arm-trusted-firmware/lib/extensions/amu/aarch64/amu.c
Chris Kay 1fd685a74d refactor(amu): conditionally compile auxiliary counter support
This change reduces preprocessor dependencies on the
`AMU_GROUP1_NR_COUNTERS` and `AMU_GROUP1_COUNTERS_MASK` definitions, as
these values will eventually be discovered dynamically.

In their stead, we introduce the `ENABLE_AMU_AUXILIARY_COUNTERS` build
option, which will enable support for dynamically detecting and
enabling auxiliary AMU counters.

This substantially reduces the amount of memory used by platforms that
know ahead of time that they do not have any auxiliary AMU counters.

Change-Id: I3d998aff44ed5489af4857e337e97634d06e3ea1
Signed-off-by: Chris Kay <chris.kay@arm.com>
2021-10-26 12:14:32 +01:00

491 lines
12 KiB
C

/*
* Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <cdefs.h>
#include <stdbool.h>
#include <arch.h>
#include <arch_features.h>
#include <arch_helpers.h>
#include <lib/el3_runtime/pubsub_events.h>
#include <lib/extensions/amu.h>
#include <lib/extensions/amu_private.h>
#include <plat/common/platform.h>
static struct amu_ctx amu_ctxs[PLATFORM_CORE_COUNT];
static inline __unused uint64_t read_id_aa64pfr0_el1_amu(void)
{
return (read_id_aa64pfr0_el1() >> ID_AA64PFR0_AMU_SHIFT) &
ID_AA64PFR0_AMU_MASK;
}
static inline __unused uint64_t read_hcr_el2_amvoffen(void)
{
return (read_hcr_el2() & HCR_AMVOFFEN_BIT) >>
HCR_AMVOFFEN_SHIFT;
}
static inline __unused void write_cptr_el2_tam(uint64_t value)
{
write_cptr_el2((read_cptr_el2() & ~CPTR_EL2_TAM_BIT) |
((value << CPTR_EL2_TAM_SHIFT) & CPTR_EL2_TAM_BIT));
}
static inline __unused void write_cptr_el3_tam(cpu_context_t *ctx, uint64_t tam)
{
uint64_t value = read_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3);
value &= ~TAM_BIT;
value |= (tam << TAM_SHIFT) & TAM_BIT;
write_ctx_reg(get_el3state_ctx(ctx), CTX_CPTR_EL3, value);
}
static inline __unused void write_hcr_el2_amvoffen(uint64_t value)
{
write_hcr_el2((read_hcr_el2() & ~HCR_AMVOFFEN_BIT) |
((value << HCR_AMVOFFEN_SHIFT) & HCR_AMVOFFEN_BIT));
}
static inline __unused void write_amcr_el0_cg1rz(uint64_t value)
{
write_amcr_el0((read_amcr_el0() & ~AMCR_CG1RZ_BIT) |
((value << AMCR_CG1RZ_SHIFT) & AMCR_CG1RZ_BIT));
}
static inline __unused uint64_t read_amcfgr_el0_ncg(void)
{
return (read_amcfgr_el0() >> AMCFGR_EL0_NCG_SHIFT) &
AMCFGR_EL0_NCG_MASK;
}
static inline __unused uint64_t read_amcg1idr_el0_voff(void)
{
return (read_amcg1idr_el0() >> AMCG1IDR_VOFF_SHIFT) &
AMCG1IDR_VOFF_MASK;
}
static inline __unused uint64_t read_amcgcr_el0_cg1nc(void)
{
return (read_amcgcr_el0() >> AMCGCR_EL0_CG1NC_SHIFT) &
AMCGCR_EL0_CG1NC_MASK;
}
static inline __unused uint64_t read_amcntenset0_el0_px(void)
{
return (read_amcntenset0_el0() >> AMCNTENSET0_EL0_Pn_SHIFT) &
AMCNTENSET0_EL0_Pn_MASK;
}
static inline __unused uint64_t read_amcntenset1_el0_px(void)
{
return (read_amcntenset1_el0() >> AMCNTENSET1_EL0_Pn_SHIFT) &
AMCNTENSET1_EL0_Pn_MASK;
}
static inline __unused void write_amcntenset0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset0_el0();
value &= ~AMCNTENSET0_EL0_Pn_MASK;
value |= (px << AMCNTENSET0_EL0_Pn_SHIFT) & AMCNTENSET0_EL0_Pn_MASK;
write_amcntenset0_el0(value);
}
static inline __unused void write_amcntenset1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenset1_el0();
value &= ~AMCNTENSET1_EL0_Pn_MASK;
value |= (px << AMCNTENSET1_EL0_Pn_SHIFT) & AMCNTENSET1_EL0_Pn_MASK;
write_amcntenset1_el0(value);
}
static inline __unused void write_amcntenclr0_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr0_el0();
value &= ~AMCNTENCLR0_EL0_Pn_MASK;
value |= (px << AMCNTENCLR0_EL0_Pn_SHIFT) & AMCNTENCLR0_EL0_Pn_MASK;
write_amcntenclr0_el0(value);
}
static inline __unused void write_amcntenclr1_el0_px(uint64_t px)
{
uint64_t value = read_amcntenclr1_el0();
value &= ~AMCNTENCLR1_EL0_Pn_MASK;
value |= (px << AMCNTENCLR1_EL0_Pn_SHIFT) & AMCNTENCLR1_EL0_Pn_MASK;
write_amcntenclr1_el0(value);
}
static bool amu_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1;
}
static bool amu_v1p1_supported(void)
{
return read_id_aa64pfr0_el1_amu() >= ID_AA64PFR0_AMU_V1P1;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
static bool amu_group1_supported(void)
{
return read_amcfgr_el0_ncg() > 0U;
}
#endif
/*
* Enable counters. This function is meant to be invoked
* by the context management library before exiting from EL3.
*/
void amu_enable(bool el2_unused, cpu_context_t *ctx)
{
if (!amu_supported()) {
return;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
/* Check and set presence of group 1 counters */
if (!amu_group1_supported()) {
ERROR("AMU Counter Group 1 is not implemented\n");
panic();
}
/* Check number of group 1 counters */
uint64_t cnt_num = read_amcgcr_el0_cg1nc();
VERBOSE("%s%llu. %s%u\n",
"Number of AMU Group 1 Counters ", cnt_num,
"Requested number ", AMU_GROUP1_NR_COUNTERS);
if (cnt_num < AMU_GROUP1_NR_COUNTERS) {
ERROR("%s%llu is less than %s%u\n",
"Number of AMU Group 1 Counters ", cnt_num,
"Requested number ", AMU_GROUP1_NR_COUNTERS);
panic();
}
}
#endif
if (el2_unused) {
/*
* CPTR_EL2.TAM: Set to zero so any accesses to
* the Activity Monitor registers do not trap to EL2.
*/
write_cptr_el2_tam(0U);
}
/*
* Retrieve and update the CPTR_EL3 value from the context mentioned
* in 'ctx'. Set CPTR_EL3.TAM to zero so that any accesses to
* the Activity Monitor registers do not trap to EL3.
*/
write_cptr_el3_tam(ctx, 0U);
/* Enable group 0 counters */
write_amcntenset0_el0_px(AMU_GROUP0_COUNTERS_MASK);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
/* Enable group 1 counters */
write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
/* Initialize FEAT_AMUv1p1 features if present. */
if (!amu_v1p1_supported()) {
return;
}
if (el2_unused) {
/* Make sure virtual offsets are disabled if EL2 not used. */
write_hcr_el2_amvoffen(0U);
}
#if AMU_RESTRICT_COUNTERS
/*
* FEAT_AMUv1p1 adds a register field to restrict access to group 1
* counters at all but the highest implemented EL. This is controlled
* with the AMU_RESTRICT_COUNTERS compile time flag, when set, system
* register reads at lower ELs return zero. Reads from the memory
* mapped view are unaffected.
*/
VERBOSE("AMU group 1 counter access restricted.\n");
write_amcr_el0_cg1rz(1U);
#else
write_amcr_el0_cg1rz(0U);
#endif
}
/* Read the group 0 counter identified by the given `idx`. */
static uint64_t amu_group0_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(idx < AMU_GROUP0_NR_COUNTERS);
return amu_group0_cnt_read_internal(idx);
}
/* Write the group 0 counter identified by the given `idx` with `val` */
static void amu_group0_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(idx < AMU_GROUP0_NR_COUNTERS);
amu_group0_cnt_write_internal(idx, val);
isb();
}
/*
* Read the group 0 offset register for a given index. Index must be 0, 2,
* or 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group0_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(idx < AMU_GROUP0_NR_COUNTERS);
assert(idx != 1U);
return amu_group0_voffset_read_internal(idx);
}
/*
* Write the group 0 offset register for a given index. Index must be 0, 2, or
* 3, the register for 1 does not exist.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group0_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(idx < AMU_GROUP0_NR_COUNTERS);
assert(idx != 1U);
amu_group0_voffset_write_internal(idx, val);
isb();
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
/* Read the group 1 counter identified by the given `idx` */
static uint64_t amu_group1_cnt_read(unsigned int idx)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < AMU_GROUP1_NR_COUNTERS);
return amu_group1_cnt_read_internal(idx);
}
/* Write the group 1 counter identified by the given `idx` with `val` */
static void amu_group1_cnt_write(unsigned int idx, uint64_t val)
{
assert(amu_supported());
assert(amu_group1_supported());
assert(idx < AMU_GROUP1_NR_COUNTERS);
amu_group1_cnt_write_internal(idx, val);
isb();
}
/*
* Read the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static uint64_t amu_group1_voffset_read(unsigned int idx)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < AMU_GROUP1_NR_COUNTERS);
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
return amu_group1_voffset_read_internal(idx);
}
/*
* Write the group 1 offset register for a given index.
*
* Using this function requires FEAT_AMUv1p1 support.
*/
static void amu_group1_voffset_write(unsigned int idx, uint64_t val)
{
assert(amu_v1p1_supported());
assert(amu_group1_supported());
assert(idx < AMU_GROUP1_NR_COUNTERS);
assert((read_amcg1idr_el0_voff() & (UINT64_C(1) << idx)) != 0U);
amu_group1_voffset_write_internal(idx, val);
isb();
}
#endif
static void *amu_context_save(const void *arg)
{
struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
unsigned int i;
if (!amu_supported()) {
return (void *)-1;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
if (!amu_group1_supported()) {
return (void *)-1;
}
}
#endif
/* Assert that group 0/1 counter configuration is what we expect */
assert(read_amcntenset0_el0_px() == AMU_GROUP0_COUNTERS_MASK);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
assert(read_amcntenset1_el0_px() == AMU_GROUP1_COUNTERS_MASK);
}
#endif
/*
* Disable group 0/1 counters to avoid other observers like SCP sampling
* counter values from the future via the memory mapped view.
*/
write_amcntenclr0_el0_px(AMU_GROUP0_COUNTERS_MASK);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
write_amcntenclr1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
isb();
/* Save all group 0 counters */
for (i = 0U; i < AMU_GROUP0_NR_COUNTERS; i++) {
ctx->group0_cnts[i] = amu_group0_cnt_read(i);
}
/* Save group 0 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
/* Not using a loop because count is fixed and index 1 DNE. */
ctx->group0_voffsets[0U] = amu_group0_voffset_read(0U);
ctx->group0_voffsets[1U] = amu_group0_voffset_read(2U);
ctx->group0_voffsets[2U] = amu_group0_voffset_read(3U);
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
/* Save group 1 counters */
for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) {
if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) {
ctx->group1_cnts[i] = amu_group1_cnt_read(i);
}
}
/* Save group 1 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
uint64_t amcg1idr = read_amcg1idr_el0_voff() &
AMU_GROUP1_COUNTERS_MASK;
for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) {
if (((amcg1idr >> i) & 1ULL) != 0ULL) {
ctx->group1_voffsets[i] =
amu_group1_voffset_read(i);
}
}
}
}
#endif
return (void *)0;
}
static void *amu_context_restore(const void *arg)
{
struct amu_ctx *ctx = &amu_ctxs[plat_my_core_pos()];
unsigned int i;
if (!amu_supported()) {
return (void *)-1;
}
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
if (!amu_group1_supported()) {
return (void *)-1;
}
}
#endif
/* Counters were disabled in `amu_context_save()` */
assert(read_amcntenset0_el0_px() == 0U);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
assert(read_amcntenset1_el0_px() == 0U);
}
#endif
/* Restore all group 0 counters */
for (i = 0U; i < AMU_GROUP0_NR_COUNTERS; i++) {
amu_group0_cnt_write(i, ctx->group0_cnts[i]);
}
/* Restore group 0 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
/* Not using a loop because count is fixed and index 1 DNE. */
amu_group0_voffset_write(0U, ctx->group0_voffsets[0U]);
amu_group0_voffset_write(2U, ctx->group0_voffsets[1U]);
amu_group0_voffset_write(3U, ctx->group0_voffsets[2U]);
}
/* Restore group 0 counter configuration */
write_amcntenset0_el0_px(AMU_GROUP0_COUNTERS_MASK);
#if ENABLE_AMU_AUXILIARY_COUNTERS
if (AMU_GROUP1_NR_COUNTERS > 0U) {
/* Restore group 1 counters */
for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) {
if ((AMU_GROUP1_COUNTERS_MASK & (1UL << i)) != 0U) {
amu_group1_cnt_write(i, ctx->group1_cnts[i]);
}
}
/* Restore group 1 virtual offsets if supported and enabled. */
if (amu_v1p1_supported() && (read_hcr_el2_amvoffen() != 0U)) {
uint64_t amcg1idr = read_amcg1idr_el0_voff() &
AMU_GROUP1_COUNTERS_MASK;
for (i = 0U; i < AMU_GROUP1_NR_COUNTERS; i++) {
if (((amcg1idr >> i) & 1ULL) != 0ULL) {
amu_group1_voffset_write(i,
ctx->group1_voffsets[i]);
}
}
}
/* Restore group 1 counter configuration */
write_amcntenset1_el0_px(AMU_GROUP1_COUNTERS_MASK);
}
#endif
return (void *)0;
}
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_start, amu_context_save);
SUBSCRIBE_TO_EVENT(psci_suspend_pwrdown_finish, amu_context_restore);