This patch ensures that VBAR_EL3 points to the simple stack-less
'early_exceptions' when the C runtime stack is not correctly setup to
use the more complex 'runtime_exceptions'. It is initialised to
'runtime_exceptions' once this is done.
This patch also moves all exception vectors into a '.vectors' section
and modifies linker scripts to place all such sections together. This
will minimize space wastage from alignment restrictions.
Change-Id: I8c3e596ea3412c8bd582af9e8d622bb1cb2e049d
The psci implementation does not track target affinity level requests
specified during cpu_suspend calls correctly as per the following
example.
1. cpu0.cluster0 calls cpu_suspend with the target affinity level as 0
2. Only the cpu0.cluster0 is powered down while cluster0 remains
powered up
3. cpu1.cluster0 calls cpu_off to power itself down to highest
possible affinity level
4. cluster0 will be powered off even though cpu0.cluster0 does not
allow cluster shutdown
This patch introduces reference counts at affinity levels > 0 to track
the number of cpus which want an affinity instance at level X to
remain powered up. This instance can be turned off only if its
reference count is 0. Cpus still undergo the normal state transitions
(ON, OFF, ON_PENDING, SUSPEND) but the higher levels can only be
either ON or OFF depending upon their reference count.
The above issue is thus fixed as follows:
1. cluster0's reference count is incremented by two when cpu0 and cpu1
are initially powered on.
2. cpu0.cluster0 calls cpu_suspend with the target affinity level as
0. This does not affect the cluster0 reference count.
3. Only the cpu0.cluster0 is powered down while cluster0 remains
powered up as it has a non-zero reference count.
4. cpu1.cluster0 call cpu_off to power itself down to highest possible
affinity level. This decrements the cluster0 reference count.
5. cluster0 is still not powered off since its reference count will at
least be 1 due to the restriction placed by cpu0.
Change-Id: I433dfe82b946f5f6985b1602c2de87800504f7a9
This patch adds support to save and restore the target affinity level
specified during a cpu_suspend psci call. This ensures that we
traverse only through the affinity levels that we originally intended
to after resuming from suspend.
Change-Id: I0900ae49a50b496da137cfec8f158da0397ec56c
The secure context saved and restored across a cpu_suspend operation
can be more than just the state of the secure system registers e.g. we
also need to save the affinity level till which the cpu is being
powered down. This patch creates a suspend_context data structure
which includes the system register context. This will allow other bits
to be saved and restored as well in subsequent patches.
Change-Id: I1c1f7d25497388b54b7d6ee4fab77e8c6a9992c4
This patch performs a major rework of the psci generic implementation
to achieve the following:
1. replace recursion with iteration where possible to aid code
readability e.g. affinity instance states are changed iteratively
instead of recursively.
2. acquire pointers to affinity instance nodes at the beginning of a
psci operation. All subsequent actions use these pointers instead
of calling psci_get_aff_map_node() repeatedly e.g. management of
locks has been abstracted under functions which use these pointers
to ensure correct ordering. Helper functions have been added to
create these abstractions.
3. assertions have been added to cpu level handlers to ensure correct
state transition
4. the affinity level extents specified to various functions have the
same meaning i.e. start level is always less than the end level.
Change-Id: If0508c3a7b20ea3ddda2a66128429382afc3dfc8
This patch:
1. removes a duplicate assertion to check that the only error
condition that can be returned while turning a cpu off is
PSCI_E_DENIED. Having this assertion after calling
psci_afflvl_off() is sufficient.
2. corrects some incorrect usage of 'its' vs 'it is'
3. removes some unwanted white spaces
Change-Id: Icf014e269b54f5be5ce0b9fbe6b41258e4ebf403
In the previous psci implementation, the psci_afflvl_power_on_finish()
function would run into an error condition if the value of the context
id parameter in the cpu_on and cpu_suspend psci calls was != 0. The
parameter was being restored as the return value of the affinity level
0 finisher function. A non zero context id would be treated as an
error condition. This would prevent successful wake up of the cpu from
a power down state. Also, the contents of the general purpose
registers were not being cleared upon return to the non-secure world
after a cpu power up. This could potentially allow the non-secure
world to view secure data.
This patch ensures that all general purpose registers are set to ~0
prior to the final eret that drops the execution to the non-secure
world. The context id is used to initialize the general purpose
register x0 prior to re-entry into the non-secure world and is no
longer restored as a function return value. A platform helper
(platform_get_stack()) has been introduced to facilitate this change.
Change-Id: I2454911ffd75705d6aa8609a5d250d9b26fa097c
- Add instructions for contributing to ARM Trusted Firmware.
- Update copyright text in all files to acknowledge contributors.
Change-Id: I9311aac81b00c6c167d2f8c889aea403b84450e5
Any asynchronous exception caused by the firmware should be handled
in the firmware itself. For this reason, unmask SError exceptions
(and Debug ones as well) on all boot paths. Also route external
abort and SError interrupts to EL3, otherwise they will target EL1.
Change-Id: I9c191d2d0dcfef85f265641c8460dfbb4d112092