mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-21 03:54:34 +00:00
Merge pull request #1395 from antonio-nino-diaz-arm/an/spm-refactor
SPM: Refactor codebase
This commit is contained in:
commit
edcd266e6a
13 changed files with 400 additions and 406 deletions
|
@ -126,8 +126,7 @@ the rest of this document.
|
|||
|
||||
To enable SPM support in TF-A, the source code must be compiled with the build
|
||||
flag ``ENABLE_SPM=1``. On Arm platforms the build option ``ARM_BL31_IN_DRAM``
|
||||
can be used to select the location of BL31, both SRAM and DRAM are supported.
|
||||
Also, the location of the binary that contains the BL32 image
|
||||
must be set to 1. Also, the location of the binary that contains the BL32 image
|
||||
(``BL32=path/to/image.bin``) must be specified.
|
||||
|
||||
First, build the Standalone MM Secure Partition. To build it, refer to the
|
||||
|
@ -139,7 +138,7 @@ image in the FIP:
|
|||
::
|
||||
|
||||
BL32=path/to/standalone/mm/sp BL33=path/to/bl33.bin \
|
||||
make PLAT=fvp ENABLE_SPM=1 fip all
|
||||
make PLAT=fvp ENABLE_SPM=1 ARM_BL31_IN_DRAM=1 fip all
|
||||
|
||||
Describing Secure Partition resources
|
||||
-------------------------------------
|
||||
|
|
|
@ -7,11 +7,11 @@
|
|||
#ifndef __CM_H__
|
||||
#define __CM_H__
|
||||
|
||||
#ifndef AARCH32
|
||||
#include <arch.h>
|
||||
#include <assert.h>
|
||||
#include <context.h>
|
||||
#include <context_mgmt.h>
|
||||
#include <stdint.h>
|
||||
#endif
|
||||
|
||||
/*******************************************************************************
|
||||
* Forward declarations
|
||||
|
@ -32,6 +32,7 @@ void cm_set_context(void *context, uint32_t security_state);
|
|||
void cm_init_my_context(const struct entry_point_info *ep);
|
||||
void cm_init_context_by_index(unsigned int cpu_idx,
|
||||
const struct entry_point_info *ep);
|
||||
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep);
|
||||
void cm_prepare_el3_exit(uint32_t security_state);
|
||||
|
||||
#ifndef AARCH32
|
||||
|
|
|
@ -30,7 +30,9 @@
|
|||
#elif defined(IMAGE_BL2U)
|
||||
# define PLATFORM_STACK_SIZE 0x200
|
||||
#elif defined(IMAGE_BL31)
|
||||
#ifdef PLAT_XLAT_TABLES_DYNAMIC
|
||||
#if ENABLE_SPM
|
||||
# define PLATFORM_STACK_SIZE 0x500
|
||||
#elif PLAT_XLAT_TABLES_DYNAMIC
|
||||
# define PLATFORM_STACK_SIZE 0x800
|
||||
#else
|
||||
# define PLATFORM_STACK_SIZE 0x400
|
||||
|
@ -94,7 +96,11 @@
|
|||
* PLAT_ARM_MAX_BL31_SIZE is calculated using the current BL31 debug size plus a
|
||||
* little space for growth.
|
||||
*/
|
||||
#if ENABLE_SPM
|
||||
# define PLAT_ARM_MAX_BL31_SIZE 0x40000
|
||||
#else
|
||||
# define PLAT_ARM_MAX_BL31_SIZE 0x20000
|
||||
#endif
|
||||
|
||||
#ifdef AARCH32
|
||||
/*
|
||||
|
|
|
@ -98,12 +98,6 @@
|
|||
/* Total number of memory regions with distinct properties */
|
||||
#define ARM_SP_IMAGE_NUM_MEM_REGIONS 6
|
||||
|
||||
/*
|
||||
* Name of the section to put the translation tables used by the S-EL1/S-EL0
|
||||
* context of a Secure Partition.
|
||||
*/
|
||||
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "arm_el3_tzc_dram"
|
||||
|
||||
/* Cookies passed to the Secure Partition at boot. Not used by ARM platforms. */
|
||||
#define PLAT_SPM_COOKIE_0 ULL(0)
|
||||
#define PLAT_SPM_COOKIE_1 ULL(0)
|
||||
|
|
|
@ -55,8 +55,4 @@ typedef struct secure_partition_boot_info {
|
|||
secure_partition_mp_info_t *mp_info;
|
||||
} secure_partition_boot_info_t;
|
||||
|
||||
/* Setup function for secure partitions context. */
|
||||
|
||||
void secure_partition_setup(void);
|
||||
|
||||
#endif /* __SECURE_PARTITION_H__ */
|
||||
|
|
|
@ -41,8 +41,7 @@ void cm_init(void)
|
|||
* entry_point_info structure.
|
||||
*
|
||||
* The security state to initialize is determined by the SECURE attribute
|
||||
* of the entry_point_info. The function returns a pointer to the initialized
|
||||
* context and sets this as the next context to return to.
|
||||
* of the entry_point_info.
|
||||
*
|
||||
* The EE and ST attributes are used to configure the endianness and secure
|
||||
* timer availability for the new execution context.
|
||||
|
@ -51,7 +50,7 @@ void cm_init(void)
|
|||
* el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
|
||||
* cm_e1_sysreg_context_restore().
|
||||
******************************************************************************/
|
||||
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
|
||||
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
|
||||
{
|
||||
unsigned int security_state;
|
||||
uint32_t scr, sctlr;
|
||||
|
@ -149,7 +148,7 @@ void cm_init_context_by_index(unsigned int cpu_idx,
|
|||
{
|
||||
cpu_context_t *ctx;
|
||||
ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
|
||||
cm_init_context_common(ctx, ep);
|
||||
cm_setup_context(ctx, ep);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
|
@ -161,7 +160,7 @@ void cm_init_my_context(const entry_point_info_t *ep)
|
|||
{
|
||||
cpu_context_t *ctx;
|
||||
ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
|
||||
cm_init_context_common(ctx, ep);
|
||||
cm_setup_context(ctx, ep);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
|
|
|
@ -49,8 +49,7 @@ void cm_init(void)
|
|||
* entry_point_info structure.
|
||||
*
|
||||
* The security state to initialize is determined by the SECURE attribute
|
||||
* of the entry_point_info. The function returns a pointer to the initialized
|
||||
* context and sets this as the next context to return to.
|
||||
* of the entry_point_info.
|
||||
*
|
||||
* The EE and ST attributes are used to configure the endianess and secure
|
||||
* timer availability for the new execution context.
|
||||
|
@ -59,7 +58,7 @@ void cm_init(void)
|
|||
* el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
|
||||
* cm_e1_sysreg_context_restore().
|
||||
******************************************************************************/
|
||||
static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
|
||||
void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
|
||||
{
|
||||
unsigned int security_state;
|
||||
uint32_t scr_el3, pmcr_el0;
|
||||
|
@ -258,7 +257,7 @@ void cm_init_context_by_index(unsigned int cpu_idx,
|
|||
{
|
||||
cpu_context_t *ctx;
|
||||
ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
|
||||
cm_init_context_common(ctx, ep);
|
||||
cm_setup_context(ctx, ep);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
|
@ -270,7 +269,7 @@ void cm_init_my_context(const entry_point_info_t *ep)
|
|||
{
|
||||
cpu_context_t *ctx;
|
||||
ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
|
||||
cm_init_context_common(ctx, ep);
|
||||
cm_setup_context(ctx, ep);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
|
|
|
@ -225,6 +225,12 @@ ifneq (${BL2_AT_EL3}, 0)
|
|||
override BL1_SOURCES =
|
||||
endif
|
||||
|
||||
ifeq (${ENABLE_SPM},1)
|
||||
ifneq (${ARM_BL31_IN_DRAM},1)
|
||||
$(error "Error: SPM needs BL31 to be located in DRAM.")
|
||||
endif
|
||||
endif
|
||||
|
||||
include plat/arm/board/common/board_common.mk
|
||||
include plat/arm/common/arm_common.mk
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
|
||||
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
@ -15,46 +15,28 @@
|
|||
#include <platform.h>
|
||||
#include <secure_partition.h>
|
||||
#include <string.h>
|
||||
#include <types.h>
|
||||
#include <xlat_tables_v2.h>
|
||||
|
||||
#include "spm_private.h"
|
||||
#include "spm_shim_private.h"
|
||||
|
||||
/* Place translation tables by default along with the ones used by BL31. */
|
||||
#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
|
||||
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
|
||||
#endif
|
||||
|
||||
/* Allocate and initialise the translation context for the secure partition. */
|
||||
REGISTER_XLAT_CONTEXT2(secure_partition,
|
||||
PLAT_SP_IMAGE_MMAP_REGIONS,
|
||||
PLAT_SP_IMAGE_MAX_XLAT_TABLES,
|
||||
PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
|
||||
EL1_EL0_REGIME, PLAT_SP_IMAGE_XLAT_SECTION_NAME);
|
||||
|
||||
/* Export a handle on the secure partition translation context */
|
||||
xlat_ctx_t *secure_partition_xlat_ctx_handle = &secure_partition_xlat_ctx;
|
||||
|
||||
/* Setup context of the Secure Partition */
|
||||
void secure_partition_setup(void)
|
||||
void spm_sp_setup(sp_context_t *sp_ctx)
|
||||
{
|
||||
VERBOSE("S-EL1/S-EL0 context setup start...\n");
|
||||
cpu_context_t *ctx = &(sp_ctx->cpu_ctx);
|
||||
|
||||
cpu_context_t *ctx = cm_get_context(SECURE);
|
||||
/*
|
||||
* Initialize CPU context
|
||||
* ----------------------
|
||||
*/
|
||||
|
||||
/* Make sure that we got a Secure context. */
|
||||
assert(ctx != NULL);
|
||||
entry_point_info_t ep_info = {0};
|
||||
|
||||
/* Assert we are in Secure state. */
|
||||
assert((read_scr_el3() & SCR_NS_BIT) == 0);
|
||||
SET_PARAM_HEAD(&ep_info, PARAM_EP, VERSION_1, SECURE | EP_ST_ENABLE);
|
||||
ep_info.pc = BL32_BASE;
|
||||
ep_info.spsr = SPSR_64(MODE_EL0, MODE_SP_EL0, DISABLE_ALL_EXCEPTIONS);
|
||||
|
||||
/* Disable MMU at EL1. */
|
||||
disable_mmu_icache_el1();
|
||||
|
||||
/* Invalidate TLBs at EL1. */
|
||||
tlbivmalle1();
|
||||
dsbish();
|
||||
cm_setup_context(ctx, &ep_info);
|
||||
|
||||
/*
|
||||
* General-Purpose registers
|
||||
|
@ -143,13 +125,13 @@ void secure_partition_setup(void)
|
|||
MAP_REGION_FLAT(SPM_SHIM_EXCEPTIONS_START,
|
||||
SPM_SHIM_EXCEPTIONS_SIZE,
|
||||
MT_CODE | MT_SECURE | MT_PRIVILEGED);
|
||||
mmap_add_region_ctx(&secure_partition_xlat_ctx,
|
||||
mmap_add_region_ctx(sp_ctx->xlat_ctx_handle,
|
||||
&sel1_exception_vectors);
|
||||
|
||||
mmap_add_ctx(&secure_partition_xlat_ctx,
|
||||
mmap_add_ctx(sp_ctx->xlat_ctx_handle,
|
||||
plat_get_secure_partition_mmap(NULL));
|
||||
|
||||
init_xlat_tables_ctx(&secure_partition_xlat_ctx);
|
||||
init_xlat_tables_ctx(sp_ctx->xlat_ctx_handle);
|
||||
|
||||
/*
|
||||
* MMU-related registers
|
||||
|
@ -222,9 +204,12 @@ void secure_partition_setup(void)
|
|||
|
||||
write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_el1);
|
||||
|
||||
uint64_t *xlat_base =
|
||||
((xlat_ctx_t *)sp_ctx->xlat_ctx_handle)->base_table;
|
||||
|
||||
/* Point TTBR0_EL1 at the tables of the context created for the SP. */
|
||||
write_ctx_reg(get_sysregs_ctx(ctx), CTX_TTBR0_EL1,
|
||||
(u_register_t)secure_partition_base_xlat_table);
|
||||
(u_register_t)xlat_base);
|
||||
|
||||
/*
|
||||
* Setup other system registers
|
||||
|
@ -312,6 +297,4 @@ void secure_partition_setup(void)
|
|||
if (plat_my_core_pos() == sp_mp_info[index].linear_id)
|
||||
sp_mp_info[index].flags |= MP_INFO_FLAG_PRIMARY_CPU;
|
||||
}
|
||||
|
||||
VERBOSE("S-EL1/S-EL0 context setup end.\n");
|
||||
}
|
155
services/std_svc/spm/sp_xlat.c
Normal file
155
services/std_svc/spm/sp_xlat.c
Normal file
|
@ -0,0 +1,155 @@
|
|||
/*
|
||||
* Copyright (c) 2018, ARM Limited and Contributors. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
||||
#include <arch.h>
|
||||
#include <arch_helpers.h>
|
||||
#include <assert.h>
|
||||
#include <errno.h>
|
||||
#include <platform_def.h>
|
||||
#include <platform.h>
|
||||
#include <secure_partition.h>
|
||||
#include <spm_svc.h>
|
||||
#include <xlat_tables_v2.h>
|
||||
|
||||
#include "spm_private.h"
|
||||
#include "spm_shim_private.h"
|
||||
|
||||
/* Place translation tables by default along with the ones used by BL31. */
|
||||
#ifndef PLAT_SP_IMAGE_XLAT_SECTION_NAME
|
||||
#define PLAT_SP_IMAGE_XLAT_SECTION_NAME "xlat_table"
|
||||
#endif
|
||||
|
||||
/* Allocate and initialise the translation context for the secure partitions. */
|
||||
REGISTER_XLAT_CONTEXT2(sp,
|
||||
PLAT_SP_IMAGE_MMAP_REGIONS,
|
||||
PLAT_SP_IMAGE_MAX_XLAT_TABLES,
|
||||
PLAT_VIRT_ADDR_SPACE_SIZE, PLAT_PHY_ADDR_SPACE_SIZE,
|
||||
EL1_EL0_REGIME, PLAT_SP_IMAGE_XLAT_SECTION_NAME);
|
||||
|
||||
/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
|
||||
static spinlock_t mem_attr_smc_lock;
|
||||
|
||||
/* Get handle of Secure Partition translation context */
|
||||
xlat_ctx_t *spm_get_sp_xlat_context(void)
|
||||
{
|
||||
return &sp_xlat_ctx;
|
||||
};
|
||||
|
||||
/*
|
||||
* Attributes are encoded using a different format in the SMC interface than in
|
||||
* the Trusted Firmware, where the mmap_attr_t enum type is used. This function
|
||||
* converts an attributes value from the SMC format to the mmap_attr_t format by
|
||||
* setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
|
||||
* The other fields are left as 0 because they are ignored by the function
|
||||
* change_mem_attributes().
|
||||
*/
|
||||
static unsigned int smc_attr_to_mmap_attr(unsigned int attributes)
|
||||
{
|
||||
unsigned int tf_attr = 0U;
|
||||
|
||||
unsigned int access = (attributes & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
|
||||
>> SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
|
||||
|
||||
if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RW) {
|
||||
tf_attr |= MT_RW | MT_USER;
|
||||
} else if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RO) {
|
||||
tf_attr |= MT_RO | MT_USER;
|
||||
} else {
|
||||
/* Other values are reserved. */
|
||||
assert(access == SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS);
|
||||
/* The only requirement is that there's no access from EL0 */
|
||||
tf_attr |= MT_RO | MT_PRIVILEGED;
|
||||
}
|
||||
|
||||
if ((attributes & SP_MEMORY_ATTRIBUTES_NON_EXEC) == 0) {
|
||||
tf_attr |= MT_EXECUTE;
|
||||
} else {
|
||||
tf_attr |= MT_EXECUTE_NEVER;
|
||||
}
|
||||
|
||||
return tf_attr;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function converts attributes from the Trusted Firmware format into the
|
||||
* SMC interface format.
|
||||
*/
|
||||
static unsigned int smc_mmap_to_smc_attr(unsigned int attr)
|
||||
{
|
||||
unsigned int smc_attr = 0U;
|
||||
|
||||
unsigned int data_access;
|
||||
|
||||
if ((attr & MT_USER) == 0) {
|
||||
/* No access from EL0. */
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS;
|
||||
} else {
|
||||
if ((attr & MT_RW) != 0) {
|
||||
assert(MT_TYPE(attr) != MT_DEVICE);
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RW;
|
||||
} else {
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RO;
|
||||
}
|
||||
}
|
||||
|
||||
smc_attr |= (data_access & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
|
||||
<< SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
|
||||
|
||||
if ((attr & MT_EXECUTE_NEVER) != 0U) {
|
||||
smc_attr |= SP_MEMORY_ATTRIBUTES_NON_EXEC;
|
||||
}
|
||||
|
||||
return smc_attr;
|
||||
}
|
||||
|
||||
int32_t spm_memory_attributes_get_smc_handler(sp_context_t *sp_ctx,
|
||||
uintptr_t base_va)
|
||||
{
|
||||
uint32_t attributes;
|
||||
|
||||
spin_lock(&mem_attr_smc_lock);
|
||||
|
||||
int rc = get_mem_attributes(sp_ctx->xlat_ctx_handle,
|
||||
base_va, &attributes);
|
||||
|
||||
spin_unlock(&mem_attr_smc_lock);
|
||||
|
||||
/* Convert error codes of get_mem_attributes() into SPM ones. */
|
||||
assert((rc == 0) || (rc == -EINVAL));
|
||||
|
||||
if (rc == 0) {
|
||||
return (int32_t) smc_mmap_to_smc_attr(attributes);
|
||||
} else {
|
||||
return SPM_INVALID_PARAMETER;
|
||||
}
|
||||
}
|
||||
|
||||
int spm_memory_attributes_set_smc_handler(sp_context_t *sp_ctx,
|
||||
u_register_t page_address,
|
||||
u_register_t pages_count,
|
||||
u_register_t smc_attributes)
|
||||
{
|
||||
uintptr_t base_va = (uintptr_t) page_address;
|
||||
size_t size = (size_t) (pages_count * PAGE_SIZE);
|
||||
uint32_t attributes = (uint32_t) smc_attributes;
|
||||
|
||||
INFO(" Start address : 0x%lx\n", base_va);
|
||||
INFO(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
|
||||
INFO(" Attributes : 0x%x\n", attributes);
|
||||
|
||||
spin_lock(&mem_attr_smc_lock);
|
||||
|
||||
int ret = change_mem_attributes(sp_ctx->xlat_ctx_handle,
|
||||
base_va, size,
|
||||
smc_attr_to_mmap_attr(attributes));
|
||||
|
||||
spin_unlock(&mem_attr_smc_lock);
|
||||
|
||||
/* Convert error codes of change_mem_attributes() into SPM ones. */
|
||||
assert((ret == 0) || (ret == -EINVAL));
|
||||
|
||||
return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
|
||||
}
|
|
@ -1,5 +1,5 @@
|
|||
#
|
||||
# Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
|
||||
# Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
|
||||
#
|
||||
# SPDX-License-Identifier: BSD-3-Clause
|
||||
#
|
||||
|
@ -11,14 +11,12 @@ ifneq (${ARCH},aarch64)
|
|||
$(error "Error: SPM is only supported on aarch64.")
|
||||
endif
|
||||
|
||||
# SPM sources
|
||||
|
||||
|
||||
SPM_SOURCES := $(addprefix services/std_svc/spm/, \
|
||||
spm_main.c \
|
||||
${ARCH}/spm_helpers.S \
|
||||
secure_partition_setup.c \
|
||||
${ARCH}/spm_shim_exceptions.S)
|
||||
${ARCH}/spm_shim_exceptions.S \
|
||||
spm_main.c \
|
||||
sp_setup.c \
|
||||
sp_xlat.c)
|
||||
|
||||
|
||||
# Let the top-level Makefile know that we intend to include a BL32 image
|
||||
|
|
|
@ -23,417 +23,152 @@
|
|||
|
||||
#include "spm_private.h"
|
||||
|
||||
/* Lock used for SP_MEMORY_ATTRIBUTES_GET and SP_MEMORY_ATTRIBUTES_SET */
|
||||
static spinlock_t mem_attr_smc_lock;
|
||||
|
||||
/*******************************************************************************
|
||||
* Secure Partition context information.
|
||||
******************************************************************************/
|
||||
static secure_partition_context_t sp_ctx;
|
||||
static sp_context_t sp_ctx;
|
||||
|
||||
/*******************************************************************************
|
||||
* Replace the S-EL1 re-entry information with S-EL0 re-entry
|
||||
* information
|
||||
* Set state of a Secure Partition context.
|
||||
******************************************************************************/
|
||||
static void spm_setup_next_eret_into_sel0(const cpu_context_t *secure_context)
|
||||
void sp_state_set(sp_context_t *sp_ptr, sp_state_t state)
|
||||
{
|
||||
assert(secure_context == cm_get_context(SECURE));
|
||||
|
||||
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
|
||||
spin_lock(&(sp_ptr->state_lock));
|
||||
sp_ptr->state = state;
|
||||
spin_unlock(&(sp_ptr->state_lock));
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* This function takes an SP context pointer and:
|
||||
* 1. Applies the S-EL1 system register context from sp_ctx->cpu_ctx.
|
||||
* 2. Saves the current C runtime state (callee-saved registers) on the stack
|
||||
* frame and saves a reference to this state.
|
||||
* 3. Calls el3_exit() so that the EL3 system and general purpose registers
|
||||
* from the sp_ctx->cpu_ctx are used to enter the secure partition image.
|
||||
* Wait until the state of a Secure Partition is the specified one and change it
|
||||
* to the desired state.
|
||||
******************************************************************************/
|
||||
static uint64_t spm_synchronous_sp_entry(secure_partition_context_t *sp_ctx_ptr)
|
||||
void sp_state_wait_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
|
||||
{
|
||||
uint64_t rc;
|
||||
int success = 0;
|
||||
|
||||
assert(sp_ctx_ptr != NULL);
|
||||
assert(sp_ctx_ptr->c_rt_ctx == 0);
|
||||
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
|
||||
while (success == 0) {
|
||||
spin_lock(&(sp_ptr->state_lock));
|
||||
|
||||
/* Apply the Secure EL1 system register context and switch to it */
|
||||
if (sp_ptr->state == from) {
|
||||
sp_ptr->state = to;
|
||||
|
||||
success = 1;
|
||||
}
|
||||
|
||||
spin_unlock(&(sp_ptr->state_lock));
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Check if the state of a Secure Partition is the specified one and, if so,
|
||||
* change it to the desired state. Returns 0 on success, -1 on error.
|
||||
******************************************************************************/
|
||||
int sp_state_try_switch(sp_context_t *sp_ptr, sp_state_t from, sp_state_t to)
|
||||
{
|
||||
int ret = -1;
|
||||
|
||||
spin_lock(&(sp_ptr->state_lock));
|
||||
|
||||
if (sp_ptr->state == from) {
|
||||
sp_ptr->state = to;
|
||||
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
spin_unlock(&(sp_ptr->state_lock));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* This function takes an SP context pointer and prepares the CPU to enter.
|
||||
******************************************************************************/
|
||||
static void spm_sp_prepare_enter(sp_context_t *sp_ctx)
|
||||
{
|
||||
assert(sp_ctx != NULL);
|
||||
|
||||
/* Assign the context of the SP to this CPU */
|
||||
cm_set_context(&(sp_ctx->cpu_ctx), SECURE);
|
||||
|
||||
/* Restore the context assigned above */
|
||||
cm_el1_sysregs_context_restore(SECURE);
|
||||
cm_set_next_eret_context(SECURE);
|
||||
|
||||
VERBOSE("%s: We're about to enter the Secure partition...\n", __func__);
|
||||
|
||||
rc = spm_secure_partition_enter(&sp_ctx_ptr->c_rt_ctx);
|
||||
#if ENABLE_ASSERTIONS
|
||||
sp_ctx_ptr->c_rt_ctx = 0;
|
||||
#endif
|
||||
|
||||
return rc;
|
||||
/* Invalidate TLBs at EL1. */
|
||||
tlbivmalle1();
|
||||
dsbish();
|
||||
}
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
* This function takes a Secure partition context pointer and:
|
||||
* 1. Saves the S-EL1 system register context to sp_ctx->cpu_ctx.
|
||||
* 2. Restores the current C runtime state (callee saved registers) from the
|
||||
* stack frame using the reference to this state saved in
|
||||
* spm_secure_partition_enter().
|
||||
* 3. It does not need to save any general purpose or EL3 system register state
|
||||
* as the generic smc entry routine should have saved those.
|
||||
* Enter SP after preparing it with spm_sp_prepare_enter().
|
||||
******************************************************************************/
|
||||
static void __dead2 spm_synchronous_sp_exit(
|
||||
const secure_partition_context_t *sp_ctx_ptr, uint64_t ret)
|
||||
static uint64_t spm_sp_enter(sp_context_t *sp_ctx)
|
||||
{
|
||||
assert(sp_ctx_ptr != NULL);
|
||||
/* Save the Secure EL1 system register context */
|
||||
assert(cm_get_context(SECURE) == &sp_ctx_ptr->cpu_ctx);
|
||||
cm_el1_sysregs_context_save(SECURE);
|
||||
|
||||
assert(sp_ctx_ptr->c_rt_ctx != 0U);
|
||||
spm_secure_partition_exit(sp_ctx_ptr->c_rt_ctx, ret);
|
||||
|
||||
/* Should never reach here */
|
||||
assert(0);
|
||||
/* Enter Secure Partition */
|
||||
return spm_secure_partition_enter(&sp_ctx->c_rt_ctx);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* This function passes control to the Secure Partition image (BL32) for the
|
||||
* first time on the primary cpu after a cold boot. It assumes that a valid
|
||||
* secure context has already been created by spm_setup() which can be directly
|
||||
* used. This function performs a synchronous entry into the Secure partition.
|
||||
* The SP passes control back to this routine through a SMC.
|
||||
* Jump to each Secure Partition for the first time.
|
||||
******************************************************************************/
|
||||
static int32_t spm_init(void)
|
||||
{
|
||||
entry_point_info_t *secure_partition_ep_info;
|
||||
uint64_t rc;
|
||||
uint64_t rc = 0;
|
||||
sp_context_t *ctx;
|
||||
|
||||
VERBOSE("%s entry\n", __func__);
|
||||
INFO("Secure Partition init...\n");
|
||||
|
||||
/*
|
||||
* Get information about the Secure Partition (BL32) image. Its
|
||||
* absence is a critical failure.
|
||||
*/
|
||||
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
|
||||
assert(secure_partition_ep_info != NULL);
|
||||
ctx = &sp_ctx;
|
||||
|
||||
/*
|
||||
* Initialise the common context and then overlay the S-EL0 specific
|
||||
* context on top of it.
|
||||
*/
|
||||
cm_init_my_context(secure_partition_ep_info);
|
||||
secure_partition_setup();
|
||||
ctx->state = SP_STATE_RESET;
|
||||
|
||||
/*
|
||||
* Make all CPUs use the same secure context.
|
||||
*/
|
||||
for (unsigned int i = 0; i < PLATFORM_CORE_COUNT; i++) {
|
||||
cm_set_context_by_index(i, &sp_ctx.cpu_ctx, SECURE);
|
||||
}
|
||||
|
||||
/*
|
||||
* Arrange for an entry into the secure partition.
|
||||
*/
|
||||
sp_ctx.sp_init_in_progress = 1;
|
||||
rc = spm_synchronous_sp_entry(&sp_ctx);
|
||||
spm_sp_prepare_enter(ctx);
|
||||
rc |= spm_sp_enter(ctx);
|
||||
assert(rc == 0);
|
||||
sp_ctx.sp_init_in_progress = 0;
|
||||
VERBOSE("SP_MEMORY_ATTRIBUTES_SET_AARCH64 availability has been revoked\n");
|
||||
|
||||
ctx->state = SP_STATE_IDLE;
|
||||
|
||||
INFO("Secure Partition initialized.\n");
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Given a secure partition entrypoint info pointer, entry point PC & pointer to
|
||||
* a context data structure, this function will initialize the SPM context and
|
||||
* entry point info for the secure partition.
|
||||
******************************************************************************/
|
||||
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
|
||||
uint64_t pc,
|
||||
secure_partition_context_t *sp_ctx_ptr)
|
||||
{
|
||||
uint32_t ep_attr;
|
||||
|
||||
assert(sp_ep_info != NULL);
|
||||
assert(pc != 0U);
|
||||
assert(sp_ctx_ptr != NULL);
|
||||
|
||||
cm_set_context(&sp_ctx_ptr->cpu_ctx, SECURE);
|
||||
|
||||
/* initialise an entrypoint to set up the CPU context */
|
||||
ep_attr = SECURE | EP_ST_ENABLE;
|
||||
if ((read_sctlr_el3() & SCTLR_EE_BIT) != 0U)
|
||||
ep_attr |= EP_EE_BIG;
|
||||
SET_PARAM_HEAD(sp_ep_info, PARAM_EP, VERSION_1, ep_attr);
|
||||
|
||||
sp_ep_info->pc = pc;
|
||||
/* The secure partition runs in S-EL0. */
|
||||
sp_ep_info->spsr = SPSR_64(MODE_EL0,
|
||||
MODE_SP_EL0,
|
||||
DISABLE_ALL_EXCEPTIONS);
|
||||
|
||||
zeromem(&sp_ep_info->args, sizeof(sp_ep_info->args));
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Secure Partition Manager setup. The SPM finds out the SP entrypoint if not
|
||||
* already known and initialises the context for entry into the SP for its
|
||||
* initialisation.
|
||||
* Initialize contexts of all Secure Partitions.
|
||||
******************************************************************************/
|
||||
int32_t spm_setup(void)
|
||||
{
|
||||
entry_point_info_t *secure_partition_ep_info;
|
||||
sp_context_t *ctx;
|
||||
|
||||
VERBOSE("%s entry\n", __func__);
|
||||
/* Disable MMU at EL1 (initialized by BL2) */
|
||||
disable_mmu_icache_el1();
|
||||
|
||||
/*
|
||||
* Get information about the Secure Partition (BL32) image. Its
|
||||
* absence is a critical failure.
|
||||
*/
|
||||
secure_partition_ep_info = bl31_plat_get_next_image_ep_info(SECURE);
|
||||
if (secure_partition_ep_info == NULL) {
|
||||
WARN("No SPM provided by BL2 boot loader, Booting device"
|
||||
" without SPM initialization. SMCs destined for SPM"
|
||||
" will return SMC_UNK\n");
|
||||
return 1;
|
||||
}
|
||||
/* Initialize context of the SP */
|
||||
INFO("Secure Partition context setup start...\n");
|
||||
|
||||
/*
|
||||
* If there's no valid entry point for SP, we return a non-zero value
|
||||
* signalling failure initializing the service. We bail out without
|
||||
* registering any handlers
|
||||
*/
|
||||
if (secure_partition_ep_info->pc == 0U) {
|
||||
return 1;
|
||||
}
|
||||
ctx = &sp_ctx;
|
||||
|
||||
spm_init_sp_ep_state(secure_partition_ep_info,
|
||||
secure_partition_ep_info->pc,
|
||||
&sp_ctx);
|
||||
/* Assign translation tables context. */
|
||||
ctx->xlat_ctx_handle = spm_get_sp_xlat_context();
|
||||
|
||||
/*
|
||||
* All SPM initialization done. Now register our init function with
|
||||
* BL31 for deferred invocation
|
||||
*/
|
||||
spm_sp_setup(ctx);
|
||||
|
||||
/* Register init function for deferred init. */
|
||||
bl31_register_bl32_init(&spm_init);
|
||||
|
||||
VERBOSE("%s exit\n", __func__);
|
||||
INFO("Secure Partition setup done.\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Attributes are encoded using a different format in the SMC interface than in
|
||||
* the Trusted Firmware, where the mmap_attr_t enum type is used. This function
|
||||
* converts an attributes value from the SMC format to the mmap_attr_t format by
|
||||
* setting MT_RW/MT_RO, MT_USER/MT_PRIVILEGED and MT_EXECUTE/MT_EXECUTE_NEVER.
|
||||
* The other fields are left as 0 because they are ignored by the function
|
||||
* change_mem_attributes().
|
||||
*/
|
||||
static unsigned int smc_attr_to_mmap_attr(unsigned int attributes)
|
||||
/*******************************************************************************
|
||||
* MM_COMMUNICATE handler
|
||||
******************************************************************************/
|
||||
static uint64_t mm_communicate(uint32_t smc_fid, uint64_t mm_cookie,
|
||||
uint64_t comm_buffer_address,
|
||||
uint64_t comm_size_address, void *handle)
|
||||
{
|
||||
unsigned int tf_attr = 0U;
|
||||
|
||||
unsigned int access = (attributes & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
|
||||
>> SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
|
||||
|
||||
if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RW) {
|
||||
tf_attr |= MT_RW | MT_USER;
|
||||
} else if (access == SP_MEMORY_ATTRIBUTES_ACCESS_RO) {
|
||||
tf_attr |= MT_RO | MT_USER;
|
||||
} else {
|
||||
/* Other values are reserved. */
|
||||
assert(access == SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS);
|
||||
/* The only requirement is that there's no access from EL0 */
|
||||
tf_attr |= MT_RO | MT_PRIVILEGED;
|
||||
}
|
||||
|
||||
if ((attributes & SP_MEMORY_ATTRIBUTES_NON_EXEC) == 0) {
|
||||
tf_attr |= MT_EXECUTE;
|
||||
} else {
|
||||
tf_attr |= MT_EXECUTE_NEVER;
|
||||
}
|
||||
|
||||
return tf_attr;
|
||||
}
|
||||
|
||||
/*
|
||||
* This function converts attributes from the Trusted Firmware format into the
|
||||
* SMC interface format.
|
||||
*/
|
||||
static unsigned int smc_mmap_to_smc_attr(unsigned int attr)
|
||||
{
|
||||
unsigned int smc_attr = 0U;
|
||||
|
||||
unsigned int data_access;
|
||||
|
||||
if ((attr & MT_USER) == 0) {
|
||||
/* No access from EL0. */
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_NOACCESS;
|
||||
} else {
|
||||
if ((attr & MT_RW) != 0) {
|
||||
assert(MT_TYPE(attr) != MT_DEVICE);
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RW;
|
||||
} else {
|
||||
data_access = SP_MEMORY_ATTRIBUTES_ACCESS_RO;
|
||||
}
|
||||
}
|
||||
|
||||
smc_attr |= (data_access & SP_MEMORY_ATTRIBUTES_ACCESS_MASK)
|
||||
<< SP_MEMORY_ATTRIBUTES_ACCESS_SHIFT;
|
||||
|
||||
if ((attr & MT_EXECUTE_NEVER) != 0U) {
|
||||
smc_attr |= SP_MEMORY_ATTRIBUTES_NON_EXEC;
|
||||
}
|
||||
|
||||
return smc_attr;
|
||||
}
|
||||
|
||||
static int32_t spm_memory_attributes_get_smc_handler(uintptr_t base_va)
|
||||
{
|
||||
uint32_t attributes;
|
||||
|
||||
spin_lock(&mem_attr_smc_lock);
|
||||
|
||||
int rc = get_mem_attributes(secure_partition_xlat_ctx_handle,
|
||||
base_va, &attributes);
|
||||
|
||||
spin_unlock(&mem_attr_smc_lock);
|
||||
|
||||
/* Convert error codes of get_mem_attributes() into SPM ones. */
|
||||
assert((rc == 0) || (rc == -EINVAL));
|
||||
|
||||
if (rc == 0) {
|
||||
return (int32_t) smc_mmap_to_smc_attr(attributes);
|
||||
} else {
|
||||
return SPM_INVALID_PARAMETER;
|
||||
}
|
||||
}
|
||||
|
||||
static int spm_memory_attributes_set_smc_handler(u_register_t page_address,
|
||||
u_register_t pages_count,
|
||||
u_register_t smc_attributes)
|
||||
{
|
||||
uintptr_t base_va = (uintptr_t) page_address;
|
||||
size_t size = (size_t) (pages_count * PAGE_SIZE);
|
||||
uint32_t attributes = (uint32_t) smc_attributes;
|
||||
|
||||
INFO(" Start address : 0x%lx\n", base_va);
|
||||
INFO(" Number of pages: %i (%zi bytes)\n", (int) pages_count, size);
|
||||
INFO(" Attributes : 0x%x\n", attributes);
|
||||
|
||||
spin_lock(&mem_attr_smc_lock);
|
||||
|
||||
int ret = change_mem_attributes(secure_partition_xlat_ctx_handle,
|
||||
base_va, size, smc_attr_to_mmap_attr(attributes));
|
||||
|
||||
spin_unlock(&mem_attr_smc_lock);
|
||||
|
||||
/* Convert error codes of change_mem_attributes() into SPM ones. */
|
||||
assert((ret == 0) || (ret == -EINVAL));
|
||||
|
||||
return (ret == 0) ? SPM_SUCCESS : SPM_INVALID_PARAMETER;
|
||||
}
|
||||
|
||||
|
||||
uint64_t spm_smc_handler(uint32_t smc_fid,
|
||||
uint64_t x1,
|
||||
uint64_t x2,
|
||||
uint64_t x3,
|
||||
uint64_t x4,
|
||||
void *cookie,
|
||||
void *handle,
|
||||
uint64_t flags)
|
||||
{
|
||||
cpu_context_t *ns_cpu_context;
|
||||
unsigned int ns;
|
||||
|
||||
/* Determine which security state this SMC originated from */
|
||||
ns = is_caller_non_secure(flags);
|
||||
|
||||
if (ns == SMC_FROM_SECURE) {
|
||||
|
||||
/* Handle SMCs from Secure world. */
|
||||
|
||||
switch (smc_fid) {
|
||||
|
||||
case SPM_VERSION_AARCH32:
|
||||
SMC_RET1(handle, SPM_VERSION_COMPILED);
|
||||
|
||||
case SP_EVENT_COMPLETE_AARCH64:
|
||||
assert(handle == cm_get_context(SECURE));
|
||||
cm_el1_sysregs_context_save(SECURE);
|
||||
spm_setup_next_eret_into_sel0(handle);
|
||||
|
||||
if (sp_ctx.sp_init_in_progress) {
|
||||
/*
|
||||
* SPM reports completion. The SPM must have
|
||||
* initiated the original request through a
|
||||
* synchronous entry into the secure
|
||||
* partition. Jump back to the original C
|
||||
* runtime context.
|
||||
*/
|
||||
spm_synchronous_sp_exit(&sp_ctx, x1);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
/* Release the Secure Partition context */
|
||||
spin_unlock(&sp_ctx.lock);
|
||||
|
||||
/*
|
||||
* This is the result from the Secure partition of an
|
||||
* earlier request. Copy the result into the non-secure
|
||||
* context, save the secure state and return to the
|
||||
* non-secure state.
|
||||
*/
|
||||
|
||||
/* Get a reference to the non-secure context */
|
||||
ns_cpu_context = cm_get_context(NON_SECURE);
|
||||
assert(ns_cpu_context != NULL);
|
||||
|
||||
/* Restore non-secure state */
|
||||
cm_el1_sysregs_context_restore(NON_SECURE);
|
||||
cm_set_next_eret_context(NON_SECURE);
|
||||
|
||||
/* Return to normal world */
|
||||
SMC_RET1(ns_cpu_context, x1);
|
||||
|
||||
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
|
||||
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
|
||||
|
||||
if (!sp_ctx.sp_init_in_progress) {
|
||||
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
|
||||
SMC_RET1(handle, SPM_NOT_SUPPORTED);
|
||||
}
|
||||
SMC_RET1(handle, spm_memory_attributes_get_smc_handler(x1));
|
||||
|
||||
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
|
||||
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
|
||||
|
||||
if (!sp_ctx.sp_init_in_progress) {
|
||||
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
|
||||
SMC_RET1(handle, SPM_NOT_SUPPORTED);
|
||||
}
|
||||
SMC_RET1(handle, spm_memory_attributes_set_smc_handler(x1, x2, x3));
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Handle SMCs from Non-secure world. */
|
||||
|
||||
switch (smc_fid) {
|
||||
|
||||
case MM_VERSION_AARCH32:
|
||||
SMC_RET1(handle, MM_VERSION_COMPILED);
|
||||
|
||||
case MM_COMMUNICATE_AARCH32:
|
||||
case MM_COMMUNICATE_AARCH64:
|
||||
{
|
||||
uint64_t mm_cookie = x1;
|
||||
uint64_t comm_buffer_address = x2;
|
||||
uint64_t comm_size_address = x3;
|
||||
sp_context_t *ctx = &sp_ctx;
|
||||
|
||||
/* Cookie. Reserved for future use. It must be zero. */
|
||||
if (mm_cookie != 0U) {
|
||||
|
@ -453,21 +188,132 @@ uint64_t spm_smc_handler(uint32_t smc_fid,
|
|||
/* Save the Normal world context */
|
||||
cm_el1_sysregs_context_save(NON_SECURE);
|
||||
|
||||
/* Lock the Secure Partition context. */
|
||||
spin_lock(&sp_ctx.lock);
|
||||
/* Wait until the Secure Partition is IDLE and set it to BUSY. */
|
||||
sp_state_wait_switch(ctx, SP_STATE_IDLE, SP_STATE_BUSY);
|
||||
|
||||
/*
|
||||
* Restore the secure world context and prepare for
|
||||
* entry in S-EL0
|
||||
*/
|
||||
assert(&sp_ctx.cpu_ctx == cm_get_context(SECURE));
|
||||
cm_el1_sysregs_context_restore(SECURE);
|
||||
cm_set_next_eret_context(SECURE);
|
||||
/* Jump to the Secure Partition. */
|
||||
spm_sp_prepare_enter(ctx);
|
||||
|
||||
SMC_RET4(&sp_ctx.cpu_ctx, smc_fid, comm_buffer_address,
|
||||
SMC_RET4(&(ctx->cpu_ctx), smc_fid, comm_buffer_address,
|
||||
comm_size_address, plat_my_core_pos());
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* SP_EVENT_COMPLETE_AARCH64 handler
|
||||
******************************************************************************/
|
||||
static uint64_t sp_event_complete(uint64_t x1)
|
||||
{
|
||||
sp_context_t *ctx = &sp_ctx;
|
||||
|
||||
/* Save secure state */
|
||||
cm_el1_sysregs_context_save(SECURE);
|
||||
|
||||
if (ctx->state == SP_STATE_RESET) {
|
||||
/*
|
||||
* SPM reports completion. The SPM must have initiated the
|
||||
* original request through a synchronous entry into the secure
|
||||
* partition. Jump back to the original C runtime context.
|
||||
*/
|
||||
spm_secure_partition_exit(ctx->c_rt_ctx, x1);
|
||||
|
||||
/* spm_secure_partition_exit doesn't return */
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the result from the Secure partition of an earlier request.
|
||||
* Copy the result into the non-secure context and return to the
|
||||
* non-secure state.
|
||||
*/
|
||||
|
||||
/* Mark Secure Partition as idle */
|
||||
assert(ctx->state == SP_STATE_BUSY);
|
||||
|
||||
sp_state_set(ctx, SP_STATE_IDLE);
|
||||
|
||||
/* Get a reference to the non-secure context */
|
||||
cpu_context_t *ns_cpu_context = cm_get_context(NON_SECURE);
|
||||
|
||||
assert(ns_cpu_context != NULL);
|
||||
|
||||
/* Restore non-secure state */
|
||||
cm_el1_sysregs_context_restore(NON_SECURE);
|
||||
cm_set_next_eret_context(NON_SECURE);
|
||||
|
||||
/* Return to non-secure world */
|
||||
SMC_RET1(ns_cpu_context, x1);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
* Secure Partition Manager SMC handler.
|
||||
******************************************************************************/
|
||||
uint64_t spm_smc_handler(uint32_t smc_fid,
|
||||
uint64_t x1,
|
||||
uint64_t x2,
|
||||
uint64_t x3,
|
||||
uint64_t x4,
|
||||
void *cookie,
|
||||
void *handle,
|
||||
uint64_t flags)
|
||||
{
|
||||
unsigned int ns;
|
||||
|
||||
/* Determine which security state this SMC originated from */
|
||||
ns = is_caller_non_secure(flags);
|
||||
|
||||
if (ns == SMC_FROM_SECURE) {
|
||||
|
||||
/* Handle SMCs from Secure world. */
|
||||
|
||||
assert(handle == cm_get_context(SECURE));
|
||||
|
||||
/* Make next ERET jump to S-EL0 instead of S-EL1. */
|
||||
cm_set_elr_spsr_el3(SECURE, read_elr_el1(), read_spsr_el1());
|
||||
|
||||
switch (smc_fid) {
|
||||
|
||||
case SPM_VERSION_AARCH32:
|
||||
SMC_RET1(handle, SPM_VERSION_COMPILED);
|
||||
|
||||
case SP_EVENT_COMPLETE_AARCH64:
|
||||
return sp_event_complete(x1);
|
||||
|
||||
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
|
||||
INFO("Received SP_MEMORY_ATTRIBUTES_GET_AARCH64 SMC\n");
|
||||
|
||||
if (sp_ctx.state != SP_STATE_RESET) {
|
||||
WARN("SP_MEMORY_ATTRIBUTES_GET_AARCH64 is available at boot time only\n");
|
||||
SMC_RET1(handle, SPM_NOT_SUPPORTED);
|
||||
}
|
||||
SMC_RET1(handle,
|
||||
spm_memory_attributes_get_smc_handler(
|
||||
&sp_ctx, x1));
|
||||
|
||||
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
|
||||
INFO("Received SP_MEMORY_ATTRIBUTES_SET_AARCH64 SMC\n");
|
||||
|
||||
if (sp_ctx.state != SP_STATE_RESET) {
|
||||
WARN("SP_MEMORY_ATTRIBUTES_SET_AARCH64 is available at boot time only\n");
|
||||
SMC_RET1(handle, SPM_NOT_SUPPORTED);
|
||||
}
|
||||
SMC_RET1(handle,
|
||||
spm_memory_attributes_set_smc_handler(
|
||||
&sp_ctx, x1, x2, x3));
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Handle SMCs from Non-secure world. */
|
||||
|
||||
switch (smc_fid) {
|
||||
|
||||
case MM_VERSION_AARCH32:
|
||||
SMC_RET1(handle, MM_VERSION_COMPILED);
|
||||
|
||||
case MM_COMMUNICATE_AARCH32:
|
||||
case MM_COMMUNICATE_AARCH64:
|
||||
return mm_communicate(smc_fid, x1, x2, x3, handle);
|
||||
|
||||
case SP_MEMORY_ATTRIBUTES_GET_AARCH64:
|
||||
case SP_MEMORY_ATTRIBUTES_SET_AARCH64:
|
||||
/* SMC interfaces reserved for secure callers. */
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
|
||||
* Copyright (c) 2017-2018, ARM Limited and Contributors. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*/
|
||||
|
@ -29,30 +29,42 @@
|
|||
#define SP_C_RT_CTX_SIZE 0x60
|
||||
#define SP_C_RT_CTX_ENTRIES (SP_C_RT_CTX_SIZE >> DWORD_SHIFT)
|
||||
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
#include <spinlock.h>
|
||||
#include <stdint.h>
|
||||
#include <xlat_tables_v2.h>
|
||||
|
||||
/* Handle on the Secure partition translation context */
|
||||
extern xlat_ctx_t *secure_partition_xlat_ctx_handle;
|
||||
typedef enum secure_partition_state {
|
||||
SP_STATE_RESET = 0,
|
||||
SP_STATE_IDLE,
|
||||
SP_STATE_BUSY
|
||||
} sp_state_t;
|
||||
|
||||
struct entry_point_info;
|
||||
|
||||
typedef struct secure_partition_context {
|
||||
typedef struct sp_context {
|
||||
uint64_t c_rt_ctx;
|
||||
cpu_context_t cpu_ctx;
|
||||
unsigned int sp_init_in_progress;
|
||||
spinlock_t lock;
|
||||
} secure_partition_context_t;
|
||||
xlat_ctx_t *xlat_ctx_handle;
|
||||
|
||||
sp_state_t state;
|
||||
spinlock_t state_lock;
|
||||
} sp_context_t;
|
||||
|
||||
/* Assembly helpers */
|
||||
uint64_t spm_secure_partition_enter(uint64_t *c_rt_ctx);
|
||||
void __dead2 spm_secure_partition_exit(uint64_t c_rt_ctx, uint64_t ret);
|
||||
void spm_init_sp_ep_state(struct entry_point_info *sp_ep_info,
|
||||
uint64_t pc,
|
||||
secure_partition_context_t *sp_ctx_ptr);
|
||||
|
||||
void spm_sp_setup(sp_context_t *sp_ctx);
|
||||
|
||||
xlat_ctx_t *spm_get_sp_xlat_context(void);
|
||||
|
||||
int32_t spm_memory_attributes_get_smc_handler(sp_context_t *sp_ctx,
|
||||
uintptr_t base_va);
|
||||
int spm_memory_attributes_set_smc_handler(sp_context_t *sp_ctx,
|
||||
u_register_t page_address,
|
||||
u_register_t pages_count,
|
||||
u_register_t smc_attributes);
|
||||
|
||||
#endif /* __ASSEMBLY__ */
|
||||
|
||||
#endif /* __SPM_PRIVATE_H__ */
|
||||
|
|
Loading…
Add table
Reference in a new issue