Align entire TF-A to use Arm in copyright header.
Change-Id: Ief9992169efdab61d0da6bd8c5180de7a4bc2244
Signed-off-by: Govindraj Raja <govindraj.raja@arm.com>
In fixup_gdt_reloc(), do not skip the last address (__RW_END__) for
dynamic relocations.
Else, the invalidation of the data done under _init_c_runtime in
el3_entrypoint_common macro will not be correct.
Signed-off-by: Yann Gautier <yann.gautier@foss.st.com>
Change-Id: I1166a59ac964ec8ad4e099cb3600e843afc71d82
Only BL32 (SP_min) is supported at the moment, BL1 and BL2_AT_EL3 are just
stubbed with _pie_fixup_size=0.
The changes are an adaptation for AARCH32 on what has been done for
PIE support on AARCH64.
The RELA_SECTION is redefined for AARCH32, as the created section is
.rel.dyn and the symbols are .rel*.
Change-Id: I92bafe70e6b77735f6f890f32f2b637b98cf01b9
Signed-off-by: Yann Gautier <yann.gautier@st.com>
This patch makes optimisation of Aarch32 memcpy4()
function.
Change-Id: If9cdaa4a1224f88fb14df8a308a645344b6c4f1c
Signed-off-by: Alexei Fedorov <Alexei.Fedorov@arm.com>
On Cortex A9 an errata can cause the processor to violate the rules for
speculative fetches when the MMU is off but branch prediction has not
been disabled. The workaround for this is to execute an Invalidate
Entire Branch Prediction Array (BPIALL) followed by a DSB.
see:http://arminfo.emea.arm.com/help/topic/com.arm.doc.uan0009d/UAN0009_cortex_a9_errata_r4.pdf
for more details.
Change-Id: I9146c1fa7563a79f4e15b6251617b9620a587c93
Signed-off-by: Joel Hutton <Joel.Hutton@arm.com>
To make software license auditing simpler, use SPDX[0] license
identifiers instead of duplicating the license text in every file.
NOTE: Files that have been imported by FreeBSD have not been modified.
[0]: https://spdx.org/
Change-Id: I80a00e1f641b8cc075ca5a95b10607ed9ed8761a
Signed-off-by: dp-arm <dimitris.papastamos@arm.com>
The build option `ENABLE_ASSERTIONS` should be used instead. That way
both C and ASM assertions can be enabled or disabled together.
All occurrences of `ASM_ASSERTION` in common code and ARM platforms have
been replaced by `ENABLE_ASSERTIONS`.
ASM_ASSERTION has been removed from the user guide.
Change-Id: I51f1991f11b9b7ff83e787c9a3270c274748ec6f
Signed-off-by: Antonio Nino Diaz <antonio.ninodiaz@arm.com>
ge, lt, gt and le condition codes in assembly provide a signed test
whereas hs, lo, hi and ls provide the unsigned counterpart. Signed tests
should only be used when strictly necessary, as using them on logically
unsigned values can lead to inverting the test for high enough values.
All offsets, addresses and usually counters are actually unsigned
values, and should be tested as such.
Replace the occurrences of signed condition codes where it was
unnecessary by an unsigned test as the unsigned tests allow the full
range of unsigned values to be used without inverting the result with
some large operands.
Change-Id: I58b7e98d03e3a4476dfb45230311f296d224980a
Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
Introduce zeromem_dczva function on AArch64 that can handle unaligned
addresses and make use of DC ZVA instruction to zero a whole block at a
time. This zeroing takes place directly in the cache to speed it up
without doing external memory access.
Remove the zeromem16 function on AArch64 and replace it with an alias to
zeromem. This zeromem16 function is now deprecated.
Remove the 16-bytes alignment constraint on __BSS_START__ in
firmware-design.md as it is now not mandatory anymore (it used to comply
with zeromem16 requirements).
Change the 16-bytes alignment constraints in SP min's linker script to a
8-bytes alignment constraint as the AArch32 zeromem implementation is now
more efficient on 8-bytes aligned addresses.
Introduce zero_normalmem and zeromem helpers in platform agnostic header
that are implemented this way:
* AArch32:
* zero_normalmem: zero using usual data access
* zeromem: alias for zero_normalmem
* AArch64:
* zero_normalmem: zero normal memory using DC ZVA instruction
(needs MMU enabled)
* zeromem: zero using usual data access
Usage guidelines: in most cases, zero_normalmem should be preferred.
There are 2 scenarios where zeromem (or memset) must be used instead:
* Code that must run with MMU disabled (which means all memory is
considered device memory for data accesses).
* Code that fills device memory with null bytes.
Optionally, the following rule can be applied if performance is
important:
* Code zeroing small areas (few bytes) that are not secrets should use
memset to take advantage of compiler optimizations.
Note: Code zeroing security-related critical information should use
zero_normalmem/zeromem instead of memset to avoid removal by
compilers' optimizations in some cases or misbehaving versions of GCC.
FixesARM-software/tf-issues#408
Change-Id: Iafd9663fc1070413c3e1904e54091cf60effaa82
Signed-off-by: Douglas Raillard <douglas.raillard@arm.com>
At present the `el3_entrypoint_common` macro uses `memcpy`
function defined in lib/stdlib/mem.c file, to copy data
from ROM to RAM for BL1. Depending on the compiler being
used the stack could potentially be used, in `memcpy`,
for storing the local variables. Since the stack is
initialized much later in `el3_entrypoint_common` it
may result in unknown behaviour.
This patch adds `memcpy4` function definition in assembly so
that it can be used before the stack is initialized and it
also replaces `memcpy` by `memcpy4` in `el3_entrypoint_common`
macro, to copy data from ROM to RAM for BL1.
Change-Id: I3357a0e8095f05f71bbbf0b185585d9499bfd5e0
This patch adds common changes to support AArch32 state in
BL1 and BL2. Following are the changes:
* Added functions for disabling MMU from Secure state.
* Added AArch32 specific SMC function.
* Added semihosting support.
* Added reporting of unhandled exceptions.
* Added uniprocessor stack support.
* Added `el3_entrypoint_common` macro that can be
shared by BL1 and BL32 (SP_MIN) BL stages. The
`el3_entrypoint_common` is similar to the AArch64
counterpart with the main difference in the assembly
instructions and the registers that are relevant to
AArch32 execution state.
* Enabled `LOAD_IMAGE_V2` flag in Makefile for
`ARCH=aarch32` and added check to make sure that
platform has not overridden to disable it.
Change-Id: I33c6d8dfefb2e5d142fdfd06a0f4a7332962e1a3
This patch adds various assembly helpers for AArch32 like :
* cache management : Functions to flush, invalidate and clean
cache by MVA. Also helpers to do cache operations by set-way
are also added.
* stack management: Macros to declare stack and get the current
stack corresponding to current CPU.
* Misc: Macros to access co processor registers in AArch32,
macros to define functions in assembly, assert macros, generic
`do_panic()` implementation and function to zero block of memory.
Change-Id: I7b78ca3f922c0eda39beb9786b7150e9193425be