Merge changes from topic "st-nvmem" into integration

* changes:
  feat(stm32mp1): manage monotonic counter
  feat(stm32mp1): new way to access platform OTP
  feat(stm32mp1-fdts): update NVMEM nodes
  refactor(st-drivers): improve BSEC driver
  feat(stm32mp1-fdts): add nvmem_layout node and OTP definitions
  feat(stm32mp1): add NVMEM layout compatibility definition
This commit is contained in:
Madhukar Pappireddy 2022-02-01 00:18:48 +01:00 committed by TrustedFirmware Code Review
commit 884a65064a
19 changed files with 823 additions and 499 deletions

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017-2019, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -7,18 +7,19 @@
#include <assert.h>
#include <limits.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/st/bsec.h>
#include <drivers/st/bsec2_reg.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#include <libfdt.h>
#include <platform_def.h>
#include <arch_helpers.h>
#include <common/debug.h>
#include <drivers/st/bsec.h>
#include <lib/mmio.h>
#include <lib/spinlock.h>
#define BSEC_IP_VERSION_1_0 0x10
#define BSEC_COMPAT "st,stm32mp15-bsec"
#define BSEC_IP_VERSION_1_1 U(0x11)
#define BSEC_IP_VERSION_2_0 U(0x20)
#define BSEC_IP_ID_2 U(0x100032)
#define OTP_ACCESS_SIZE (round_up(OTP_MAX_SIZE, __WORD_BIT) / __WORD_BIT)
@ -44,11 +45,23 @@ static void bsec_unlock(void)
}
}
static bool is_otp_invalid_mode(void)
{
bool ret = ((bsec_get_status() & BSEC_MODE_INVALID) == BSEC_MODE_INVALID);
if (ret) {
ERROR("OTP mode is OTP-INVALID\n");
}
return ret;
}
#if defined(IMAGE_BL32)
static int bsec_get_dt_node(struct dt_node_info *info)
{
int node;
node = dt_get_node(info, -1, BSEC_COMPAT);
node = dt_get_node(info, -1, DT_BSEC_COMPAT);
if (node < 0) {
return -FDT_ERR_NOTFOUND;
}
@ -56,7 +69,6 @@ static int bsec_get_dt_node(struct dt_node_info *info)
return node;
}
#if defined(IMAGE_BL32)
static void enable_non_secure_access(uint32_t otp)
{
otp_nsec_access[otp / __WORD_BIT] |= BIT(otp % __WORD_BIT);
@ -69,79 +81,74 @@ static void enable_non_secure_access(uint32_t otp)
static bool non_secure_can_access(uint32_t otp)
{
return (otp_nsec_access[otp / __WORD_BIT] &
BIT(otp % __WORD_BIT)) != 0;
BIT(otp % __WORD_BIT)) != 0U;
}
static int bsec_dt_otp_nsec_access(void *fdt, int bsec_node)
static void bsec_dt_otp_nsec_access(void *fdt, int bsec_node)
{
int bsec_subnode;
fdt_for_each_subnode(bsec_subnode, fdt, bsec_node) {
const fdt32_t *cuint;
uint32_t reg;
uint32_t otp;
uint32_t i;
uint32_t size;
uint8_t status;
uint32_t offset;
uint32_t length;
cuint = fdt_getprop(fdt, bsec_subnode, "reg", NULL);
if (cuint == NULL) {
panic();
}
reg = fdt32_to_cpu(*cuint) / sizeof(uint32_t);
if (reg < STM32MP1_UPPER_OTP_START) {
offset = fdt32_to_cpu(*cuint);
cuint++;
length = fdt32_to_cpu(*cuint);
otp = offset / sizeof(uint32_t);
if (otp < STM32MP1_UPPER_OTP_START) {
unsigned int otp_end = round_up(offset + length,
sizeof(uint32_t)) /
sizeof(uint32_t);
if (otp_end > STM32MP1_UPPER_OTP_START) {
/*
* OTP crosses Lower/Upper boundary, consider
* only the upper part.
*/
otp = STM32MP1_UPPER_OTP_START;
length -= (STM32MP1_UPPER_OTP_START *
sizeof(uint32_t)) - offset;
offset = STM32MP1_UPPER_OTP_START *
sizeof(uint32_t);
WARN("OTP crosses Lower/Upper boundary\n");
} else {
continue;
}
}
if ((fdt_getprop(fdt, bsec_subnode,
"st,non-secure-otp", NULL)) == NULL) {
continue;
}
status = fdt_get_status(bsec_subnode);
if ((status & DT_NON_SECURE) == 0U) {
continue;
if (((offset % sizeof(uint32_t)) != 0U) ||
((length % sizeof(uint32_t)) != 0U)) {
ERROR("Unaligned non-secure OTP\n");
panic();
}
size = fdt32_to_cpu(*(cuint + 1)) / sizeof(uint32_t);
size = length / sizeof(uint32_t);
if ((fdt32_to_cpu(*(cuint + 1)) % sizeof(uint32_t)) != 0) {
size++;
}
for (i = reg; i < (reg + size); i++) {
for (i = otp; i < (otp + size); i++) {
enable_non_secure_access(i);
}
}
return 0;
}
#endif
static uint32_t otp_bank_offset(uint32_t otp)
{
assert(otp <= STM32MP1_OTP_MAX_ID);
return ((otp & ~BSEC_OTP_MASK) >> BSEC_OTP_BANK_SHIFT) *
sizeof(uint32_t);
}
static uint32_t bsec_check_error(uint32_t otp)
{
uint32_t bit = BIT(otp & BSEC_OTP_MASK);
uint32_t bank = otp_bank_offset(otp);
if ((mmio_read_32(bsec_base + BSEC_DISTURBED_OFF + bank) & bit) != 0U) {
return BSEC_DISTURBED;
}
if ((mmio_read_32(bsec_base + BSEC_ERROR_OFF + bank) & bit) != 0U) {
return BSEC_ERROR;
}
return BSEC_OK;
}
/*
* bsec_probe: initialize BSEC driver.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_probe(void)
static void bsec_late_init(void)
{
void *fdt;
int node;
@ -156,10 +163,67 @@ uint32_t bsec_probe(void)
panic();
}
bsec_base = bsec_info.base;
assert(bsec_base == bsec_info.base);
bsec_dt_otp_nsec_access(fdt, node);
}
#endif
static uint32_t otp_bank_offset(uint32_t otp)
{
assert(otp <= STM32MP1_OTP_MAX_ID);
return ((otp & ~BSEC_OTP_MASK) >> BSEC_OTP_BANK_SHIFT) *
sizeof(uint32_t);
}
/*
* bsec_check_error: check BSEC error status.
* otp: OTP number.
* check_disturbed: check only error (false),
* or error and disturbed status (true).
* return value: BSEC_OK if no error.
*/
static uint32_t bsec_check_error(uint32_t otp, bool check_disturbed)
{
uint32_t bit = BIT(otp & BSEC_OTP_MASK);
uint32_t bank = otp_bank_offset(otp);
if ((mmio_read_32(bsec_base + BSEC_ERROR_OFF + bank) & bit) != 0U) {
return BSEC_ERROR;
}
if (!check_disturbed) {
return BSEC_OK;
}
if ((mmio_read_32(bsec_base + BSEC_DISTURBED_OFF + bank) & bit) != 0U) {
return BSEC_DISTURBED;
}
return BSEC_OK;
}
/*
* bsec_probe: initialize BSEC driver.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_probe(void)
{
bsec_base = BSEC_BASE;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if ((((bsec_get_version() & BSEC_IPVR_MSK) != BSEC_IP_VERSION_1_1) &&
((bsec_get_version() & BSEC_IPVR_MSK) != BSEC_IP_VERSION_2_0)) ||
(bsec_get_id() != BSEC_IP_ID_2)) {
panic();
}
#if defined(IMAGE_BL32)
bsec_dt_otp_nsec_access(fdt, node);
bsec_late_init();
#endif
return BSEC_OK;
}
@ -180,7 +244,11 @@ uint32_t bsec_get_base(void)
uint32_t bsec_set_config(struct bsec_config *cfg)
{
uint32_t value;
int32_t result;
uint32_t result;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
value = ((((uint32_t)cfg->freq << BSEC_CONF_FRQ_SHIFT) &
BSEC_CONF_FRQ_MASK) |
@ -259,15 +327,21 @@ uint32_t bsec_get_config(struct bsec_config *cfg)
uint32_t bsec_shadow_register(uint32_t otp)
{
uint32_t result;
bool value;
bool power_up = false;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
/* Check if shadowing of OTP is locked */
if (bsec_read_sr_lock(otp)) {
VERBOSE("BSEC: OTP %i is locked and will not be refreshed\n",
result = bsec_read_sr_lock(otp, &value);
if (result != BSEC_OK) {
ERROR("BSEC: %u Sticky-read bit read Error %u\n", otp, result);
return result;
}
if (value) {
VERBOSE("BSEC: OTP %u is locked and will not be refreshed\n",
otp);
}
@ -283,14 +357,13 @@ uint32_t bsec_shadow_register(uint32_t otp)
bsec_lock();
/* Set BSEC_OTP_CTRL_OFF and set ADDR with the OTP value */
mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF, otp | BSEC_READ);
while ((bsec_get_status() & BSEC_MODE_BUSY_MASK) != 0U) {
;
}
result = bsec_check_error(otp);
result = bsec_check_error(otp, true);
bsec_unlock();
@ -311,22 +384,18 @@ uint32_t bsec_shadow_register(uint32_t otp)
*/
uint32_t bsec_read_otp(uint32_t *val, uint32_t otp)
{
uint32_t result;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bsec_lock();
*val = mmio_read_32(bsec_base + BSEC_OTP_DATA_OFF +
(otp * sizeof(uint32_t)));
result = bsec_check_error(otp);
bsec_unlock();
return result;
return BSEC_OK;
}
/*
@ -338,24 +407,29 @@ uint32_t bsec_read_otp(uint32_t *val, uint32_t otp)
uint32_t bsec_write_otp(uint32_t val, uint32_t otp)
{
uint32_t result;
bool value;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
/* Check if programming of OTP is locked */
if (bsec_read_sw_lock(otp)) {
VERBOSE("BSEC: OTP %i is locked and write will be ignored\n",
result = bsec_read_sw_lock(otp, &value);
if (result != BSEC_OK) {
ERROR("BSEC: %u Sticky-write bit read Error %u\n", otp, result);
return result;
}
if (value) {
VERBOSE("BSEC: OTP %u is locked and write will be ignored\n",
otp);
}
/* Ensure integrity of each register access sequence */
bsec_lock();
mmio_write_32(bsec_base + BSEC_OTP_DATA_OFF +
(otp * sizeof(uint32_t)), val);
result = bsec_check_error(otp);
bsec_unlock();
return result;
@ -372,14 +446,28 @@ uint32_t bsec_program_otp(uint32_t val, uint32_t otp)
{
uint32_t result;
bool power_up = false;
bool sp_lock;
bool perm_lock;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
/* Check if programming of OTP is locked */
if (bsec_read_sp_lock(otp)) {
result = bsec_read_sp_lock(otp, &sp_lock);
if (result != BSEC_OK) {
ERROR("BSEC: %u Sticky-prog bit read Error %u\n", otp, result);
return result;
}
result = bsec_read_permanent_lock(otp, &perm_lock);
if (result != BSEC_OK) {
ERROR("BSEC: %u permanent bit read Error %u\n", otp, result);
return result;
}
if (sp_lock || perm_lock) {
WARN("BSEC: OTP locked, prog will be ignored\n");
return BSEC_PROG_FAIL;
}
if ((mmio_read_32(bsec_base + BSEC_OTP_LOCK_OFF) &
@ -399,10 +487,8 @@ uint32_t bsec_program_otp(uint32_t val, uint32_t otp)
bsec_lock();
/* Set value in write register */
mmio_write_32(bsec_base + BSEC_OTP_WRDATA_OFF, val);
/* Set BSEC_OTP_CTRL_OFF and set ADDR with the OTP value */
mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF, otp | BSEC_WRITE);
while ((bsec_get_status() & BSEC_MODE_BUSY_MASK) != 0U) {
@ -412,7 +498,7 @@ uint32_t bsec_program_otp(uint32_t val, uint32_t otp)
if ((bsec_get_status() & BSEC_MODE_PROGFAIL_MASK) != 0U) {
result = BSEC_PROG_FAIL;
} else {
result = bsec_check_error(otp);
result = bsec_check_error(otp, true);
}
bsec_unlock();
@ -438,6 +524,10 @@ uint32_t bsec_permanent_lock_otp(uint32_t otp)
uint32_t data;
uint32_t addr;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
@ -464,10 +554,8 @@ uint32_t bsec_permanent_lock_otp(uint32_t otp)
bsec_lock();
/* Set value in write register */
mmio_write_32(bsec_base + BSEC_OTP_WRDATA_OFF, data);
/* Set BSEC_OTP_CTRL_OFF and set ADDR with the OTP value */
mmio_write_32(bsec_base + BSEC_OTP_CTRL_OFF,
addr | BSEC_WRITE | BSEC_LOCK);
@ -478,7 +566,7 @@ uint32_t bsec_permanent_lock_otp(uint32_t otp)
if ((bsec_get_status() & BSEC_MODE_PROGFAIL_MASK) != 0U) {
result = BSEC_PROG_FAIL;
} else {
result = bsec_check_error(otp);
result = bsec_check_error(otp, false);
}
bsec_unlock();
@ -493,37 +581,58 @@ uint32_t bsec_permanent_lock_otp(uint32_t otp)
}
/*
* bsec_write_debug_conf: write value in debug feature
* bsec_write_debug_conf: write value in debug feature.
* to enable/disable debug service.
* val: value to write.
* return value: BSEC_OK if no error.
* return value: none.
*/
uint32_t bsec_write_debug_conf(uint32_t val)
void bsec_write_debug_conf(uint32_t val)
{
uint32_t result = BSEC_ERROR;
uint32_t masked_val = val & BSEC_DEN_ALL_MSK;
bsec_lock();
mmio_write_32(bsec_base + BSEC_DEN_OFF, masked_val);
if ((mmio_read_32(bsec_base + BSEC_DEN_OFF) ^ masked_val) == 0U) {
result = BSEC_OK;
if (is_otp_invalid_mode()) {
return;
}
bsec_lock();
mmio_write_32(bsec_base + BSEC_DEN_OFF, val & BSEC_DEN_ALL_MSK);
bsec_unlock();
return result;
}
/*
* bsec_read_debug_conf: read debug configuration.
* bsec_read_debug_conf: return debug configuration register value.
*/
uint32_t bsec_read_debug_conf(void)
{
return mmio_read_32(bsec_base + BSEC_DEN_OFF);
}
/*
* bsec_write_scratch: write value in scratch register.
* val: value to write.
* return value: none.
*/
void bsec_write_scratch(uint32_t val)
{
#if defined(IMAGE_BL32)
if (is_otp_invalid_mode()) {
return;
}
bsec_lock();
mmio_write_32(bsec_base + BSEC_SCRATCH_OFF, val);
bsec_unlock();
#else
mmio_write_32(BSEC_BASE + BSEC_SCRATCH_OFF, val);
#endif
}
/*
* bsec_read_scratch: return scratch register value.
*/
uint32_t bsec_read_scratch(void)
{
return mmio_read_32(bsec_base + BSEC_SCRATCH_OFF);
}
/*
* bsec_get_status: return status register value.
*/
@ -533,7 +642,7 @@ uint32_t bsec_get_status(void)
}
/*
* bsec_get_hw_conf: return hardware configuration.
* bsec_get_hw_conf: return hardware configuration register value.
*/
uint32_t bsec_get_hw_conf(void)
{
@ -541,7 +650,7 @@ uint32_t bsec_get_hw_conf(void)
}
/*
* bsec_get_version: return BSEC version.
* bsec_get_version: return BSEC version register value.
*/
uint32_t bsec_get_version(void)
{
@ -549,7 +658,7 @@ uint32_t bsec_get_version(void)
}
/*
* bsec_get_id: return BSEC ID.
* bsec_get_id: return BSEC ID register value.
*/
uint32_t bsec_get_id(void)
{
@ -557,7 +666,7 @@ uint32_t bsec_get_id(void)
}
/*
* bsec_get_magic_id: return BSEC magic number.
* bsec_get_magic_id: return BSEC magic number register value.
*/
uint32_t bsec_get_magic_id(void)
{
@ -565,229 +674,194 @@ uint32_t bsec_get_magic_id(void)
}
/*
* bsec_write_sr_lock: write shadow-read lock.
* bsec_set_sr_lock: set shadow-read lock.
* otp: OTP number.
* value: value to write in the register.
* Must be always 1.
* return: true if OTP is locked, else false.
* return value: BSEC_OK if no error.
*/
bool bsec_write_sr_lock(uint32_t otp, uint32_t value)
uint32_t bsec_set_sr_lock(uint32_t otp)
{
bool result = false;
uint32_t bank = otp_bank_offset(otp);
uint32_t bank_value;
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
bsec_lock();
bank_value = mmio_read_32(bsec_base + BSEC_SRLOCK_OFF + bank);
if ((bank_value & otp_mask) == value) {
/*
* In case of write don't need to write,
* the lock is already set.
*/
if (value != 0U) {
result = true;
}
} else {
if (value != 0U) {
bank_value = bank_value | otp_mask;
} else {
bank_value = bank_value & ~otp_mask;
}
/*
* We can write 0 in all other OTP
* if the lock is activated in one of other OTP.
* Write 0 has no effect.
*/
mmio_write_32(bsec_base + BSEC_SRLOCK_OFF + bank, bank_value);
result = true;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bsec_lock();
mmio_write_32(bsec_base + BSEC_SRLOCK_OFF + bank, otp_mask);
bsec_unlock();
return result;
return BSEC_OK;
}
/*
* bsec_read_sr_lock: read shadow-read lock.
* otp: OTP number.
* return: true if otp is locked, else false.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
bool bsec_read_sr_lock(uint32_t otp)
uint32_t bsec_read_sr_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
uint32_t bank_value = mmio_read_32(bsec_base + BSEC_SRLOCK_OFF + bank);
return (bank_value & otp_mask) != 0U;
}
/*
* bsec_write_sw_lock: write shadow-write lock.
* otp: OTP number.
* value: Value to write in the register.
* Must be always 1.
* return: true if OTP is locked, else false.
*/
bool bsec_write_sw_lock(uint32_t otp, uint32_t value)
{
bool result = false;
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
uint32_t bank_value;
bsec_lock();
bank_value = mmio_read_32(bsec_base + BSEC_SWLOCK_OFF + bank);
if ((bank_value & otp_mask) == value) {
/*
* In case of write don't need to write,
* the lock is already set.
*/
if (value != 0U) {
result = true;
}
} else {
if (value != 0U) {
bank_value = bank_value | otp_mask;
} else {
bank_value = bank_value & ~otp_mask;
}
/*
* We can write 0 in all other OTP
* if the lock is activated in one of other OTP.
* Write 0 has no effect.
*/
mmio_write_32(bsec_base + BSEC_SWLOCK_OFF + bank, bank_value);
result = true;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bank_value = mmio_read_32(bsec_base + BSEC_SRLOCK_OFF + bank);
*value = ((bank_value & otp_mask) != 0U);
return BSEC_OK;
}
/*
* bsec_set_sw_lock: set shadow-write lock.
* otp: OTP number.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_set_sw_lock(uint32_t otp)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bsec_lock();
mmio_write_32(bsec_base + BSEC_SWLOCK_OFF + bank, otp_mask);
bsec_unlock();
return result;
return BSEC_OK;
}
/*
* bsec_read_sw_lock: read shadow-write lock.
* otp: OTP number.
* return: true if OTP is locked, else false.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
bool bsec_read_sw_lock(uint32_t otp)
uint32_t bsec_read_sw_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
uint32_t bank_value = mmio_read_32(bsec_base + BSEC_SWLOCK_OFF + bank);
uint32_t bank_value;
return (bank_value & otp_mask) != 0U;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bank_value = mmio_read_32(bsec_base + BSEC_SWLOCK_OFF + bank);
*value = ((bank_value & otp_mask) != 0U);
return BSEC_OK;
}
/*
* bsec_write_sp_lock: write shadow-program lock.
* bsec_set_sp_lock: set shadow-program lock.
* otp: OTP number.
* value: Value to write in the register.
* Must be always 1.
* return: true if OTP is locked, else false.
* return value: BSEC_OK if no error.
*/
bool bsec_write_sp_lock(uint32_t otp, uint32_t value)
uint32_t bsec_set_sp_lock(uint32_t otp)
{
bool result = false;
uint32_t bank = otp_bank_offset(otp);
uint32_t bank_value;
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
bsec_lock();
bank_value = mmio_read_32(bsec_base + BSEC_SPLOCK_OFF + bank);
if ((bank_value & otp_mask) == value) {
/*
* In case of write don't need to write,
* the lock is already set.
*/
if (value != 0U) {
result = true;
}
} else {
if (value != 0U) {
bank_value = bank_value | otp_mask;
} else {
bank_value = bank_value & ~otp_mask;
}
/*
* We can write 0 in all other OTP
* if the lock is activated in one of other OTP.
* Write 0 has no effect.
*/
mmio_write_32(bsec_base + BSEC_SPLOCK_OFF + bank, bank_value);
result = true;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bsec_lock();
mmio_write_32(bsec_base + BSEC_SPLOCK_OFF + bank, otp_mask);
bsec_unlock();
return result;
return BSEC_OK;
}
/*
* bsec_read_sp_lock: read shadow-program lock.
* otp: OTP number.
* return: true if OTP is locked, else false.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
bool bsec_read_sp_lock(uint32_t otp)
uint32_t bsec_read_sp_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
uint32_t bank_value = mmio_read_32(bsec_base + BSEC_SPLOCK_OFF + bank);
uint32_t bank_value;
return (bank_value & otp_mask) != 0U;
}
/*
* bsec_wr_lock: Read permanent lock status.
* otp: OTP number.
* return: true if OTP is locked, else false.
*/
bool bsec_wr_lock(uint32_t otp)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t lock_bit = BIT(otp & BSEC_OTP_MASK);
if ((mmio_read_32(bsec_base + BSEC_WRLOCK_OFF + bank) &
lock_bit) != 0U) {
/*
* In case of write don't need to write,
* the lock is already set.
*/
return true;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
return false;
bank_value = mmio_read_32(bsec_base + BSEC_SPLOCK_OFF + bank);
*value = ((bank_value & otp_mask) != 0U);
return BSEC_OK;
}
/*
* bsec_otp_lock: Lock Upper OTP or Global programming or debug enable
* service: Service to lock see header file.
* value: Value to write must always set to 1 (only use for debug purpose).
* return: BSEC_OK if succeed.
* bsec_read_permanent_lock: Read permanent lock status.
* otp: OTP number.
* value: read value (true or false).
* return value: BSEC_OK if no error.
*/
uint32_t bsec_otp_lock(uint32_t service, uint32_t value)
uint32_t bsec_read_permanent_lock(uint32_t otp, bool *value)
{
uint32_t bank = otp_bank_offset(otp);
uint32_t otp_mask = BIT(otp & BSEC_OTP_MASK);
uint32_t bank_value;
if (otp > STM32MP1_OTP_MAX_ID) {
return BSEC_INVALID_PARAM;
}
bank_value = mmio_read_32(bsec_base + BSEC_WRLOCK_OFF + bank);
*value = ((bank_value & otp_mask) != 0U);
return BSEC_OK;
}
/*
* bsec_otp_lock: Lock Upper OTP or Global Programming or Debug Enable.
* service: Service to lock, see header file.
* return value: BSEC_OK if no error.
*/
uint32_t bsec_otp_lock(uint32_t service)
{
uintptr_t reg = bsec_base + BSEC_OTP_LOCK_OFF;
if (is_otp_invalid_mode()) {
return BSEC_ERROR;
}
switch (service) {
case BSEC_LOCK_UPPER_OTP:
mmio_write_32(reg, value << BSEC_LOCK_UPPER_OTP);
mmio_write_32(reg, BIT(BSEC_LOCK_UPPER_OTP));
break;
case BSEC_LOCK_DEBUG:
mmio_write_32(reg, value << BSEC_LOCK_DEBUG);
mmio_write_32(reg, BIT(BSEC_LOCK_DEBUG));
break;
case BSEC_LOCK_PROGRAM:
mmio_write_32(reg, value << BSEC_LOCK_PROGRAM);
mmio_write_32(reg, BIT(BSEC_LOCK_PROGRAM));
break;
default:
return BSEC_INVALID_PARAM;
@ -799,7 +873,7 @@ uint32_t bsec_otp_lock(uint32_t service, uint32_t value)
/*
* bsec_power_safmem: Activate or deactivate SAFMEM power.
* power: true to power up, false to power down.
* return: BSEC_OK if succeed.
* return value: BSEC_OK if no error.
*/
static uint32_t bsec_power_safmem(bool power)
{
@ -818,7 +892,6 @@ static uint32_t bsec_power_safmem(bool power)
mmio_write_32(bsec_base + BSEC_OTP_CONF_OFF, register_val);
/* Waiting loop */
if (power) {
while (((bsec_get_status() & BSEC_MODE_PWR_MASK) == 0U) &&
(timeout != 0U)) {
@ -841,7 +914,7 @@ static uint32_t bsec_power_safmem(bool power)
}
/*
* bsec_shadow_read_otp: Load OTP from SAFMEM and provide its value
* bsec_shadow_read_otp: Load OTP from SAFMEM and provide its value.
* otp_value: read value.
* word: OTP number.
* return value: BSEC_OK if no error.
@ -852,13 +925,13 @@ uint32_t bsec_shadow_read_otp(uint32_t *otp_value, uint32_t word)
result = bsec_shadow_register(word);
if (result != BSEC_OK) {
ERROR("BSEC: %u Shadowing Error %i\n", word, result);
ERROR("BSEC: %u Shadowing Error %u\n", word, result);
return result;
}
result = bsec_read_otp(otp_value, word);
if (result != BSEC_OK) {
ERROR("BSEC: %u Read Error %i\n", word, result);
ERROR("BSEC: %u Read Error %u\n", word, result);
}
return result;
@ -867,7 +940,7 @@ uint32_t bsec_shadow_read_otp(uint32_t *otp_value, uint32_t word)
/*
* bsec_check_nsec_access_rights: check non-secure access rights to target OTP.
* otp: OTP number.
* return: BSEC_OK if authorized access.
* return value: BSEC_OK if authorized access.
*/
uint32_t bsec_check_nsec_access_rights(uint32_t otp)
{
@ -877,11 +950,8 @@ uint32_t bsec_check_nsec_access_rights(uint32_t otp)
}
if (otp >= STM32MP1_UPPER_OTP_START) {
/* Check if BSEC is in OTP-SECURED closed_device state. */
if (stm32mp_is_closed_device()) {
if (!non_secure_can_access(otp)) {
return BSEC_ERROR;
}
if (!non_secure_can_access(otp)) {
return BSEC_ERROR;
}
}
#endif

View file

@ -1,6 +1,6 @@
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright (c) 2017-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved
* Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
*/
#include <dt-bindings/interrupt-controller/arm-gic.h>
@ -19,9 +19,31 @@
compatible = "arm,cortex-a7";
device_type = "cpu";
reg = <0>;
nvmem-cells = <&part_number_otp>;
nvmem-cell-names = "part_number";
};
};
nvmem_layout: nvmem_layout@0 {
compatible = "st,stm32-nvmem-layout";
nvmem-cells = <&cfg0_otp>,
<&part_number_otp>,
<&monotonic_otp>,
<&nand_otp>,
<&uid_otp>,
<&package_otp>,
<&hw2_otp>;
nvmem-cell-names = "cfg0_otp",
"part_number_otp",
"monotonic_otp",
"nand_otp",
"uid_otp",
"package_otp",
"hw2_otp";
};
psci {
compatible = "arm,psci-1.0";
method = "smc";
@ -457,12 +479,38 @@
reg = <0x5c005000 0x400>;
#address-cells = <1>;
#size-cells = <1>;
cfg0_otp: cfg0_otp@0 {
reg = <0x0 0x1>;
};
part_number_otp: part_number_otp@4 {
reg = <0x4 0x1>;
};
monotonic_otp: monotonic_otp@10 {
reg = <0x10 0x4>;
};
nand_otp: nand_otp@24 {
reg = <0x24 0x4>;
};
uid_otp: uid_otp@34 {
reg = <0x34 0xc>;
};
package_otp: package_otp@40 {
reg = <0x40 0x4>;
};
hw2_otp: hw2_otp@48 {
reg = <0x48 0x4>;
};
ts_cal1: calib@5c {
reg = <0x5c 0x2>;
};
ts_cal2: calib@5e {
reg = <0x5e 0x2>;
};
mac_addr: mac_addr@e4 {
reg = <0xe4 0x8>;
st,non-secure-otp;
};
};
etzpc: etzpc@5c007000 {

View file

@ -1,6 +1,6 @@
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright (c) 2017-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved
* Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
*/
/dts-v1/;
@ -33,8 +33,7 @@
&bsec {
board_id: board_id@ec {
reg = <0xec 0x4>;
status = "okay";
secure-status = "okay";
st,non-secure-otp;
};
};
@ -196,6 +195,26 @@
status = "okay";
};
&nvmem_layout {
nvmem-cells = <&cfg0_otp>,
<&part_number_otp>,
<&monotonic_otp>,
<&nand_otp>,
<&uid_otp>,
<&package_otp>,
<&hw2_otp>,
<&board_id>;
nvmem-cell-names = "cfg0_otp",
"part_number_otp",
"monotonic_otp",
"nand_otp",
"uid_otp",
"package_otp",
"hw2_otp",
"board_id";
};
&pwr_regulators {
vdd-supply = <&vdd>;
vdd_3v3_usbfs-supply = <&vdd_usb>;

View file

@ -1,6 +1,6 @@
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/*
* Copyright (c) 2019-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2019-2022, STMicroelectronics - All Rights Reserved
* Author: Alexandre Torgue <alexandre.torgue@st.com> for STMicroelectronics.
*/
@ -183,6 +183,26 @@
secure-status = "okay";
};
&nvmem_layout {
nvmem-cells = <&cfg0_otp>,
<&part_number_otp>,
<&monotonic_otp>,
<&nand_otp>,
<&uid_otp>,
<&package_otp>,
<&hw2_otp>,
<&board_id>;
nvmem-cell-names = "cfg0_otp",
"part_number_otp",
"monotonic_otp",
"nand_otp",
"uid_otp",
"package_otp",
"hw2_otp",
"board_id";
};
&pwr_regulators {
vdd-supply = <&vdd>;
vdd_3v3_usbfs-supply = <&vdd_usb>;

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017-2019, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -19,13 +19,6 @@
#define BSEC_OTP_BANK_SHIFT 5
#define BSEC_TIMEOUT_VALUE 0xFFFF
#define ADDR_LOWER_OTP_PERLOCK_SHIFT 0x03
#define DATA_LOWER_OTP_PERLOCK_BIT 0x03U /* 2 significants bits are used */
#define DATA_LOWER_OTP_PERLOCK_MASK GENMASK(2, 0)
#define ADDR_UPPER_OTP_PERLOCK_SHIFT 0x04
#define DATA_UPPER_OTP_PERLOCK_BIT 0x01U /* 1 significants bits are used */
#define DATA_UPPER_OTP_PERLOCK_MASK GENMASK(3, 0)
/*
* Return status
*/
@ -35,110 +28,34 @@
#define BSEC_INVALID_PARAM 0xFFFFFFFCU
#define BSEC_PROG_FAIL 0xFFFFFFFBU
#define BSEC_LOCK_FAIL 0xFFFFFFFAU
#define BSEC_WRITE_FAIL 0xFFFFFFF9U
#define BSEC_SHADOW_FAIL 0xFFFFFFF8U
#define BSEC_TIMEOUT 0xFFFFFFF7U
#define BSEC_TIMEOUT 0xFFFFFFF9U
#define BSEC_RETRY 0xFFFFFFF8U
#define BSEC_NOT_SUPPORTED 0xFFFFFFF7U
#define BSEC_WRITE_LOCKED 0xFFFFFFF6U
#define BSEC_ERROR_INVALID_FVR 0xFFFFFFF5U
/*
* BSEC REGISTER OFFSET (base relative)
* OTP MODE
*/
#define BSEC_OTP_CONF_OFF 0x000U
#define BSEC_OTP_CTRL_OFF 0x004U
#define BSEC_OTP_WRDATA_OFF 0x008U
#define BSEC_OTP_STATUS_OFF 0x00CU
#define BSEC_OTP_LOCK_OFF 0x010U
#define BSEC_DEN_OFF 0x014U
#define BSEC_DISTURBED_OFF 0x01CU
#define BSEC_DISTURBED1_OFF 0x020U
#define BSEC_DISTURBED2_OFF 0x024U
#define BSEC_ERROR_OFF 0x034U
#define BSEC_ERROR1_OFF 0x038U
#define BSEC_ERROR2_OFF 0x03CU
#define BSEC_WRLOCK_OFF 0x04CU /* Safmem permanent lock */
#define BSEC_WRLOCK1_OFF 0x050U
#define BSEC_WRLOCK2_OFF 0x054U
#define BSEC_SPLOCK_OFF 0x064U /* Program safmem sticky lock */
#define BSEC_SPLOCK1_OFF 0x068U
#define BSEC_SPLOCK2_OFF 0x06CU
#define BSEC_SWLOCK_OFF 0x07CU /* Write in OTP sticky lock */
#define BSEC_SWLOCK1_OFF 0x080U
#define BSEC_SWLOCK2_OFF 0x084U
#define BSEC_SRLOCK_OFF 0x094U /* Shadowing sticky lock */
#define BSEC_SRLOCK1_OFF 0x098U
#define BSEC_SRLOCK2_OFF 0x09CU
#define BSEC_JTAG_IN_OFF 0x0ACU
#define BSEC_JTAG_OUT_OFF 0x0B0U
#define BSEC_SCRATCH_OFF 0x0B4U
#define BSEC_OTP_DATA_OFF 0x200U
#define BSEC_IPHW_CFG_OFF 0xFF0U
#define BSEC_IPVR_OFF 0xFF4U
#define BSEC_IP_ID_OFF 0xFF8U
#define BSEC_IP_MAGIC_ID_OFF 0xFFCU
#define BSEC_MODE_OPEN1 0x00U
#define BSEC_MODE_SECURED 0x01U
#define BSEC_MODE_OPEN2 0x02U
#define BSEC_MODE_INVALID 0x04U
/*
* BSEC_CONFIGURATION Register
*/
#define BSEC_CONF_POWER_UP_MASK BIT(0)
#define BSEC_CONF_POWER_UP_SHIFT 0
#define BSEC_CONF_FRQ_MASK GENMASK(2, 1)
#define BSEC_CONF_FRQ_SHIFT 1
#define BSEC_CONF_PRG_WIDTH_MASK GENMASK(6, 3)
#define BSEC_CONF_PRG_WIDTH_SHIFT 3
#define BSEC_CONF_TREAD_MASK GENMASK(8, 7)
#define BSEC_CONF_TREAD_SHIFT 7
/*
* BSEC_CONTROL Register
*/
#define BSEC_READ 0x000U
#define BSEC_WRITE 0x100U
#define BSEC_LOCK 0x200U
/*
* BSEC_OTP_LOCK register
*/
#define UPPER_OTP_LOCK_MASK BIT(0)
#define UPPER_OTP_LOCK_SHIFT 0
#define DENREG_LOCK_MASK BIT(2)
#define DENREG_LOCK_SHIFT 2
#define GPLOCK_LOCK_MASK BIT(4)
#define GPLOCK_LOCK_SHIFT 4
/*
* BSEC_OTP_STATUS Register
*/
#define BSEC_MODE_STATUS_MASK GENMASK(2, 0)
#define BSEC_MODE_BUSY_MASK BIT(3)
#define BSEC_MODE_PROGFAIL_MASK BIT(4)
#define BSEC_MODE_PWR_MASK BIT(5)
#define BSEC_MODE_BIST1_LOCK_MASK BIT(6)
#define BSEC_MODE_BIST2_LOCK_MASK BIT(7)
/* OTP MODE*/
#define BSEC_MODE_OPEN1 0x00
#define BSEC_MODE_SECURED 0x01
#define BSEC_MODE_OPEN2 0x02
#define BSEC_MODE_INVALID 0x04
/* BSEC_DENABLE Register */
#define BSEC_HDPEN BIT(4)
#define BSEC_SPIDEN BIT(5)
#define BSEC_SPINDEN BIT(6)
#define BSEC_DBGSWGEN BIT(10)
#define BSEC_DEN_ALL_MSK GENMASK(10, 0)
/* BSEC_FENABLE Register */
#define BSEC_FEN_ALL_MSK GENMASK(14, 0)
/*
* OTP Lock services definition
* Value must corresponding to the bit number in the register
* OTP Lock services definition.
* Value must corresponding to the bit number in the register.
* Special case: (bit number << 1) for BSEC3.
*/
#define BSEC_LOCK_UPPER_OTP 0x00
#define BSEC_LOCK_GWLOCK 0x01
#define BSEC_LOCK_DEBUG 0x02
#define BSEC_LOCK_PROGRAM 0x03
#define BSEC_LOCK_KVLOCK 0x04
/* Values for struct bsec_config::freq */
/*
* Values for struct bsec_config::freq
*/
#define FREQ_10_20_MHZ 0x0
#define FREQ_20_30_MHZ 0x1
#define FREQ_30_45_MHZ 0x2
@ -146,22 +63,28 @@
/*
* Device info structure, providing device-specific functions and a means of
* adding driver-specific state
* adding driver-specific state.
*/
struct bsec_config {
uint8_t den_lock; /*
* Debug enable sticky lock
* 1 debug enable is locked until next reset
*/
/* BSEC2 only */
uint8_t tread; /* SAFMEM Reading current level default 0 */
uint8_t pulse_width; /* SAFMEM Programming pulse width default 1 */
uint8_t freq; /* SAFMEM CLOCK see freq value define
uint8_t freq; /*
* SAFMEM CLOCK see freq value define
* default FREQ_45_67_MHZ
*/
uint8_t power; /* Power up SAFMEM. 1 power up, 0 power off */
uint8_t prog_lock; /* Programming Sticky lock
uint8_t prog_lock; /*
* Programming Sticky lock
* 1 programming is locked until next reset
*/
uint8_t den_lock; /* Debug enable sticky lock
* 1 debug enable is locked until next reset
*/
uint8_t upper_otp_lock; /* Shadowing of upper OTP sticky lock
uint8_t upper_otp_lock; /*
* Shadowing of upper OTP sticky lock
* 1 shadowing of upper OTP is locked
* until next reset
*/
@ -179,10 +102,11 @@ uint32_t bsec_write_otp(uint32_t val, uint32_t otp);
uint32_t bsec_program_otp(uint32_t val, uint32_t otp);
uint32_t bsec_permanent_lock_otp(uint32_t otp);
uint32_t bsec_write_debug_conf(uint32_t val);
void bsec_write_debug_conf(uint32_t val);
uint32_t bsec_read_debug_conf(void);
uint32_t bsec_write_feature_conf(uint32_t val);
uint32_t bsec_read_feature_conf(uint32_t *val);
void bsec_write_scratch(uint32_t val);
uint32_t bsec_read_scratch(void);
uint32_t bsec_get_status(void);
uint32_t bsec_get_hw_conf(void);
@ -190,14 +114,14 @@ uint32_t bsec_get_version(void);
uint32_t bsec_get_id(void);
uint32_t bsec_get_magic_id(void);
bool bsec_write_sr_lock(uint32_t otp, uint32_t value);
bool bsec_read_sr_lock(uint32_t otp);
bool bsec_write_sw_lock(uint32_t otp, uint32_t value);
bool bsec_read_sw_lock(uint32_t otp);
bool bsec_write_sp_lock(uint32_t otp, uint32_t value);
bool bsec_read_sp_lock(uint32_t otp);
bool bsec_wr_lock(uint32_t otp);
uint32_t bsec_otp_lock(uint32_t service, uint32_t value);
uint32_t bsec_set_sr_lock(uint32_t otp);
uint32_t bsec_read_sr_lock(uint32_t otp, bool *value);
uint32_t bsec_set_sw_lock(uint32_t otp);
uint32_t bsec_read_sw_lock(uint32_t otp, bool *value);
uint32_t bsec_set_sp_lock(uint32_t otp);
uint32_t bsec_read_sp_lock(uint32_t otp, bool *value);
uint32_t bsec_read_permanent_lock(uint32_t otp, bool *value);
uint32_t bsec_otp_lock(uint32_t service);
uint32_t bsec_shadow_read_otp(uint32_t *otp_value, uint32_t word);
uint32_t bsec_check_nsec_access_rights(uint32_t otp);

View file

@ -0,0 +1,106 @@
/*
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef BSEC2_REG_H
#define BSEC2_REG_H
#include <lib/utils_def.h>
/* IP configuration */
#define ADDR_LOWER_OTP_PERLOCK_SHIFT 0x03
#define DATA_LOWER_OTP_PERLOCK_BIT 0x03U /* 2 significants bits are used */
#define DATA_LOWER_OTP_PERLOCK_MASK GENMASK(2, 0)
#define ADDR_UPPER_OTP_PERLOCK_SHIFT 0x04
#define DATA_UPPER_OTP_PERLOCK_BIT 0x01U /* 1 significants bits are used */
#define DATA_UPPER_OTP_PERLOCK_MASK GENMASK(3, 0)
/* BSEC REGISTER OFFSET (base relative) */
#define BSEC_OTP_CONF_OFF U(0x000)
#define BSEC_OTP_CTRL_OFF U(0x004)
#define BSEC_OTP_WRDATA_OFF U(0x008)
#define BSEC_OTP_STATUS_OFF U(0x00C)
#define BSEC_OTP_LOCK_OFF U(0x010)
#define BSEC_DEN_OFF U(0x014)
#define BSEC_DISTURBED_OFF U(0x01C)
#define BSEC_DISTURBED1_OFF U(0x020)
#define BSEC_DISTURBED2_OFF U(0x024)
#define BSEC_ERROR_OFF U(0x034)
#define BSEC_ERROR1_OFF U(0x038)
#define BSEC_ERROR2_OFF U(0x03C)
#define BSEC_WRLOCK_OFF U(0x04C) /* Safmem permanent lock */
#define BSEC_WRLOCK1_OFF U(0x050)
#define BSEC_WRLOCK2_OFF U(0x054)
#define BSEC_SPLOCK_OFF U(0x064) /* Program safmem sticky lock */
#define BSEC_SPLOCK1_OFF U(0x068)
#define BSEC_SPLOCK2_OFF U(0x06C)
#define BSEC_SWLOCK_OFF U(0x07C) /* Write in OTP sticky lock */
#define BSEC_SWLOCK1_OFF U(0x080)
#define BSEC_SWLOCK2_OFF U(0x084)
#define BSEC_SRLOCK_OFF U(0x094) /* Shadowing sticky lock */
#define BSEC_SRLOCK1_OFF U(0x098)
#define BSEC_SRLOCK2_OFF U(0x09C)
#define BSEC_JTAG_IN_OFF U(0x0AC)
#define BSEC_JTAG_OUT_OFF U(0x0B0)
#define BSEC_SCRATCH_OFF U(0x0B4)
#define BSEC_OTP_DATA_OFF U(0x200)
#define BSEC_IPHW_CFG_OFF U(0xFF0)
#define BSEC_IPVR_OFF U(0xFF4)
#define BSEC_IP_ID_OFF U(0xFF8)
#define BSEC_IP_MAGIC_ID_OFF U(0xFFC)
#define BSEC_WRLOCK(n) (BSEC_WRLOCK_OFF + U(0x04) * (n))
#define BSEC_SPLOCK(n) (BSEC_SPLOCK_OFF + U(0x04) * (n))
#define BSEC_SWLOCK(n) (BSEC_SWLOCK_OFF + U(0x04) * (n))
#define BSEC_SRLOCK(n) (BSEC_SRLOCK_OFF + U(0x04) * (n))
/* BSEC_CONFIGURATION Register */
#define BSEC_CONF_POWER_UP_MASK BIT(0)
#define BSEC_CONF_POWER_UP_SHIFT 0
#define BSEC_CONF_FRQ_MASK GENMASK(2, 1)
#define BSEC_CONF_FRQ_SHIFT 1
#define BSEC_CONF_PRG_WIDTH_MASK GENMASK(6, 3)
#define BSEC_CONF_PRG_WIDTH_SHIFT 3
#define BSEC_CONF_TREAD_MASK GENMASK(8, 7)
#define BSEC_CONF_TREAD_SHIFT 7
/* BSEC_CONTROL Register */
#define BSEC_READ 0U
#define BSEC_WRITE BIT(8)
#define BSEC_LOCK BIT(9)
/* BSEC_OTP_LOCK register */
#define UPPER_OTP_LOCK_MASK BIT(0)
#define UPPER_OTP_LOCK_SHIFT 0
#define DENREG_LOCK_MASK BIT(2)
#define DENREG_LOCK_SHIFT 2
#define GPLOCK_LOCK_MASK BIT(4)
#define GPLOCK_LOCK_SHIFT 4
/* BSEC_OTP_STATUS Register */
#define BSEC_MODE_STATUS_MASK GENMASK(2, 0)
#define BSEC_MODE_SECURE_MASK BIT(0)
#define BSEC_MODE_FULLDBG_MASK BIT(1)
#define BSEC_MODE_INVALID_MASK BIT(2)
#define BSEC_MODE_BUSY_MASK BIT(3)
#define BSEC_MODE_PROGFAIL_MASK BIT(4)
#define BSEC_MODE_PWR_MASK BIT(5)
#define BSEC_MODE_BIST1_LOCK_MASK BIT(6)
#define BSEC_MODE_BIST2_LOCK_MASK BIT(7)
/* BSEC_DENABLE Register */
#define BSEC_HDPEN BIT(4)
#define BSEC_SPIDEN BIT(5)
#define BSEC_SPINDEN BIT(6)
#define BSEC_DBGSWGEN BIT(10)
#define BSEC_DEN_ALL_MSK GENMASK(10, 0)
/* BSEC_FENABLE Register */
#define BSEC_FEN_ALL_MSK GENMASK(14, 0)
/* BSEC_IPVR Register */
#define BSEC_IPVR_MSK GENMASK(7, 0)
#endif /* BSEC2_REG_H */

View file

@ -1,5 +1,5 @@
/*
* Copyright (C) 2018-2021, STMicroelectronics - All Rights Reserved
* Copyright (C) 2018-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -37,6 +37,11 @@ uintptr_t stm32mp_rcc_base(void);
/* Check MMU status to allow spinlock use */
bool stm32mp_lock_available(void);
int stm32_get_otp_index(const char *otp_name, uint32_t *otp_idx,
uint32_t *otp_len);
int stm32_get_otp_value(const char *otp_name, uint32_t *otp_val);
int stm32_get_otp_value_from_idx(const uint32_t otp_idx, uint32_t *otp_val);
/* Get IWDG platform instance ID from peripheral IO memory base address */
uint32_t stm32_iwdg_get_instance(uintptr_t base);

View file

@ -1,6 +1,6 @@
/*
* Copyright (c) 2020-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2020-2022, STMicroelectronics - All Rights Reserved
* Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -40,6 +40,7 @@ uint32_t dt_get_pwr_vdd_voltage(void);
struct rdev *dt_get_vdd_regulator(void);
struct rdev *dt_get_cpu_regulator(void);
const char *dt_get_board_model(void);
int dt_find_otp_name(const char *name, uint32_t *otp, uint32_t *otp_len);
int fdt_get_gpio_bank_pin_count(unsigned int bank);
#endif /* STM32MP_DT_H */

View file

@ -135,6 +135,55 @@ int stm32mp_unmap_ddr(void)
STM32MP_DDR_MAX_SIZE);
}
int stm32_get_otp_index(const char *otp_name, uint32_t *otp_idx,
uint32_t *otp_len)
{
assert(otp_name != NULL);
assert(otp_idx != NULL);
return dt_find_otp_name(otp_name, otp_idx, otp_len);
}
int stm32_get_otp_value(const char *otp_name, uint32_t *otp_val)
{
uint32_t otp_idx;
assert(otp_name != NULL);
assert(otp_val != NULL);
if (stm32_get_otp_index(otp_name, &otp_idx, NULL) != 0) {
return -1;
}
if (stm32_get_otp_value_from_idx(otp_idx, otp_val) != 0) {
ERROR("BSEC: %s Read Error\n", otp_name);
return -1;
}
return 0;
}
int stm32_get_otp_value_from_idx(const uint32_t otp_idx, uint32_t *otp_val)
{
uint32_t ret = BSEC_NOT_SUPPORTED;
assert(otp_val != NULL);
#if defined(IMAGE_BL2)
ret = bsec_shadow_read_otp(otp_val, otp_idx);
#elif defined(IMAGE_BL32)
ret = bsec_read_otp(otp_val, otp_idx);
#else
#error "Not supported"
#endif
if (ret != BSEC_OK) {
ERROR("BSEC: idx=%u Read Error\n", otp_idx);
return -1;
}
return 0;
}
#if defined(IMAGE_BL2)
static void reset_uart(uint32_t reset)
{

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2017-2021, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2017-2022, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -318,6 +318,73 @@ const char *dt_get_board_model(void)
return (const char *)fdt_getprop(fdt, node, "model", NULL);
}
/*******************************************************************************
* dt_find_otp_name: get OTP ID and length in DT.
* name: sub-node name to look up.
* otp: pointer to read OTP number or NULL.
* otp_len: pointer to read OTP length in bits or NULL.
* return value: 0 if no error, an FDT error value otherwise.
******************************************************************************/
int dt_find_otp_name(const char *name, uint32_t *otp, uint32_t *otp_len)
{
int node;
int index, len;
const fdt32_t *cuint;
if ((name == NULL) || (otp == NULL)) {
return -FDT_ERR_BADVALUE;
}
node = fdt_node_offset_by_compatible(fdt, -1, DT_NVMEM_LAYOUT_COMPAT);
if (node < 0) {
return node;
}
index = fdt_stringlist_search(fdt, node, "nvmem-cell-names", name);
if (index < 0) {
return index;
}
cuint = fdt_getprop(fdt, node, "nvmem-cells", &len);
if (cuint == NULL) {
return -FDT_ERR_NOTFOUND;
}
if ((index * (int)sizeof(uint32_t)) > len) {
return -FDT_ERR_BADVALUE;
}
cuint += index;
node = fdt_node_offset_by_phandle(fdt, fdt32_to_cpu(*cuint));
if (node < 0) {
ERROR("Malformed nvmem_layout node: ignored\n");
return node;
}
cuint = fdt_getprop(fdt, node, "reg", &len);
if ((cuint == NULL) || (len != (2 * (int)sizeof(uint32_t)))) {
ERROR("Malformed nvmem_layout node: ignored\n");
return -FDT_ERR_BADVALUE;
}
if (fdt32_to_cpu(*cuint) % sizeof(uint32_t)) {
ERROR("Misaligned nvmem_layout element: ignored\n");
return -FDT_ERR_BADVALUE;
}
if (otp != NULL) {
*otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);
}
if (otp_len != NULL) {
cuint++;
*otp_len = fdt32_to_cpu(*cuint) * CHAR_BIT;
}
return 0;
}
/*******************************************************************************
* This function gets the pin count for a GPIO bank based from the FDT.
* It also checks node consistency.

View file

@ -155,6 +155,40 @@ void bl2_platform_setup(void)
#endif /* STM32MP_USE_STM32IMAGE */
}
static void update_monotonic_counter(void)
{
uint32_t version;
uint32_t otp;
CASSERT(STM32_TF_VERSION <= MAX_MONOTONIC_VALUE,
assert_stm32mp1_monotonic_counter_reach_max);
/* Check if monotonic counter needs to be incremented */
if (stm32_get_otp_index(MONOTONIC_OTP, &otp, NULL) != 0) {
panic();
}
if (stm32_get_otp_value_from_idx(otp, &version) != 0) {
panic();
}
if ((version + 1U) < BIT(STM32_TF_VERSION)) {
uint32_t result;
/* Need to increment the monotonic counter. */
version = BIT(STM32_TF_VERSION) - 1U;
result = bsec_program_otp(version, otp);
if (result != BSEC_OK) {
ERROR("BSEC: MONOTONIC_OTP program Error %u\n",
result);
panic();
}
INFO("Monotonic counter has been incremented (value 0x%x)\n",
version);
}
}
void bl2_el3_plat_arch_setup(void)
{
const char *board_model;
@ -163,6 +197,10 @@ void bl2_el3_plat_arch_setup(void)
uintptr_t pwr_base;
uintptr_t rcc_base;
if (bsec_probe() != 0U) {
panic();
}
mmap_add_region(BL_CODE_BASE, BL_CODE_BASE,
BL_CODE_END - BL_CODE_BASE,
MT_CODE | MT_SECURE);
@ -205,10 +243,6 @@ void bl2_el3_plat_arch_setup(void)
;
}
if (bsec_probe() != 0) {
panic();
}
/* Reset backup domain on cold boot cases */
if ((mmio_read_32(rcc_base + RCC_BDCR) & RCC_BDCR_RTCSRC_MASK) == 0U) {
mmio_setbits_32(rcc_base + RCC_BDCR, RCC_BDCR_VSWRST);
@ -309,6 +343,8 @@ skip_console_init:
print_reset_reason();
update_monotonic_counter();
stm32mp1_syscfg_enable_io_compensation_finish();
#if !STM32MP_USE_STM32IMAGE

View file

@ -19,6 +19,8 @@ ENABLE_PIE := 1
BL2_IN_XIP_MEM := 1
endif
# Please don't increment this value without good understanding of
# the monotonic counter
STM32_TF_VERSION ?= 0
# Enable dynamic memory mapping
@ -216,7 +218,7 @@ PLAT_BL_COMMON_SOURCES += drivers/arm/tzc/tzc400.c \
drivers/clk/clk.c \
drivers/delay_timer/delay_timer.c \
drivers/delay_timer/generic_delay_timer.c \
drivers/st/bsec/bsec.c \
drivers/st/bsec/bsec2.c \
drivers/st/clk/stm32mp_clkfunc.c \
drivers/st/clk/stm32mp1_clk.c \
drivers/st/ddr/stm32mp_ddr.c \

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2016-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -8,6 +8,7 @@
#include <common/debug.h>
#include <drivers/st/bsec.h>
#include <drivers/st/bsec2_reg.h>
#include <stm32mp1_smc.h>

View file

@ -20,13 +20,11 @@
#if STM32MP_RAW_NAND || STM32MP_SPI_NAND
static int get_data_from_otp(struct nand_device *nand_dev, bool is_slc)
{
int result;
uint32_t nand_param;
/* Check if NAND parameters are stored in OTP */
result = bsec_shadow_read_otp(&nand_param, NAND_OTP);
if (result != BSEC_OK) {
ERROR("BSEC: NAND_OTP Error %i\n", result);
if (stm32_get_otp_value(NAND_OTP, &nand_param) != 0) {
ERROR("BSEC: NAND_OTP Error\n");
return -EACCES;
}

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2016-2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2016-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -7,14 +7,14 @@
#include <assert.h>
#include <errno.h>
#include <platform_def.h>
#include <common/debug.h>
#include <drivers/st/bsec.h>
#include <drivers/st/bsec2_reg.h>
#include <drivers/st/stm32mp1_rcc.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <platform_def.h>
#include <stm32mp1_dbgmcu.h>
#define DBGMCU_IDC U(0x00)

View file

@ -347,19 +347,19 @@ enum ddr_type {
#define OTP_MAX_SIZE (STM32MP1_OTP_MAX_ID + 1U)
/* OTP offsets */
#define DATA0_OTP U(0)
#define PART_NUMBER_OTP U(1)
#define NAND_OTP U(9)
#define UID0_OTP U(13)
#define UID1_OTP U(14)
#define UID2_OTP U(15)
#define PACKAGE_OTP U(16)
#define HW2_OTP U(18)
/* OTP labels */
#define CFG0_OTP "cfg0_otp"
#define PART_NUMBER_OTP "part_number_otp"
#define PACKAGE_OTP "package_otp"
#define HW2_OTP "hw2_otp"
#define NAND_OTP "nand_otp"
#define MONOTONIC_OTP "monotonic_otp"
#define UID_OTP "uid_otp"
#define BOARD_ID_OTP "board_id"
/* OTP mask */
/* DATA0 */
#define DATA0_OTP_SECURED BIT(6)
/* CFG0 */
#define CFG0_CLOSED_DEVICE BIT(6)
/* PART NUMBER */
#define PART_NUMBER_OTP_PART_MASK GENMASK_32(7, 0)
@ -416,6 +416,9 @@ enum ddr_type {
/* NAND number of planes */
#define NAND_PLANE_BIT_NB_MASK BIT(14)
/* MONOTONIC OTP */
#define MAX_MONOTONIC_VALUE 32
/* UID OTP */
#define UID_WORD_NB U(3)
@ -486,6 +489,7 @@ static inline uint32_t tamp_bkpr(uint32_t idx)
#define DT_BSEC_COMPAT "st,stm32mp15-bsec"
#define DT_DDR_COMPAT "st,stm32mp1-ddr"
#define DT_IWDG_COMPAT "st,stm32mp1-iwdg"
#define DT_NVMEM_LAYOUT_COMPAT "st,stm32-nvmem-layout"
#define DT_PWR_COMPAT "st,stm32mp1,pwr-reg"
#define DT_RCC_CLK_COMPAT "st,stm32mp1-rcc"

View file

@ -278,7 +278,7 @@ static uint32_t get_part_number(void)
return part_number;
}
if (bsec_shadow_read_otp(&part_number, PART_NUMBER_OTP) != BSEC_OK) {
if (stm32_get_otp_value(PART_NUMBER_OTP, &part_number) != 0) {
panic();
}
@ -294,7 +294,7 @@ static uint32_t get_cpu_package(void)
{
uint32_t package;
if (bsec_shadow_read_otp(&package, PACKAGE_OTP) != BSEC_OK) {
if (stm32_get_otp_value(PACKAGE_OTP, &package) != 0) {
panic();
}
@ -397,35 +397,9 @@ void stm32mp_print_cpuinfo(void)
void stm32mp_print_boardinfo(void)
{
uint32_t board_id;
uint32_t board_otp;
int bsec_node, bsec_board_id_node;
void *fdt;
const fdt32_t *cuint;
uint32_t board_id = 0;
if (fdt_get_address(&fdt) == 0) {
panic();
}
bsec_node = fdt_node_offset_by_compatible(fdt, -1, DT_BSEC_COMPAT);
if (bsec_node < 0) {
return;
}
bsec_board_id_node = fdt_subnode_offset(fdt, bsec_node, "board_id");
if (bsec_board_id_node <= 0) {
return;
}
cuint = fdt_getprop(fdt, bsec_board_id_node, "reg", NULL);
if (cuint == NULL) {
panic();
}
board_otp = fdt32_to_cpu(*cuint) / sizeof(uint32_t);
if (bsec_shadow_read_otp(&board_id, board_otp) != BSEC_OK) {
ERROR("BSEC: PART_NUMBER_OTP Error\n");
if (stm32_get_otp_value(BOARD_ID_OTP, &board_id) != 0) {
return;
}
@ -462,12 +436,11 @@ bool stm32mp_is_closed_device(void)
{
uint32_t value;
if ((bsec_shadow_register(DATA0_OTP) != BSEC_OK) ||
(bsec_read_otp(&value, DATA0_OTP) != BSEC_OK)) {
if (stm32_get_otp_value(CFG0_OTP, &value) != 0) {
return true;
}
return (value & DATA0_OTP_SECURED) == DATA0_OTP_SECURED;
return (value & CFG0_CLOSED_DEVICE) == CFG0_CLOSED_DEVICE;
}
uint32_t stm32_iwdg_get_instance(uintptr_t base)
@ -487,13 +460,7 @@ uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
uint32_t iwdg_cfg = 0U;
uint32_t otp_value;
#if defined(IMAGE_BL2)
if (bsec_shadow_register(HW2_OTP) != BSEC_OK) {
panic();
}
#endif
if (bsec_read_otp(&otp_value, HW2_OTP) != BSEC_OK) {
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
@ -515,29 +482,34 @@ uint32_t stm32_iwdg_get_otp_config(uint32_t iwdg_inst)
#if defined(IMAGE_BL2)
uint32_t stm32_iwdg_shadow_update(uint32_t iwdg_inst, uint32_t flags)
{
uint32_t otp_value;
uint32_t otp;
uint32_t result;
if (bsec_shadow_read_otp(&otp, HW2_OTP) != BSEC_OK) {
if (stm32_get_otp_index(HW2_OTP, &otp, NULL) != 0) {
panic();
}
if ((flags & IWDG_DISABLE_ON_STOP) != 0U) {
otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
if ((flags & IWDG_DISABLE_ON_STANDBY) != 0U) {
otp |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
if ((flags & IWDG_DISABLE_ON_STOP) != 0) {
otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STOP_POS);
}
result = bsec_write_otp(otp, HW2_OTP);
if ((flags & IWDG_DISABLE_ON_STANDBY) != 0) {
otp_value |= BIT(iwdg_inst + HW2_OTP_IWDG_FZ_STANDBY_POS);
}
result = bsec_write_otp(otp_value, otp);
if (result != BSEC_OK) {
return result;
}
/* Sticky lock OTP_IWDG (read and write) */
if (!bsec_write_sr_lock(HW2_OTP, 1U) ||
!bsec_write_sw_lock(HW2_OTP, 1U)) {
if ((bsec_set_sr_lock(otp) != BSEC_OK) ||
(bsec_set_sw_lock(otp) != BSEC_OK)) {
return BSEC_LOCK_FAIL;
}

View file

@ -7,11 +7,11 @@
#include <common/debug.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/bsec.h>
#include <drivers/st/stpmic1.h>
#include <lib/mmio.h>
#include <platform_def.h>
#include <stm32mp_common.h>
#include <stm32mp_dt.h>
#include <stm32mp1_private.h>
@ -116,8 +116,9 @@ static void enable_high_speed_mode_low_voltage(void)
static void stm32mp1_syscfg_set_hslv(void)
{
uint32_t otp = 0;
uint32_t otp_value;
uint32_t vdd_voltage;
bool product_below_2v5;
/*
* High Speed Low Voltage Pad mode Enable for SPI, SDMMC, ETH, QSPI
@ -134,26 +135,26 @@ static void stm32mp1_syscfg_set_hslv(void)
* => TF-A enables the low power mode only if VDD < 2.7V (in DT)
* but this value needs to be consistent with board design.
*/
if (bsec_read_otp(&otp, HW2_OTP) != BSEC_OK) {
if (stm32_get_otp_value(HW2_OTP, &otp_value) != 0) {
panic();
}
otp = otp & HW2_OTP_PRODUCT_BELOW_2V5;
product_below_2v5 = (otp_value & HW2_OTP_PRODUCT_BELOW_2V5) != 0U;
/* Get VDD supply */
vdd_voltage = dt_get_pwr_vdd_voltage();
/* Check if VDD is Low Voltage */
if (vdd_voltage == 0U) {
WARN("VDD unknown");
WARN("VDD unknown\n");
} else if (vdd_voltage < 2700000U) {
enable_high_speed_mode_low_voltage();
if (otp == 0U) {
if (!product_below_2v5) {
INFO("Product_below_2v5=0: HSLVEN protected by HW\n");
}
} else {
if (otp != 0U) {
if (product_below_2v5) {
ERROR("Product_below_2v5=1:\n");
ERROR("\tHSLVEN update is destructive,\n");
ERROR("\tno update as VDD > 2.7V\n");

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2021, STMicroelectronics - All Rights Reserved
* Copyright (c) 2021-2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -157,27 +157,28 @@ static void stm32mp1_get_string(const char *desc, uint8_t *unicode, uint16_t *le
static void update_serial_num_string(void)
{
uint8_t i;
uint32_t result;
char serial_string[SIZ_STRING_SERIAL + 2U];
uint32_t deviceserial[UID_WORD_NB];
/* serial number is set to 0 */
uint32_t deviceserial[UID_WORD_NB] = {0U, 0U, 0U};
uint32_t otp;
uint32_t len;
uint16_t length;
for (i = 0U; i < UID_WORD_NB; i++) {
result = bsec_shadow_register(i + UID0_OTP);
if (result != BSEC_OK) {
ERROR("BSEC: UID%d Shadowing Error\n", i);
break;
}
result = bsec_read_otp(&deviceserial[i], i + UID0_OTP);
if (result != BSEC_OK) {
ERROR("BSEC: UID%d Read Error\n", i);
break;
}
if (stm32_get_otp_index(UID_OTP, &otp, &len) != 0) {
ERROR("BSEC: Get UID_OTP number Error\n");
return;
}
/* On bsec error: serial number is set to 0 */
if (result != BSEC_OK) {
for (i = 0; i < UID_WORD_NB; i++) {
deviceserial[i] = 0U;
if ((len / __WORD_BIT) != UID_WORD_NB) {
ERROR("BSEC: Get UID_OTP length Error\n");
return;
}
for (i = 0; i < UID_WORD_NB; i++) {
if (bsec_shadow_read_otp(&deviceserial[i], i + otp) !=
BSEC_OK) {
ERROR("BSEC: UID%d Error\n", i);
return;
}
}
/* build serial number with OTP value as in ROM code */