arm-trusted-firmware/plat/arm/common/arm_bl31_setup.c
Soby Mathew c1bb8a0500 Support PSCI SYSTEM SUSPEND on Juno
This patch adds the capability to power down at system power domain level
on Juno via the PSCI SYSTEM SUSPEND API. The CSS power management helpers
are modified to add support for power management operations at system
power domain level. A new helper for populating `get_sys_suspend_power_state`
handler in plat_psci_ops is defined. On entering the system suspend state,
the SCP powers down the SYSTOP power domain on the SoC and puts the memory
into retention mode. On wakeup from the power down, the system components
on the CSS will be reinitialized by the platform layer and the PSCI client
is responsible for restoring the context of these system components.

According to PSCI Specification, interrupts targeted to cores in PSCI CPU
SUSPEND should be able to resume it. On Juno, when the system power domain
is suspended, the GIC is also powered down. The SCP resumes the final core
to be suspend when an external wake-up event is received. But the other
cores cannot be woken up by a targeted interrupt, because GIC doesn't
forward these interrupts to the SCP. Due to this hardware limitation,
we down-grade PSCI CPU SUSPEND requests targeted to the system power domain
level to cluster power domain level in `juno_validate_power_state()`
and the CSS default `plat_arm_psci_ops` is overridden in juno_pm.c.

A system power domain resume helper `arm_system_pwr_domain_resume()` is
defined for ARM standard platforms which resumes/re-initializes the
system components on wakeup from system suspend. The security setup also
needs to be done on resume from system suspend, which means
`plat_arm_security_setup()` must now be included in the BL3-1 image in
addition to previous BL images if system suspend need to be supported.

Change-Id: Ie293f75f09bad24223af47ab6c6e1268f77bcc47
2015-10-30 09:07:17 +00:00

262 lines
8.8 KiB
C

/*
* Copyright (c) 2015, ARM Limited and Contributors. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of ARM nor the names of its contributors may be used
* to endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <arch.h>
#include <arch_helpers.h>
#include <arm_def.h>
#include <arm_gic.h>
#include <assert.h>
#include <bl_common.h>
#include <cci.h>
#include <console.h>
#include <debug.h>
#include <mmio.h>
#include <plat_arm.h>
#include <platform.h>
/*
* The next 3 constants identify the extents of the code, RO data region and the
* limit of the BL3-1 image. These addresses are used by the MMU setup code and
* therefore they must be page-aligned. It is the responsibility of the linker
* script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
* refer to page-aligned addresses.
*/
#define BL31_RO_BASE (unsigned long)(&__RO_START__)
#define BL31_RO_LIMIT (unsigned long)(&__RO_END__)
#define BL31_END (unsigned long)(&__BL31_END__)
#if USE_COHERENT_MEM
/*
* The next 2 constants identify the extents of the coherent memory region.
* These addresses are used by the MMU setup code and therefore they must be
* page-aligned. It is the responsibility of the linker script to ensure that
* __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols
* refer to page-aligned addresses.
*/
#define BL31_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
#define BL31_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
#endif
/*
* Placeholder variables for copying the arguments that have been passed to
* BL3-1 from BL2.
*/
static entry_point_info_t bl32_image_ep_info;
static entry_point_info_t bl33_image_ep_info;
/* Weak definitions may be overridden in specific ARM standard platform */
#pragma weak bl31_early_platform_setup
#pragma weak bl31_platform_setup
#pragma weak bl31_plat_arch_setup
#pragma weak bl31_plat_get_next_image_ep_info
#pragma weak plat_get_syscnt_freq
/*******************************************************************************
* Return a pointer to the 'entry_point_info' structure of the next image for the
* security state specified. BL3-3 corresponds to the non-secure image type
* while BL3-2 corresponds to the secure image type. A NULL pointer is returned
* if the image does not exist.
******************************************************************************/
entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
{
entry_point_info_t *next_image_info;
assert(sec_state_is_valid(type));
next_image_info = (type == NON_SECURE)
? &bl33_image_ep_info : &bl32_image_ep_info;
/*
* None of the images on the ARM development platforms can have 0x0
* as the entrypoint
*/
if (next_image_info->pc)
return next_image_info;
else
return NULL;
}
/*******************************************************************************
* Perform any BL3-1 early platform setup common to ARM standard platforms.
* Here is an opportunity to copy parameters passed by the calling EL (S-EL1
* in BL2 & S-EL3 in BL1) before they are lost (potentially). This needs to be
* done before the MMU is initialized so that the memory layout can be used
* while creating page tables. BL2 has flushed this information to memory, so
* we are guaranteed to pick up good data.
******************************************************************************/
void arm_bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
/* Initialize the console to provide early debug support */
console_init(PLAT_ARM_BOOT_UART_BASE, PLAT_ARM_BOOT_UART_CLK_IN_HZ,
ARM_CONSOLE_BAUDRATE);
#if RESET_TO_BL31
/* There are no parameters from BL2 if BL3-1 is a reset vector */
assert(from_bl2 == NULL);
assert(plat_params_from_bl2 == NULL);
/* Populate entry point information for BL3-2 and BL3-3 */
SET_PARAM_HEAD(&bl32_image_ep_info,
PARAM_EP,
VERSION_1,
0);
SET_SECURITY_STATE(bl32_image_ep_info.h.attr, SECURE);
bl32_image_ep_info.pc = BL32_BASE;
bl32_image_ep_info.spsr = arm_get_spsr_for_bl32_entry();
SET_PARAM_HEAD(&bl33_image_ep_info,
PARAM_EP,
VERSION_1,
0);
/*
* Tell BL3-1 where the non-trusted software image
* is located and the entry state information
*/
bl33_image_ep_info.pc = plat_get_ns_image_entrypoint();
bl33_image_ep_info.spsr = arm_get_spsr_for_bl33_entry();
SET_SECURITY_STATE(bl33_image_ep_info.h.attr, NON_SECURE);
#else
/*
* Check params passed from BL2 should not be NULL,
*/
assert(from_bl2 != NULL);
assert(from_bl2->h.type == PARAM_BL31);
assert(from_bl2->h.version >= VERSION_1);
/*
* In debug builds, we pass a special value in 'plat_params_from_bl2'
* to verify platform parameters from BL2 to BL3-1.
* In release builds, it's not used.
*/
assert(((unsigned long long)plat_params_from_bl2) ==
ARM_BL31_PLAT_PARAM_VAL);
/*
* Copy BL3-2 and BL3-3 entry point information.
* They are stored in Secure RAM, in BL2's address space.
*/
bl32_image_ep_info = *from_bl2->bl32_ep_info;
bl33_image_ep_info = *from_bl2->bl33_ep_info;
#endif
}
void bl31_early_platform_setup(bl31_params_t *from_bl2,
void *plat_params_from_bl2)
{
arm_bl31_early_platform_setup(from_bl2, plat_params_from_bl2);
/*
* Initialize CCI for this cluster during cold boot.
* No need for locks as no other CPU is active.
*/
arm_cci_init();
/*
* Enable CCI coherency for the primary CPU's cluster.
* Earlier bootloader stages might already do this (e.g. Trusted
* Firmware's BL1 does it) but we can't assume so. There is no harm in
* executing this code twice anyway.
* Platform specific PSCI code will enable coherency for other
* clusters.
*/
cci_enable_snoop_dvm_reqs(MPIDR_AFFLVL1_VAL(read_mpidr()));
}
/*******************************************************************************
* Perform any BL3-1 platform setup common to ARM standard platforms
******************************************************************************/
void arm_bl31_platform_setup(void)
{
/* Initialize the gic cpu and distributor interfaces */
plat_arm_gic_init();
arm_gic_setup();
#if RESET_TO_BL31
/*
* Do initial security configuration to allow DRAM/device access
* (if earlier BL has not already done so).
*/
plat_arm_security_setup();
#endif /* RESET_TO_BL31 */
/* Enable and initialize the System level generic timer */
mmio_write_32(ARM_SYS_CNTCTL_BASE + CNTCR_OFF,
CNTCR_FCREQ(0) | CNTCR_EN);
/* Allow access to the System counter timer module */
arm_configure_sys_timer();
/* Initialize power controller before setting up topology */
plat_arm_pwrc_setup();
}
void bl31_platform_setup(void)
{
arm_bl31_platform_setup();
}
/*******************************************************************************
* Perform the very early platform specific architectural setup here. At the
* moment this is only intializes the mmu in a quick and dirty way.
******************************************************************************/
void arm_bl31_plat_arch_setup(void)
{
arm_configure_mmu_el3(BL31_RO_BASE,
(BL31_END - BL31_RO_BASE),
BL31_RO_BASE,
BL31_RO_LIMIT
#if USE_COHERENT_MEM
, BL31_COHERENT_RAM_BASE,
BL31_COHERENT_RAM_LIMIT
#endif
);
}
void bl31_plat_arch_setup(void)
{
arm_bl31_plat_arch_setup();
}
uint64_t plat_get_syscnt_freq(void)
{
uint64_t counter_base_frequency;
/* Read the frequency from Frequency modes table */
counter_base_frequency = mmio_read_32(ARM_SYS_CNTCTL_BASE + CNTFID_OFF);
/* The first entry of the frequency modes table must not be 0 */
if (counter_base_frequency == 0)
panic();
return counter_base_frequency;
}