE_BL31
const mmap_region_t plat_arm_mmap[] = {
ARM_MAP_SHARED_RAM,
V2M_MAP_IOFPGA,
CSS_SGI_MAP_DEVICE,
#ifdef PLAT_ARM_MEM_PROT_ADDR
ARM_V2M_MAP_MEM_PROTECT,
#endif
SOC_CSS_MAP_DEVICE,
#if SPM_MM
ARM_SPM_BUF_EL3_MMAP,
#endif
{0}
};
#if SPM_MM && defined(IMAGE_BL31)
const mmap_region_t plat_arm_secure_partition_mmap[] = {
PLAT_ARM_SECURE_MAP_SYSTEMREG,
PLAT_ARM_SECURE_MAP_NOR2,
SOC_PLATFORM_SECURE_UART,
PLAT_ARM_SECURE_MAP_DEVICE,
ARM_SP_IMAGE_MMAP,
ARM_SP_IMAGE_NS_BUF_MMAP,
#if RAS_FFH_SUPPORT
CSS_SGI_SP_CPER_BUF_MMAP,
#endif
ARM_SP_IMAGE_RW_MMAP,
ARM_SPM_BUF_EL0_MMAP,
{0}
};
#endif /* SPM_MM && defined(IMAGE_BL31) */
#endif
ARM_CASSERT_MMAP
#if SPM_MM && defined(IMAGE_BL31)
/*
* Boot information passed to a secure partition during initialisation. Linear
* indices in MP information will be filled at runtime.
*/
static spm_mm_mp_info_t sp_mp_info[] = {
[0] = {0x81000000, 0},
[1] = {0x81000100, 0},
[2] = {0x81000200, 0},
[3] = {0x81000300, 0},
[4] = {0x81010000, 0},
[5] = {0x81010100, 0},
[6] = {0x81010200, 0},
[7] = {0x81010300, 0},
};
const spm_mm_boot_info_t plat_arm_secure_partition_boot_info = {
.h.type = PARAM_SP_IMAGE_BOOT_INFO,
.h.version = VERSION_1,
.h.size = sizeof(spm_mm_boot_info_t),
.h.attr = 0,
.sp_mem_base = ARM_SP_IMAGE_BASE,
.sp_mem_limit = ARM_SP_IMAGE_LIMIT,
.sp_image_base = ARM_SP_IMAGE_BASE,
.sp_stack_base = PLAT_SP_IMAGE_STACK_BASE,
.sp_heap_base = ARM_SP_IMAGE_HEAP_BASE,
.sp_ns_comm_buf_base = PLAT_SP_IMAGE_NS_BUF_BASE,
.sp_shared_buf_base = PLAT_SPM_BUF_BASE,
.sp_image_size = ARM_SP_IMAGE_SIZE,
.sp_pcpu_stack_size = PLAT_SP_IMAGE_STACK_PCPU_SIZE,
.sp_heap_size = ARM_SP_IMAGE_HEAP_SIZE,
.sp_ns_comm_buf_size = PLAT_SP_IMAGE_NS_BUF_SIZE,
.sp_shared_buf_size = PLAT_SPM_BUF_SIZE,
.num_sp_mem_regions = ARM_SP_IMAGE_NUM_MEM_REGIONS,
.num_cpus = PLATFORM_CORE_COUNT,
.mp_info = &sp_mp_info[0],
};
const struct mmap_region *plat_get_secure_partition_mmap(void *cookie)
{
return plat_arm_secure_partition_mmap;
}
const struct spm_mm_boot_info *plat_get_secure_partition_boot_info(
void *cookie)
{
return &plat_arm_secure_partition_boot_info;
}
#endif /* SPM_MM && defined(IMAGE_BL31) */
#if TRUSTED_BOARD_BOOT
int plat_get_mbedtls_heap(void **heap_addr, size_t *heap_size)
{
assert(heap_addr != NULL);
assert(heap_size != NULL);
return arm_get_mbedtls_heap(heap_addr, heap_size);
}
#endif
void plat_arm_secure_wdt_start(void)
{
sbsa_wdog_start(SBSA_SECURE_WDOG_BASE, SBSA_SECURE_WDOG_TIMEOUT);
}
void plat_arm_secure_wdt_stop(void)
{
sbsa_wdog_stop(SBSA_SECURE_WDOG_BASE);
}