mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-19 11:04:20 +00:00

Currently, the calling core (meaning the core which received the call to CPU_ON or the powerdown path of CPU_SUSPEND on the same core) is in charge of initialising the context for the waking core (the warmboot entrypoint for both). This is convenient because the calling core can write the context while in coherency and the waking core will only need the context after its entered coherency. This avoids any cache maintenance and makes communication simple. However, this has 3 main problems: a) asymmetric feature support is problematic - the calling core has no way of knowing the feature set of the waking core. If the two diverge, the architectural feature discovery via ID registers breaks down. We've thus far "fixed" this on a case by case basis which doesn't scale and introduces redundancy. b) powerdown abandon (pabandon) introduces a contradiction - the calling core has to initialise the context for when the core wakes up, but should the core not powerdown it needs its old context intact. The only way to work around this is by keeping two copies of context which incurs a runtime and memory overhead. c) cm_prepare_el3_exit[_ns]() doesn't have access to the entrypoint but needs it to make initialisation decisions. We can infer some of this from registers that have already been written but this is awkwardly limiting for what we can do. This also necessitates the split from the context initialisation. We can solve all three by a making a core be in full ownership of its own context. The calling core then only writes entrypoint information and nothing else. The waking core then initialises its own context as it sees fit with full knowledge of the whole picture. The only tricky bit is cache coherency - the waking core has to be able to coherently observe its new entrypoint. Calling cores will write to the shared region with coherent caches on. If we make sure to read the context only after the waking core has entered coherency, then we can avoid cache operations and let hardware handle everything. We can skip the spsr check for FEAT_TCR2 as it doesn't make a difference. We can also skip enabling it twice from generic code. Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com> Signed-off-by: Manish Pandey <manish.pandey2@arm.com> Change-Id: I86e7fe8b698191fc3b469e5ced1fd010f8754b0e
218 lines
7.3 KiB
C
218 lines
7.3 KiB
C
/*
|
|
* Copyright (c) 2013-2022, Arm Limited and Contributors. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: BSD-3-Clause
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
|
|
#include <arch.h>
|
|
#include <arch_helpers.h>
|
|
#include <common/bl_common.h>
|
|
#include <common/debug.h>
|
|
#include <lib/el3_runtime/context_mgmt.h>
|
|
#include <lib/el3_runtime/pubsub_events.h>
|
|
#include <plat/common/platform.h>
|
|
|
|
#include "psci_private.h"
|
|
|
|
/*
|
|
* Helper functions for the CPU level spinlocks
|
|
*/
|
|
static inline void psci_spin_lock_cpu(unsigned int idx)
|
|
{
|
|
spin_lock(&psci_cpu_pd_nodes[idx].cpu_lock);
|
|
}
|
|
|
|
static inline void psci_spin_unlock_cpu(unsigned int idx)
|
|
{
|
|
spin_unlock(&psci_cpu_pd_nodes[idx].cpu_lock);
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* This function checks whether a cpu which has been requested to be turned on
|
|
* is OFF to begin with.
|
|
******************************************************************************/
|
|
static int cpu_on_validate_state(aff_info_state_t aff_state)
|
|
{
|
|
if (aff_state == AFF_STATE_ON)
|
|
return PSCI_E_ALREADY_ON;
|
|
|
|
if (aff_state == AFF_STATE_ON_PENDING)
|
|
return PSCI_E_ON_PENDING;
|
|
|
|
assert(aff_state == AFF_STATE_OFF);
|
|
return PSCI_E_SUCCESS;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* Generic handler which is called to physically power on a cpu identified by
|
|
* its mpidr. It performs the generic, architectural, platform setup and state
|
|
* management to power on the target cpu e.g. it will ensure that
|
|
* enough information is stashed for it to resume execution in the non-secure
|
|
* security state.
|
|
*
|
|
* The state of all the relevant power domains are changed after calling the
|
|
* platform handler as it can return error.
|
|
******************************************************************************/
|
|
int psci_cpu_on_start(u_register_t target_cpu,
|
|
const entry_point_info_t *ep)
|
|
{
|
|
int rc;
|
|
aff_info_state_t target_aff_state;
|
|
unsigned int target_idx = (unsigned int)plat_core_pos_by_mpidr(target_cpu);
|
|
|
|
/*
|
|
* This function must only be called on platforms where the
|
|
* CPU_ON platform hooks have been implemented.
|
|
*/
|
|
assert((psci_plat_pm_ops->pwr_domain_on != NULL) &&
|
|
(psci_plat_pm_ops->pwr_domain_on_finish != NULL));
|
|
|
|
/* Protect against multiple CPUs trying to turn ON the same target CPU */
|
|
psci_spin_lock_cpu(target_idx);
|
|
|
|
/*
|
|
* Generic management: Ensure that the cpu is off to be
|
|
* turned on.
|
|
* Perform cache maintanence ahead of reading the target CPU state to
|
|
* ensure that the data is not stale.
|
|
* There is a theoretical edge case where the cache may contain stale
|
|
* data for the target CPU data - this can occur under the following
|
|
* conditions:
|
|
* - the target CPU is in another cluster from the current
|
|
* - the target CPU was the last CPU to shutdown on its cluster
|
|
* - the cluster was removed from coherency as part of the CPU shutdown
|
|
*
|
|
* In this case the cache maintenace that was performed as part of the
|
|
* target CPUs shutdown was not seen by the current CPU's cluster. And
|
|
* so the cache may contain stale data for the target CPU.
|
|
*/
|
|
flush_cpu_data_by_index(target_idx,
|
|
psci_svc_cpu_data.aff_info_state);
|
|
rc = cpu_on_validate_state(psci_get_aff_info_state_by_idx(target_idx));
|
|
if (rc != PSCI_E_SUCCESS)
|
|
goto on_exit;
|
|
|
|
/*
|
|
* Call the cpu on handler registered by the Secure Payload Dispatcher
|
|
* to let it do any bookeeping. If the handler encounters an error, it's
|
|
* expected to assert within
|
|
*/
|
|
if ((psci_spd_pm != NULL) && (psci_spd_pm->svc_on != NULL)) {
|
|
psci_spd_pm->svc_on(target_cpu);
|
|
}
|
|
|
|
/*
|
|
* Set the Affinity info state of the target cpu to ON_PENDING.
|
|
* Flush aff_info_state as it will be accessed with caches
|
|
* turned OFF.
|
|
*/
|
|
psci_set_aff_info_state_by_idx(target_idx, AFF_STATE_ON_PENDING);
|
|
flush_cpu_data_by_index(target_idx,
|
|
psci_svc_cpu_data.aff_info_state);
|
|
|
|
/*
|
|
* The cache line invalidation by the target CPU after setting the
|
|
* state to OFF (see psci_do_cpu_off()), could cause the update to
|
|
* aff_info_state to be invalidated. Retry the update if the target
|
|
* CPU aff_info_state is not ON_PENDING.
|
|
*/
|
|
target_aff_state = psci_get_aff_info_state_by_idx(target_idx);
|
|
if (target_aff_state != AFF_STATE_ON_PENDING) {
|
|
assert(target_aff_state == AFF_STATE_OFF);
|
|
psci_set_aff_info_state_by_idx(target_idx, AFF_STATE_ON_PENDING);
|
|
flush_cpu_data_by_index(target_idx,
|
|
psci_svc_cpu_data.aff_info_state);
|
|
|
|
assert(psci_get_aff_info_state_by_idx(target_idx) ==
|
|
AFF_STATE_ON_PENDING);
|
|
}
|
|
|
|
/*
|
|
* Perform generic, architecture and platform specific handling.
|
|
*/
|
|
/*
|
|
* Plat. management: Give the platform the current state
|
|
* of the target cpu to allow it to perform the necessary
|
|
* steps to power on.
|
|
*/
|
|
rc = psci_plat_pm_ops->pwr_domain_on(target_cpu);
|
|
assert((rc == PSCI_E_SUCCESS) || (rc == PSCI_E_INTERN_FAIL));
|
|
|
|
if (rc != PSCI_E_SUCCESS) {
|
|
/* Restore the state on error. */
|
|
psci_set_aff_info_state_by_idx(target_idx, AFF_STATE_OFF);
|
|
flush_cpu_data_by_index(target_idx,
|
|
psci_svc_cpu_data.aff_info_state);
|
|
}
|
|
|
|
on_exit:
|
|
psci_spin_unlock_cpu(target_idx);
|
|
return rc;
|
|
}
|
|
|
|
/*******************************************************************************
|
|
* The following function finish an earlier power on request. They
|
|
* are called by the common finisher routine in psci_common.c. The `state_info`
|
|
* is the psci_power_state from which this CPU has woken up from.
|
|
******************************************************************************/
|
|
void psci_cpu_on_finish(unsigned int cpu_idx, const psci_power_state_t *state_info)
|
|
{
|
|
/*
|
|
* Plat. management: Perform the platform specific actions
|
|
* for this cpu e.g. enabling the gic or zeroing the mailbox
|
|
* register. The actual state of this cpu has already been
|
|
* changed.
|
|
*/
|
|
psci_plat_pm_ops->pwr_domain_on_finish(state_info);
|
|
|
|
#if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
|
|
/*
|
|
* Arch. management: Enable data cache and manage stack memory
|
|
*/
|
|
psci_do_pwrup_cache_maintenance();
|
|
#endif
|
|
|
|
/*
|
|
* Plat. management: Perform any platform specific actions which
|
|
* can only be done with the cpu and the cluster guaranteed to
|
|
* be coherent.
|
|
*/
|
|
if (psci_plat_pm_ops->pwr_domain_on_finish_late != NULL) {
|
|
psci_plat_pm_ops->pwr_domain_on_finish_late(state_info);
|
|
}
|
|
/*
|
|
* All the platform specific actions for turning this cpu
|
|
* on have completed. Perform enough arch.initialization
|
|
* to run in the non-secure address space.
|
|
*/
|
|
psci_arch_setup();
|
|
|
|
/*
|
|
* Lock the CPU spin lock to make sure that the context initialization
|
|
* is done. Since the lock is only used in this function to create
|
|
* a synchronization point with cpu_on_start(), it can be released
|
|
* immediately.
|
|
*/
|
|
psci_spin_lock_cpu(cpu_idx);
|
|
psci_spin_unlock_cpu(cpu_idx);
|
|
|
|
/* Ensure we have been explicitly woken up by another cpu */
|
|
assert(psci_get_aff_info_state() == AFF_STATE_ON_PENDING);
|
|
|
|
/*
|
|
* Call the cpu on finish handler registered by the Secure Payload
|
|
* Dispatcher to let it do any bookeeping. If the handler encounters an
|
|
* error, it's expected to assert within
|
|
*/
|
|
if ((psci_spd_pm != NULL) && (psci_spd_pm->svc_on_finish != NULL)) {
|
|
psci_spd_pm->svc_on_finish(0);
|
|
}
|
|
PUBLISH_EVENT(psci_cpu_on_finish);
|
|
|
|
/* Populate the mpidr field within the cpu node array */
|
|
/* This needs to be done only once */
|
|
psci_cpu_pd_nodes[cpu_idx].mpidr = read_mpidr() & MPIDR_AFFINITY_MASK;
|
|
}
|