This commit does the switch to the new PSCI framework implementation replacing
the existing files in PSCI folder with the ones in PSCI1.0 folder. The
corresponding makefiles are modified as required for the new implementation.
The platform.h header file is also is switched to the new one
as required by the new frameworks. The build flag ENABLE_PLAT_COMPAT defaults
to 1 to enable compatibility layer which let the existing platform ports to
continue to build and run with minimal changes.
The default weak implementation of platform_get_core_pos() is now removed from
platform_helpers.S and is provided by the compatibility layer.
Note: The Secure Payloads and their dispatchers still use the old platform
and framework APIs and hence it is expected that the ENABLE_PLAT_COMPAT build
flag will remain enabled in subsequent patch. The compatibility for SPDs using
the older APIs on platforms migrated to the new APIs will be added in the
following patch.
Change-Id: I18c51b3a085b564aa05fdd98d11c9f3335712719
There used to be 2 warm reset entry points:
- the "on finisher", for when the core has been turned on using a
PSCI CPU_ON call;
- the "suspend finisher", entered upon resumption from a previous
PSCI CPU_SUSPEND call.
The appropriate warm reset entry point used to be programmed into the
mailboxes by the power management hooks.
However, it is not required to provide this information to the PSCI
entry point code, as it can figure it out by itself. By querying affinity
info state, a core is able to determine on which execution path it is.
If the state is ON_PENDING then it means it's been turned on else
it is resuming from suspend.
This patch unifies the 2 warm reset entry points into a single one:
psci_entrypoint(). The patch also implements the necessary logic
to distinguish between the 2 types of warm resets in the power up
finisher.
The plat_setup_psci_ops() API now takes the
secure entry point as an additional parameter to enable the platforms
to configure their mailbox. The platform hooks `pwr_domain_on`
and `pwr_domain_suspend` no longer take secure entry point as
a parameter.
Change-Id: I7d1c93787b54213aefdbc046b8cd66a555dfbfd9
The state-id field in the power-state parameter of a CPU_SUSPEND call can be
used to describe composite power states specific to a platform. The current PSCI
implementation does not interpret the state-id field. It relies on the target
power level and the state type fields in the power-state parameter to perform
state coordination and power management operations. The framework introduced
in this patch allows the PSCI implementation to intepret generic global states
like RUN, RETENTION or OFF from the State-ID to make global state coordination
decisions and reduce the complexity of platform ports. It adds support to
involve the platform in state coordination which facilitates the use of
composite power states and improves the support for entering standby states
at multiple power domains.
The patch also includes support for extended state-id format for the power
state parameter as specified by PSCIv1.0.
The PSCI implementation now defines a generic representation of the power-state
parameter. It depends on the platform port to convert the power-state parameter
(possibly encoding a composite power state) passed in a CPU_SUSPEND call to this
representation via the `validate_power_state()` plat_psci_ops handler. It is an
array where each index corresponds to a power level. Each entry contains the
local power state the power domain at that power level could enter.
The meaning of the local power state values is platform defined, and may vary
between levels in a single platform. The PSCI implementation constrains the
values only so that it can classify the state as RUN, RETENTION or OFF as
required by the specification:
* zero means RUN
* all OFF state values at all levels must be higher than all RETENTION
state values at all levels
* the platform provides PLAT_MAX_RET_STATE and PLAT_MAX_OFF_STATE values
to the framework
The platform also must define the macros PLAT_MAX_RET_STATE and
PLAT_MAX_OFF_STATE which lets the PSCI implementation find out which power
domains have been requested to enter a retention or power down state. The PSCI
implementation does not interpret the local power states defined by the
platform. The only constraint is that the PLAT_MAX_RET_STATE <
PLAT_MAX_OFF_STATE.
For a power domain tree, the generic implementation maintains an array of local
power states. These are the states requested for each power domain by all the
cores contained within the domain. During a request to place multiple power
domains in a low power state, the platform is passed an array of requested
power-states for each power domain through the plat_get_target_pwr_state()
API. It coordinates amongst these states to determine a target local power
state for the power domain. A default weak implementation of this API is
provided in the platform layer which returns the minimum of the requested
power-states back to the PSCI state coordination.
Finally, the plat_psci_ops power management handlers are passed the target
local power states for each affected power domain using the generic
representation described above. The platform executes operations specific to
these target states.
The platform power management handler for placing a power domain in a standby
state (plat_pm_ops_t.pwr_domain_standby()) is now only used as a fast path for
placing a core power domain into a standby or retention state should now be
used to only place the core power domain in a standby or retention state.
The extended state-id power state format can be enabled by setting the
build flag PSCI_EXTENDED_STATE_ID=1 and it is disabled by default.
Change-Id: I9d4123d97e179529802c1f589baaa4101759d80c
This patch removes the assumption in the current PSCI implementation that MPIDR
based affinity levels map directly to levels in a power domain tree. This
enables PSCI generic code to support complex power domain topologies as
envisaged by PSCIv1.0 specification. The platform interface for querying
the power domain topology has been changed such that:
1. The generic PSCI code does not generate MPIDRs and use them to query the
platform about the number of power domains at a particular power level. The
platform now provides a description of the power domain tree on the SoC
through a data structure. The existing platform APIs to provide the same
information have been removed.
2. The linear indices returned by plat_core_pos_by_mpidr() and
plat_my_core_pos() are used to retrieve core power domain nodes from the
power domain tree. Power domains above the core level are accessed using a
'parent' field in the tree node descriptors.
The platform describes the power domain tree in an array of 'unsigned
char's. The first entry in the array specifies the number of power domains at
the highest power level implemented in the system. Each susbsequent entry
corresponds to a power domain and contains the number of power domains that are
its direct children. This array is exported to the generic PSCI implementation
via the new `plat_get_power_domain_tree_desc()` platform API.
The PSCI generic code uses this array to populate its internal power domain tree
using the Breadth First Search like algorithm. The tree is split into two
arrays:
1. An array that contains all the core power domain nodes
2. An array that contains all the other power domain nodes
A separate array for core nodes allows certain core specific optimisations to
be implemented e.g. remove the bakery lock, re-use per-cpu data framework for
storing some information.
Entries in the core power domain array are allocated such that the
array index of the domain is equal to the linear index returned by
plat_core_pos_by_mpidr() and plat_my_core_pos() for the MPIDR
corresponding to that domain. This relationship is key to be able to use
an MPIDR to find the corresponding core power domain node, traverse to higher
power domain nodes and index into arrays that contain core specific
information.
An introductory document has been added to briefly describe the new interface.
Change-Id: I4b444719e8e927ba391cae48a23558308447da13
This patch introduces new platform APIs and context management helper APIs
to support the new topology framework based on linear core position. This
framework will be introduced in the follwoing patch and it removes the
assumption that the MPIDR based affinity levels map directly to levels
in a power domain tree. The new platforms APIs and context management
helpers based on core position are as described below:
* plat_my_core_pos() and plat_core_pos_by_mpidr()
These 2 new mandatory platform APIs are meant to replace the existing
'platform_get_core_pos()' API. The 'plat_my_core_pos()' API returns the
linear index of the calling core and 'plat_core_pos_by_mpidr()' returns
the linear index of a core specified by its MPIDR. The latter API will also
validate the MPIDR passed as an argument and will return an error code (-1)
if an invalid MPIDR is passed as the argument. This enables the caller to
safely convert an MPIDR of another core to its linear index without querying
the PSCI topology tree e.g. during a call to PSCI CPU_ON.
Since the 'plat_core_pos_by_mpidr()' API verifies an MPIDR, which is always
platform specific, it is no longer possible to maintain a default implementation
of this API. Also it might not be possible for a platform port to verify an
MPIDR before the C runtime has been setup or the topology has been initialized.
This would prevent 'plat_core_pos_by_mpidr()' from being callable prior to
topology setup. As a result, the generic Trusted Firmware code does not call
this API before the topology setup has been done.
The 'plat_my_core_pos' API should be able to run without a C runtime.
Since this API needs to return a core position which is equal to the one
returned by 'plat_core_pos_by_mpidr()' API for the corresponding MPIDR,
this too cannot have default implementation and is a mandatory API for
platform ports. These APIs will be implemented by the ARM reference platform
ports later in the patch stack.
* plat_get_my_stack() and plat_set_my_stack()
These APIs are the stack management APIs which set/return stack addresses
appropriate for the calling core. These replace the 'platform_get_stack()' and
'platform_set_stack()' APIs. A default weak MP version and a global UP version
of these APIs are provided for the platforms.
* Context management helpers based on linear core position
A set of new context management(CM) helpers viz cm_get_context_by_index(),
cm_set_context_by_index(), cm_init_my_context() and cm_init_context_by_index()
are defined which are meant to replace the old helpers which took MPIDR
as argument. The old CM helpers are implemented based on the new helpers to
allow for code consolidation and will be deprecated once the switch to the new
framework is done.
Change-Id: I89758632b370c2812973a4b2efdd9b81a41f9b69
As per Section 4.2.2. in the PSCI specification, the term "affinity"
is used in the context of describing the hierarchical arrangement
of cores. This often, but not always, maps directly to the processor
power domain topology of the system. The current PSCI implementation
assumes that this is always the case i.e. MPIDR based levels of
affinity always map to levels in a power domain topology tree.
This patch is the first in a series of patches which remove this
assumption. It removes all occurences of the terms "affinity
instances and levels" when used to describe the power domain
topology. Only the terminology is changed in this patch. Subsequent
patches will implement functional changes to remove the above
mentioned assumption.
Change-Id: Iee162f051b228828310610c5a320ff9d31009b4e
2015-08-05 14:15:26 +01:00
Renamed from services/std_svc/psci1.0/psci_afflvl_on.c (Browse further)