Merge changes from topic "dtpm_poc" into integration

* changes:
  feat(docs): update mboot threat model with dTPM
  docs(tpm): add design documentation for dTPM
  fix(rpi3):  expose BL1_RW to BL2 map for mboot
  feat(rpi3): add dTPM backed measured boot
  feat(tpm): add Infineon SLB9670 GPIO SPI config
  feat(tpm): add tpm drivers and framework
  feat(io): add generic gpio spi bit-bang driver
  feat(rpi3): implement eventlog handoff to BL33
  feat(rpi3): implement mboot for rpi3
This commit is contained in:
Manish V Badarkhe 2025-03-20 12:57:14 +01:00 committed by TrustedFirmware Code Review
commit 7e84854015
33 changed files with 2399 additions and 13 deletions

View file

@ -1232,6 +1232,7 @@ $(eval $(call assert_booleans,\
HARDEN_SLS \
HW_ASSISTED_COHERENCY \
MEASURED_BOOT \
DISCRETE_TPM \
DICE_PROTECTION_ENVIRONMENT \
RMMD_ENABLE_EL3_TOKEN_SIGN \
DRTM_SUPPORT \
@ -1418,6 +1419,7 @@ $(eval $(call add_defines,\
HW_ASSISTED_COHERENCY \
LOG_LEVEL \
MEASURED_BOOT \
DISCRETE_TPM \
DICE_PROTECTION_ENVIRONMENT \
DRTM_SUPPORT \
NS_TIMER_SWITCH \

View file

@ -962,6 +962,9 @@ subsections:
- drivers/scmi-msg
- scmi-msg
- title: TPM
scope: tpm
- title: UFS
scope: ufs

View file

@ -0,0 +1,119 @@
Discrete TPM drivers
====================
This section focuses on the design and functionality of Discrete TPM drivers
in |TF-A|. The |TPM| technology is designed to provide
a dedicated, hardware-based solution for storing cryptographic keys and
performing security-related operations.
Discrete TPMs are separate, standalone hardware components that are physically
isolated from the system's main processor. This isolation helps protect
sensitive information, such as encryption keys and platform credentials, from
being accessed or tampered with by malicious software or unauthorized users.
When a Discrete TPM interface is implemented correctly, the risk of software
based attacks is reduced, further reducing the attack surface.
TPM measurements establish the security posture of a system and are used for
attestation. Performing measurements using a TPM in TF-A is beneficial from
a security standpoint because it ensures hardware-backed attestation earlier
in the boot flow, reducing the risk of a compromised root of trust.
The design implemented in TF-A supports multiple types of TPM hardware interfaces
and hardware bus types in order to be compatible with different platforms.
Platforms opt to use a specific messaging interface, such as |CRB| or |FIFO|,
and a specific hardware bus interface, such as |I2C| or |SPI|.
Driver architecture
-------------------
The Discrete TPM drivers are split up into four layers, each serving a distinct
purpose in the overall architecture:
- **Command Layer**: This layer provides various TPM commands based on the
`TCG TPM 2.0 Library Specification`_. It allows a system to initialize the
TPM interface, perform a TPM startup, set up a locality for operations like
PCR extend and read, and release the locality when finished.
- **Interface Layer**: This layer handles sending and receiving TPM commands
via a specific TPM interface like FIFO or CRB. It also includes functions
such as getting information, requesting access, and relinquishing access,
tailored to the specific interface.
- **Link Layer**: Discrete TPMs may appear as a SPI, I2C, or memory mapped
device. The link layer maps the command passed from the interface layer to
the appropriate bus type. It includes hardware link read and write functions
that use the platform bus interface to transfer commands.
- **Platform Layer**: The platform layer implements the details of how to
communicate to the TPM chip for a specific platform. The link layer uses the
platform layer to read and write to the TPM.
.. note::
The command, interface, and link layers are implemented in common code in
TF-A. The platform layer is implemented in platform specific code.
The following diagram illustrates the Discrete TPM driver stack for the Raspberry
Pi 3 platform.
|rpi3 dtpm driver stack|
Header files
^^^^^^^^^^^^
- TPM Drivers: ``include/drivers/tpm``
Source files
^^^^^^^^^^^^
- TPM Drivers: ``drivers/tpm``
Build time config options
-------------------------
- ``MBOOT_TPM_HASH_ALG``: The hash algorithm to be used by the TPM, currently
the only supported algorithm is ``sha256``. As additional Discrete TPMs are
tested and integrated in TF-A, support for more algorithms will become
available.
- ``DISCRETE_TPM``: Boolean flag to enable Discrete TPM support. Depending
on the selected TPM interface, the appropriate drivers will be built and
packaged into firmware.
- ``TPM_INTERFACE``: This flag is required when ``DISCRETE_TPM=1``,
currently the only supported interface is ``FIFO_SPI``.
Ideally there should be four options:
.. code:: shell
FIFO_I2C
FIFO_SPI
FIFO_MMIO
CRB
.. note::
``MBOOT_TPM_HASH_ALG`` will automatically overwrite ``MBOOT_EL_HASH_ALG``.
This is to ensure the event log and the TPM are using the same hash
algorithm.
Discrete TPM Initialization
---------------------------
The TPM needs to be initialized based on the platform, the hardware interfaces
need to be set up independently, and once they are setup, the TPM commands
``tpm_interface_init()`` and subsequently ``tpm_startup()`` can be called.
``tpm_startup()`` only needs to be called once after startup, or if the system
is reset.
An example of platform specific TPM hardware initialization for the rpi3 can be
found in ``plat/rpi/rpi3/rpi3_bl1_setup.c`` and ``plat/rpi/rpi3/rpi3_bl1_mboot.c``
Discrete TPM PCR Extend
-----------------------
Once the TPM is setup, the TPM ``pcr_extend`` operation can be used to extend
hashes and store them in PCR 0.
An example of ``pcr_extend`` that is used during rpi3 measured boot can be found
in ``plat/rpi/rpi3/rpi3_bl1_mboot.c`` and ``plat/rpi/rpi3/rpi3_bl2_mboot.c``.
*Copyright (c) 2025, Arm Limited. All rights reserved.*
.. |rpi3 dtpm driver stack| image::
../resources/diagrams/rpi3_dtpm_driver.png
.. _TCG TPM 2.0 Library Specification: https://trustedcomputinggroup.org/resource/tpm-library-specification/

View file

@ -7,10 +7,12 @@ Design Documents
cmake_framework
measured_boot_poc
measured_boot_dtpm_poc
drtm_poc
rse
psci_osi_mode
measured_boot
dtpm_drivers
--------------

View file

@ -91,6 +91,14 @@ The Measured Boot implementation in TF-A supports:
and the variable length crypto agile structure called TCG_PCR_EVENT2. Event
Log driver implemented in TF-A covers later part.
#. Discrete TPM
A Discrete TPM (Trusted Platform Module) can be used alongside Event Log to
extend measurements and validate Measured Boot functionality. The use of a
Discrete TPM in TF-A to extend measurements of images and other critical data
allows for an additional layer of security. The TPM can be used to attest the
integrity of the Event Log.
#. |RSE|
It is one of the physical backends to extend the measurements. Please refer
@ -229,7 +237,7 @@ Responsibilities of these platform interfaces are -
--------------
*Copyright (c) 2023, Arm Limited. All rights reserved.*
*Copyright (c) 2023-2025, Arm Limited. All rights reserved.*
.. _Arm® Server Base Security Guide: https://developer.arm.com/documentation/den0086/latest
.. _TCG EFI Protocol Specification: https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf

View file

@ -0,0 +1,458 @@
Measured Boot using a Discrete TPM (PoC)
========================================
Measured Boot is the process of cryptographically measuring the code and
critical data used at boot time, for example using a TPM, so that the
security state can be attested later.
The current implementation of the driver included in |TF-A| supports several
backends and each has a different means to store the measurements.
This section focuses on the Discrete TPM backend, which stores measurements
in a PCR within the TPM. This backend can be paired with the `TCG event log`_
to provide attestation of the measurements stored in the event log. See
details in :ref:`Measured Boot Design`.
This section provides instructions to setup and build a proof of concept (PoC)
that showcases the use of Measured Boot with a Discrete TPM interface.
.. note::
The instructions given in this document are meant to build a PoC to
show how Measured Boot on TF-A can interact with a Discrete TPM interface.
This PoC is platform specific, and uses a SPI based Discrete TPM, the
Raspberry Pi communicates with the TPM via a GPIO pin bit-banged SPI interface.
For other platforms, different may be required to interface with the hardware
(e.g., different hardware communication protocols) and different TPM interfaces
(e.g., |FIFO| vs |CRB|).
Components
~~~~~~~~~~
- **Platform**: The PoC is developed on the Raspberry Pi 3 (rpi3), due to quick
driver development and the availability of GPIO pins to interface with a TPM
expansion module. Measured boot capabilities using the TCG Event Log are
ported to the Raspberry Pi 3 platform inside TF-A. This PoC specifically uses
the Raspberry Pi 3 Model B V1.2, but this PoC is compatible with other
Raspberry Pi 3 models.
- **Discrete TPM**: The TPM chip selected is a breakout board compatible with
the Raspberry Pi 3 GPIO pins. This PoC uses a |SPI| based LetsTrust TPM
breakout board equipped with a Infineon Optiga™ SLB 9670 TPM 2.0 chip. Link
to device: https://thepihut.com/products/letstrust-tpm-for-raspberry-pi
.. note::
If you have another TPM breakout board that uses the same
Infineon Optiga™ SLB 9670 TPM 2.0 SPI based chip, it will also work.
Ensure that the correct GPIO pins are utilized on the Raspberry Pi 3 to
avoid communication issues, and possible hardware failures.
- **TF-A TPM Drivers**: To interface with a physical (Discrete) TPM chip in
TF-A, the PoC uses TF-A drivers that provide the command, interface, link,
and platform layers required to send and receive data to and from the TPM.
The drivers are located in TFA, and not in a |SP|, so that they may be used
in early stages such as BL2, and in some cases, BL1. The design of the TPM
Drivers is documented here: :ref:`Discrete TPM drivers`.
- **U-boot BL33**: This PoC showcases measured boot up to BL33, and for
simplicity uses a U-boot image for BL33, so that the image is measured and
loaded. Currently U-boot does not have Discrete TPM support for the
Raspberry Pi 3 platform so the boot flow ends here.
Building the PoC for the Raspberry Pi 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Build instructions for U-Boot.bin for Raspberry Pi 3.**
First, the build requires a BL33 firmware image that can be packaged and measured
by TF-A.
U-boot can be built for the Raspberry Pi 3, but there are some changes to be made
to allow the build to succeed. First Clone U-boot and enter the repo.
.. code:: shell
git clone https://github.com/u-boot/u-boot.git
cd u-boot
Now to switch to a specific tag ``v2024.04`` for testing purposes, and then build
the defconfig labelled ``rpi_3_b_plus_defconfig``.
.. code:: shell
git checkout tags/v2024.04 -b tfa_dtpm_poc
make CROSS_COMPILE=aarch64-linux-gnu- rpi_3_b_plus_defconfig
Lastly open the ``.config`` and change ``CONFIG_TEXT_BASE`` and
``CONFIG_SYS_UBOOT_START`` to ``0x11000000`` to match the BL33 starting point.
.. code:: shell
vim .config
CONFIG_TEXT_BASE=0x11000000
CONFIG_SYS_UBOOT_START=0x11000000
To build the u-boot binary, use the following command.
.. code:: shell
make CROSS_COMPILE=aarch64-linux-gnu- -j$(nproc)
**Build TF-A for Raspberry Pi 3 with Discrete TPM and Measured Boot.**
Copy over the ``u-boot.bin`` file over to your TF-A working directory.
.. code:: shell
cp /path/to/u-boot/build/u-boot.bin /path/to/tfa/u-boot.bin
TF-A build command:
.. code:: shell
CROSS_COMPILE=aarch64-linux-gnu- \
make PLAT=rpi3 \
RPI3_PRELOADED_DTB_BASE=0x200000 \
BL33=u-boot.bin \
SUPPORT_VFP=1 \
DEBUG=0 \
MEASURED_BOOT=1 \
DISCRETE_TPM=1 \
MBOOT_TPM_HASH_ALG=sha256 \
TPM_INTERFACE=FIFO_SPI \
MBEDTLS_DIR=/path/to/mbedtls/repo \
LOG_LEVEL=40 \
fip all
This build command is similar to the one provided in the TF-A Raspberry Pi 3
platform port, To learn more about the platform and its build options, visit
:ref:`Raspberry Pi 3`.
- ``RPI3_PRELOADED_DTB_BASE`` is given a different address to accommodate the
larger BL1 and BL2 firmware sizes, this is to accommodate the TPM drivers
that are packaged in BL1 and BL2 for this PoC.
- ``BL33`` is the non trusted firmware, in this case the U-Boot binary built
earlier.
- ``SUPPORT_VFP`` is enabled, allows Vector Floating Point operations in EL3.
- ``MEASURED_BOOT`` is enabled to allow the Measured Boot flow.
- ``DISCRETE_TPM=1`` enables the build of Discrete TPM drivers.
- ``MBOOT_TPM_HASH_ALG=sha256`` sets the hash algorithm to sha256, this is
the only algorithm supported by both TF-A Measured Boot and the SLB 9670
TPM 2.0.
- ``TPM_INTERFACE=FIFO_SPI`` specifies the use of the FIFO SPI interface.
- ``MBEDTLS_DIR`` is the path to your local mbedtls repo.
- ``LOG_LEVEL=40`` ensures that eventlog is printed at the end of BL1 and BL2.
**Hardware Setup:**
- **TPM Connection**: Connect the LetsTrust TPM board to GPIO pins 17 - 26 on
the 40-pin GPIO header on the Raspberry Pi board. The 2x5 header of the TPM
module must be aligned to the pins in a specific orientation, match the 3v3
and RST pins from the TPM board to pins 17 and 18 respectively on the
Raspberry Pi 3 header. See `rpi3 pinout`_.
- **Serial Console**: Establish a serial connection to the Raspberry Pi 3 to
view serial output during the boot sequence. The GND, TXD, and RXD pins,
which are labelled 6, 8, and 10 on the Raspberry Pi 3 header respectively,
are the required pins to establish a serial connection. The recommended way
to connect to the board from another system is to use a USB to serial TTL
cable to output the serial console in a easy manner.
- **SD Card Setup**: Format a SD Card as ``FAT32`` with a default Raspbian
installation that is similar to the default Raspberry Pi 3 boot partition,
this partition will utilize the default files installed in the root
directory with Rasbian such as:
::
bcm2710-rpi3-b.dtb
bootcode.bin
config.txt
fixup.dat
start.elf
Open ``config.txt`` and overwrite the file with the following lines:
::
arm_64bit=1
disable_commandline_tags=2
enable_uart=1
armstub=armstub8.bin
device_tree_address=0x200000
device_tree_end=0x210000
These configurations are required to enable uart, enable 64bit mode,
use the build TF binary, and the modified rpi3 device tree address
and size.
Copy ``armstub8.bin`` from the TF-A build path to the root folder of the
SD card.
The SD Card is now ready to be booted.
Running the PoC for the Raspberry Pi 3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Insert the SD Card into the Raspberry Pi 3 SD card port and boot the system.
To access the serial console output from the Raspberry Pi 3 you can either:
- Follow `instructions`_ to use PuTTY to connect to Raspberry Pi 3 serial console.
- Use the linux ``screen`` command:
.. code:: shell
screen /dev/ttyUSB0 115200
Once booted the output from the serial console will look like this:
.. code:: shell
Raspberry Pi Bootcode
Read File: config.txt, 153
Read File: start.elf, 2975040 (bytes)
Read File: fixup.dat, 7265 (bytes)
MESS:00:00:01.170422:0: brfs: File read: /mfs/sd/config.txt
MESS:00:00:01.174630:0: brfs: File read: 153 bytes
MESS:00:00:01.211473:0: HDMI0:EDID error reading EDID block 0 attempt 0
MESS:00:00:01.217639:0: HDMI0:EDID error reading EDID block 0 attempt 1
MESS:00:00:01.223977:0: HDMI0:EDID error reading EDID block 0 attempt 2
MESS:00:00:01.230313:0: HDMI0:EDID error reading EDID block 0 attempt 3
MESS:00:00:01.236650:0: HDMI0:EDID error reading EDID block 0 attempt 4
MESS:00:00:01.242987:0: HDMI0:EDID error reading EDID block 0 attempt 5
MESS:00:00:01.249324:0: HDMI0:EDID error reading EDID block 0 attempt 6
MESS:00:00:01.255660:0: HDMI0:EDID error reading EDID block 0 attempt 7
MESS:00:00:01.261997:0: HDMI0:EDID error reading EDID block 0 attempt 8
MESS:00:00:01.268334:0: HDMI0:EDID error reading EDID block 0 attempt 9
MESS:00:00:01.274429:0: HDMI0:EDID giving up on reading EDID block 0
MESS:00:00:01.282647:0: brfs: File read: /mfs/sd/config.txt
MESS:00:00:01.286929:0: gpioman: gpioman_get_pin_num: pin LEDS_PWR_OK not defined
MESS:00:00:01.487295:0: gpioman: gpioman_get_pin_num: pin DISPLAY_DSI_PORT not defined
MESS:00:00:01.494853:0: gpioman: gpioman_get_pin_num: pin LEDS_PWR_OK not defined
MESS:00:00:01.500763:0: *** Restart logging
MESS:00:00:01.504638:0: brfs: File read: 153 bytes
MESS:00:00:01.510139:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 0
MESS:00:00:01.517254:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 1
MESS:00:00:01.524112:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 2
MESS:00:00:01.530970:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 3
MESS:00:00:01.537826:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 4
MESS:00:00:01.544685:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 5
MESS:00:00:01.551543:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 6
MESS:00:00:01.558399:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 7
MESS:00:00:01.565258:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 8
MESS:00:00:01.572116:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 9
MESS:00:00:01.578730:0: hdmi: HDMI0:EDID giving up on reading EDID block 0
MESS:00:00:01.584634:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 0
MESS:00:00:01.592427:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 1
MESS:00:00:01.599286:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 2
MESS:00:00:01.606142:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 3
MESS:00:00:01.613001:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 4
MESS:00:00:01.619858:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 5
MESS:00:00:01.626717:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 6
MESS:00:00:01.633575:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 7
MESS:00:00:01.640431:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 8
MESS:00:00:01.647288:0: hdmi: HDMI0:EDID error reading EDID block 0 attempt 9
MESS:00:00:01.653905:0: hdmi: HDMI0:EDID giving up on reading EDID block 0
MESS:00:00:01.659769:0: hdmi: HDMI:hdmi_get_state is deprecated, use hdmi_get_display_state instead
MESS:00:00:01.668264:0: HDMI0: hdmi_pixel_encoding: 162000000
MESS:00:00:01.673988:0: vec: vec_middleware_power_on: vec_base: 0x7e806000 rev-id 0x00002708 @ vec: 0x7e806100 @ 0x00000420 enc: 0x7e806060 @ 0x00000220 cgmsae: 0x7e80605c @ 0x00000000
MESS:00:00:01.880234:0: dtb_file 'bcm2710-rpi-3-b.dtb'
MESS:00:00:01.889713:0: brfs: File read: /mfs/sd/bcm2710-rpi-3-b.dtb
MESS:00:00:01.894375:0: Loaded 'bcm2710-rpi-3-b.dtb' to 0x200000 size 0x7cb2
MESS:00:00:01.915761:0: brfs: File read: 31922 bytes
MESS:00:00:02.007202:0: brfs: File read: /mfs/sd/config.txt
MESS:00:00:02.017277:0: brfs: File read: 153 bytes
MESS:00:00:02.020772:0: Failed to open command line file 'cmdline.txt'
MESS:00:00:02.042302:0: gpioman: gpioman_get_pin_num: pin EMMC_ENABLE not defined
MESS:00:00:02.398066:0: kernel=
MESS:00:00:02.455255:0: brfs: File read: /mfs/sd/armstub8.bin
MESS:00:00:02.459284:0: Loaded 'armstub8.bin' to 0x0 size 0xdbe74
MESS:00:00:02.465109:0: No compatible kernel found
MESS:00:00:02.469610:0: Device tree loaded to 0x200000 (size 0x823f)
MESS:00:00:02.476805:0: uart: Set PL011 baud rate to 103448.300000 Hz
MESS:00:00:02.483381:0: uart: Baud rate change done...
MESS:00:00:02.486793:0: uart: Baud rateNOTICE: Booting Trusted Firmware
NOTICE: BL1: v2.11.0(release):v2.11.0-187-g0cb1ddc9c-dirty
NOTICE: BL1: Built : 10:57:10, Jul 9 2024
INFO: BL1: RAM 0x100ee000 - 0x100f9000
INFO: Using crypto library 'mbed TLS'
NOTICE: TPM Chip: vendor-id 0xd1, device-id 0x0, revision-id: 0x16
NOTICE: rpi3: Detected: Raspberry Pi 3 Model B (1GB, Sony, UK) [0x00a02082]
INFO: BL1: Loading BL2
INFO: Loading image id=1 at address 0x100b4000
INFO: Image id=1 loaded: 0x100b4000 - 0x100c0281
INFO: TCG_EfiSpecIDEvent:
INFO: PCRIndex : 0
INFO: EventType : 3
INFO: Digest : 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00
INFO: EventSize : 33
INFO: Signature : Spec ID Event03
INFO: PlatformClass : 0
INFO: SpecVersion : 2.0.2
INFO: UintnSize : 1
INFO: NumberOfAlgorithms : 1
INFO: DigestSizes :
INFO: #0 AlgorithmId : SHA256
INFO: DigestSize : 32
INFO: VendorInfoSize : 0
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 3
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: EventSize : 17
INFO: Signature : StartupLocality
INFO: StartupLocality : 0
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 1
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : 55 11 51 d8 8b 7f 41 d3 18 16 f2 e8 80 bf 80 fa
INFO: : b4 03 6d 96 4c a0 0a 98 45 cf 25 2f 1e a9 09 3e
INFO: EventSize : 5
INFO: Event : BL_2
NOTICE: BL1: Booting BL2
INFO: Entry point address = 0x100b4000
INFO: SPSR = 0x3c5
NOTICE: BL2: v2.11.0(release):v2.11.0-187-g0cb1ddc9c-dirty
NOTICE: BL2: Built : 10:56:39, Jul 9 2024
INFO: Using crypto library 'mbed TLS'
NOTICE: TPM Chip: vendor-id 0xd1, device-id 0x0, revision-id: 0x16
INFO: BL2: Doing platform setup
INFO: BL2: Loading image id 3
INFO: Loading image id=3 at address 0x100e0000
INFO: Image id=3 loaded: 0x100e0000 - 0x100e706b
INFO: BL2: Loading image id 5
INFO: Loading image id=5 at address 0x11000000
INFO: Image id=5 loaded: 0x11000000 - 0x110a8ad8
INFO: TCG_EfiSpecIDEvent:
INFO: PCRIndex : 0
INFO: EventType : 3
INFO: Digest : 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00
INFO: EventSize : 33
INFO: Signature : Spec ID Event03
INFO: PlatformClass : 0
INFO: SpecVersion : 2.0.2
INFO: UintnSize : 1
INFO: NumberOfAlgorithms : 1
INFO: DigestSizes :
INFO: #0 AlgorithmId : SHA256
INFO: DigestSize : 32
INFO: VendorInfoSize : 0
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 3
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
INFO: EventSize : 17
INFO: Signature : StartupLocality
INFO: StartupLocality : 0
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 1
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : 55 11 51 d8 8b 7f 41 d3 18 16 f2 e8 80 bf 80 fa
INFO: : b4 03 6d 96 4c a0 0a 98 45 cf 25 2f 1e a9 09 3e
INFO: EventSize : 5
INFO: Event : BL_2
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 1
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : f3 00 5c ed a2 12 8b 76 b7 82 da c5 28 c3 02 52
INFO: : 19 e4 3a 82 f2 3c ab 1e 0d 78 84 9c b5 fe e2 4f
INFO: EventSize : 14
INFO: Event : SECURE_RT_EL3
INFO: PCR_Event2:
INFO: PCRIndex : 0
INFO: EventType : 1
INFO: Digests Count : 1
INFO: #0 AlgorithmId : SHA256
INFO: Digest : 90 28 81 42 12 b7 9b ca aa 0c 40 76 33 5a 69 71
INFO: : b6 19 2b 90 f2 d2 69 b8 de 8e 6d 05 4d c2 73 f9
INFO: EventSize : 6
INFO: Event : BL_33
NOTICE: BL1: Booting BL31
INFO: Entry point address = 0x100e0000
INFO: SPSR = 0x3cd
NOTICE: BL31: v2.11.0(release):v2.11.0-187-g0cb1ddc9c-dirty
NOTICE: BL31: Built : 10:56:58, Jul 9 2024
INFO: rpi3: Checking DTB...
INFO: rpi3: Reserved 0x10000000 - 0x10100000 in DTB
INFO: BL31: Initializing runtime services
INFO: BL31: Preparing for EL3 exit to normal world
INFO: Entry point address = 0x11000000
INFO: SPSR = 0x3c9
U-Boot 2024.04-g84314330-dirty (Apr 23 2024 - 15:41:54 -0500)
DRAM: 948 MiB
RPI 3 Model B (0xa02082)
Core: 68 devices, 14 uclasses, devicetree: embed
MMC: mmc@7e202000: 0, mmc@7e300000: 1
Loading Environment from FAT... OK
In: serial,usbkbd
Out: serial,vidconsole
Err: serial,vidconsole
Net: No ethernet found.
starting USB...
Bus usb@7e980000: USB DWC2
scanning bus usb@7e980000 for devices...
Error: smsc95xx_eth No valid MAC address found.
2 USB Device(s) found
scanning usb for storage devices... 0 Storage Device(s) found
Hit any key to stop autoboot: 2 1 0
Card did not respond to voltage select! : -110
No EFI system partition
No EFI system partition
Failed to persist EFI variables
No EFI system partition
Failed to persist EFI variables
No EFI system partition
Failed to persist EFI variables
Missing TPMv2 device for EFI_TCG_PROTOCOL
** Booting bootflow '<NULL>' with efi_mgr
Loading Boot0000 'mmc 0' failed
EFI boot manager: Cannot load any image
Boot failed (err=-14)
Card did not respond to voltage select! : -110
No ethernet found.
No ethernet found.
U-Boot>
Next steps for Discrete TPM and Measured Boot development
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to automatically validate the workings of the Discrete TPM, the creation
of test cases that compare the eventlog image hashes with what is stored in PCR0
are a great way to test the core functionality of the Discrete TPM in Measured Boot.
Development of Discrete TPM drivers such as a reference FIFO |I2C|, MMIO, and CRB
drivers has not started, these drivers will allow a larger number of platform
to use a Discrete TPM in TF-A.
*Copyright (c) 2025, Arm Limited. All rights reserved.*
.. _TCG event log: https://trustedcomputinggroup.org/resource/tcg-efi-platform-specification/
.. _rpi3 pinout: https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#gpio
.. _instructions: https://www.circuitbasics.com/use-putty-to-access-the-raspberry-pi-terminal-from-a-computer/
.. _workaround: https://github.com/mhomran/u-boot-rpi3-b-plus

View file

@ -784,6 +784,20 @@ Common build options
This option defaults to 0.
- ``DISCRETE_TPM``: Boolean flag to include support for a Discrete TPM.
This option defaults to 0.
- ``TPM_INTERFACE``: When ``DISCRETE_TPM=1``, this is a required flag to
select the TPM interface. Currently only one interface is supported:
::
FIFO_SPI
- ``MBOOT_TPM_HASH_ALG``: Build flag to select the TPM hash algorithm used during
Measured Boot. Currently only accepts ``sha256`` as a valid algorithm.
- ``MARCH_DIRECTIVE``: used to pass a -march option from the platform build
options to the compiler. An example usage:

View file

@ -6,6 +6,7 @@
.. |BTI| replace:: :term:`BTI`
.. |CoT| replace:: :term:`CoT`
.. |COT| replace:: :term:`COT`
.. |CRB| replace:: :term:`CRB`
.. |CSS| replace:: :term:`CSS`
.. |CVE| replace:: :term:`CVE`
.. |DICE| replace:: :term:`DICE`
@ -19,11 +20,13 @@
.. |FCONF| replace:: :term:`FCONF`
.. |FDT| replace:: :term:`FDT`
.. |FF-A| replace:: :term:`FF-A`
.. |FIFO| replace:: :term:`FIFO`
.. |FIP| replace:: :term:`FIP`
.. |FVP| replace:: :term:`FVP`
.. |FWU| replace:: :term:`FWU`
.. |GIC| replace:: :term:`GIC`
.. |HES| replace:: :term:`HES`
.. |I2C| replace:: :term:`I2C`
.. |ISA| replace:: :term:`ISA`
.. |Linaro| replace:: :term:`Linaro`
.. |MMU| replace:: :term:`MMU`
@ -55,6 +58,7 @@
.. |SP| replace:: :term:`SP`
.. |SPD| replace:: :term:`SPD`
.. |SPM| replace:: :term:`SPM`
.. |SPI| replace:: :term:`SPI`
.. |SRTM| replace:: :term:`SRTM`
.. |SSBS| replace:: :term:`SSBS`
.. |SVE| replace:: :term:`SVE`

View file

@ -36,6 +36,9 @@ You can find additional definitions in the `Arm Glossary`_.
CSS
Compute Sub-System
CRB
Command Response Buffer
CVE
Common Vulnerabilities and Exposures. A CVE document is commonly used to
describe a publicly-known security vulnerability.
@ -88,6 +91,9 @@ You can find additional definitions in the `Arm Glossary`_.
FF-A
Firmware Framework for Arm A-profile
FIFO
First In, First Out
FIP
Firmware Image Package
@ -103,6 +109,9 @@ You can find additional definitions in the `Arm Glossary`_.
HES
Arm CCA Hardware Enforced Security
I2C
Inter-Integrated Circuit Protocol
ISA
Instruction Set Architecture
@ -211,6 +220,9 @@ You can find additional definitions in the `Arm Glossary`_.
SPM
Secure Partition Manager
SPI
Serial Peripheral Interface
SRTM
Static Root of Trust for Measurement

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View file

@ -928,6 +928,12 @@ nonetheless once execution has reached the runtime EL3 firmware.
Measured Boot implementation in |TF-A| is that it does not extend the
measurements into a |PCR| of a Discrete |TPM|, where measurements would
be securely stored and protected against tampering.
- Discrete |TPM|: Implemented in |TF-A| as a proof of concept, the Discrete
|TPM| is used alongside the existing TCG-compliant Event Log. This
Measured Boot implementation extends measurement hashes to a |PCR| in the
|TPM|, which provides a hardware-backed root of trust. The measurements in
the Event Log can now be hashed and compared to the value of the |PCR| to
determine if tampering of the Event Log has taken place.
- `CCA Measured Boot`_: Implemented by |TF-M|. Measurements are stored in
|HES| secure on-chip memory. |HES| implements protection against tampering
its on-chip memory. |HES| interface is available for BL1 and BL2.
@ -942,6 +948,20 @@ nonetheless once execution has reached the runtime EL3 firmware.
to protect or threats to defend against that could compromise |TF-A| execution
environment's security.
When considering the implementation of Measured Boot using a TCG-compliant
Event Log backed by a discrete TPM, physical vulnerabilities come to mind.
Platforms have many different ways of integrating a discrete TPM, and these
implementations can be susceptible to man-in-the-middle attacks, where the
attacker intercepts the bus traffic between the discrete TPM and the host
machine. This can lead to PCR extend operations being modified, compromising
Measured Boot. This vulnerability requires physical access to the host machine.
TF-A does not provide any mitigations against these physical vulnerabilities,
it is the responsibility of the platform owners to address this based on their
specific threat model. Mitigation of this can be achieved through dedicated
hardware solutions, such as an encrypted AP/dTPM bus, or software-based
approaches designed to protect sensitive data such as parameter encryption.
There are general security assets and threats associated with remote/delegated
attestation. However, these are outside the |TF-A| security boundary and
should be dealt with by the appropriate agent in the platform/system.
@ -1192,7 +1212,7 @@ Threats to be Mitigated by an External Agent Outside of TF-A
--------------
*Copyright (c) 2021-2024, Arm Limited. All rights reserved.*
*Copyright (c) 2021-2025, Arm Limited. All rights reserved.*
.. _STRIDE threat analysis technique: https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool-threats#stride-model

130
drivers/gpio/gpio_spi.c Normal file
View file

@ -0,0 +1,130 @@
/*
* Copyright (c) 2025, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdint.h>
#include <stdlib.h>
#include <common/debug.h>
#include <drivers/delay_timer.h>
#include <drivers/gpio.h>
#include <drivers/gpio_spi.h>
#include <platform_def.h>
static struct spi_plat gpio_spidev;
static void gpio_spi_delay_us(void)
{
udelay(gpio_spidev.gpio_data.spi_delay_us);
}
static int gpio_spi_miso(void)
{
return gpio_get_value(gpio_spidev.gpio_data.miso_gpio);
}
static void gpio_spi_sclk(int bit)
{
gpio_set_value(gpio_spidev.gpio_data.sclk_gpio, bit);
}
static void gpio_spi_mosi(int bit)
{
gpio_set_value(gpio_spidev.gpio_data.mosi_gpio, bit);
}
static void gpio_spi_cs(int bit)
{
gpio_set_value(gpio_spidev.gpio_data.cs_gpio, bit);
}
static void gpio_spi_start(void)
{
gpio_spi_cs(1);
gpio_spi_sclk(0);
gpio_spi_cs(0);
}
static void gpio_spi_stop(void)
{
gpio_spi_cs(1);
}
/* set sclk to a known state (0) before performing any further action */
static void gpio_spi_get_access(void)
{
gpio_spi_sclk(0);
}
static void xfer(unsigned int bytes, const void *out, void *in, int cpol, int cpha)
{
for (unsigned int j = 0U; j < bytes; j++) {
unsigned char in_byte = 0U;
unsigned char out_byte = (out != NULL) ? *(const uint8_t *)out++ : 0xFF;
for (int i = 7; i >= 0; i--) {
if (cpha) {
gpio_spi_sclk(!cpol);
}
gpio_spi_mosi(!!(out_byte & (1 << i)));
gpio_spi_delay_us();
gpio_spi_sclk(cpha ? cpol : !cpol);
gpio_spi_delay_us();
in_byte |= gpio_spi_miso() << i;
if (!cpha) {
gpio_spi_sclk(cpol);
}
}
if (in != NULL) {
*(uint8_t *)in++ = in_byte;
}
}
}
static int gpio_spi_xfer(unsigned int bytes, const void *out, void *in)
{
if ((out == NULL) && (in == NULL)) {
return -1;
}
switch (gpio_spidev.gpio_data.spi_mode) {
case 0:
xfer(bytes, out, in, 0, 0);
break;
case 1:
xfer(bytes, out, in, 0, 1);
break;
case 2:
xfer(bytes, out, in, 1, 0);
break;
case 3:
xfer(bytes, out, in, 1, 1);
break;
default:
return -1;
}
return 0;
}
struct spi_ops gpio_spidev_ops = {
.get_access = gpio_spi_get_access,
.start = gpio_spi_start,
.stop = gpio_spi_stop,
.xfer = gpio_spi_xfer,
};
struct spi_plat *gpio_spi_init(struct gpio_spi_data *gpio_spi_data)
{
gpio_spidev.gpio_data = *gpio_spi_data;
gpio_spidev.ops = &gpio_spidev_ops;
return &gpio_spidev;
}

View file

@ -1,5 +1,5 @@
#
# Copyright (c) 2020-2022, Arm Limited. All rights reserved.
# Copyright (c) 2020-2025, Arm Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
@ -7,15 +7,20 @@
# Default log level to dump the event log (LOG_LEVEL_INFO)
EVENT_LOG_LEVEL ?= 40
# Measured Boot hash algorithm.
# SHA-256 (or stronger) is required for all devices that are TPM 2.0 compliant.
ifdef TPM_HASH_ALG
$(warning "TPM_HASH_ALG is deprecated. Please use MBOOT_EL_HASH_ALG instead.")
MBOOT_EL_HASH_ALG := ${TPM_HASH_ALG}
# When using a TPM, adopt the TPM's hash algorithm for
# measurements through the Event Log mechanism, ensuring
# the TPM uses the same algorithm for measurements and
# extends the PCR accordingly, allowing for comparison
# between PCR value and Event Log measurements required
# for attestation.
ifdef MBOOT_TPM_HASH_ALG
MBOOT_EL_HASH_ALG := ${MBOOT_TPM_HASH_ALG}
else
MBOOT_EL_HASH_ALG := sha256
endif
# Measured Boot hash algorithm.
# SHA-256 (or stronger) is required for all devices that are TPM 2.0 compliant.
ifeq (${MBOOT_EL_HASH_ALG}, sha512)
TPM_ALG_ID := TPM_ALG_SHA512
TCG_DIGEST_SIZE := 64U

26
drivers/tpm/tpm2.mk Normal file
View file

@ -0,0 +1,26 @@
#
# Copyright (c) 2025, Arm Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
TPM2_SRC_DIR := drivers/tpm/
TPM2_SOURCES := ${TPM2_SRC_DIR}tpm2_cmds.c \
${TPM2_SRC_DIR}tpm2_chip.c
# TPM Hash algorithm, used during Measured Boot
# currently only accepts SHA-256
ifeq (${MBOOT_TPM_HASH_ALG}, sha256)
TPM_ALG_ID := TPM_ALG_SHA256
TCG_DIGEST_SIZE := 32U
else
$(error "The selected MBOOT_TPM_HASH_ALG is invalid.")
endif #MBOOT_TPM_HASH_ALG
ifeq (${TPM_INTERFACE}, FIFO_SPI)
TPM2_SOURCES += ${TPM2_SRC_DIR}tpm2_fifo.c \
${TPM2_SRC_DIR}tpm2_fifo_spi.c
else
$(error "The selected TPM_INTERFACE is invalid.")
endif #TPM_INTERFACE

21
drivers/tpm/tpm2_chip.c Normal file
View file

@ -0,0 +1,21 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <drivers/tpm/tpm2_chip.h>
/*
* TPM timeout values
* Reference: TCG PC Client Platform TPM Profile (PTP) Specification v1.05
*/
struct tpm_chip_data tpm_chip_data = {
.locality = -1,
.timeout_msec_a = 750,
.timeout_msec_b = 2000,
.timeout_msec_c = 200,
.timeout_msec_d = 30,
.address = 0,
};

222
drivers/tpm/tpm2_cmds.c Normal file
View file

@ -0,0 +1,222 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <lib/libc/endian.h>
#include <drivers/delay_timer.h>
#include <drivers/tpm/tpm2.h>
#include <drivers/tpm/tpm2_chip.h>
#include <drivers/tpm/tpm2_interface.h>
#define CMD_SIZE_OFFSET 6
#define SINGLE_BYTE 1
#define TWO_BYTES 2
#define FOUR_BYTES 4
static struct interface_ops *interface;
static int tpm_xfer(struct tpm_chip_data *chip_data, const tpm_cmd *send, tpm_cmd *receive)
{
int ret;
ret = interface->send(chip_data, send);
if (ret < 0) {
return ret;
}
ret = interface->receive(chip_data, receive);
if (ret < 0) {
return ret;
}
return TPM_SUCCESS;
}
int tpm_interface_init(struct tpm_chip_data *chip_data, uint8_t locality)
{
int err;
interface = tpm_interface_getops(chip_data, locality);
err = interface->request_access(chip_data, locality);
if (err != 0) {
return err;
}
return interface->get_info(chip_data, locality);
}
int tpm_interface_close(struct tpm_chip_data *chip_data, uint8_t locality)
{
return interface->release_locality(chip_data, locality);
}
static int tpm_update_buffer(tpm_cmd *buf, uint32_t new_data, size_t new_len)
{
int i, j, start;
uint32_t command_size;
union {
uint8_t var8;
uint16_t var16;
uint32_t var32;
uint8_t array[4];
} tpm_new_data;
command_size = be32toh(buf->header.cmd_size);
if (command_size + new_len > MAX_SIZE_CMDBUF) {
ERROR("%s: buf size exceeded, increase MAX_SIZE_CMDBUF\n",
__func__);
return TPM_INVALID_PARAM;
}
/*
* Subtract the cmd header size from the current command size
* so the data buffer is written to starting at index 0.
*/
start = command_size - TPM_HEADER_SIZE;
/*
* The TPM, according to the TCG spec, processes data in BE byte order,
* in the case where the Host is LE, htobe correctly handles the byte order.
* When updating the buffer, keep in mind to only pass sizeof(new_data) or
* the variable type size for the new_len function parameter. This ensures
* there is only the possiblility of writing 1, 2, or 4 bytes to the buffer,
* and that the correct number of bytes are written to data[i].
*/
if (new_len == SINGLE_BYTE) {
tpm_new_data.var8 = new_data & 0xFF;
} else if (new_len == TWO_BYTES) {
tpm_new_data.var16 = htobe16(new_data & 0xFFFF);
} else if (new_len == FOUR_BYTES) {
tpm_new_data.var32 = htobe32(new_data);
} else {
ERROR("%s: Invalid data length\n", __func__);
return TPM_INVALID_PARAM;
}
for (i = start, j = 0; i < start + new_len; i++, j++) {
buf->data[i] = tpm_new_data.array[j];
}
buf->header.cmd_size = htobe32(command_size + new_len);
return TPM_SUCCESS;
}
int tpm_startup(struct tpm_chip_data *chip_data, uint16_t mode)
{
tpm_cmd startup_cmd, startup_response;
uint32_t tpm_rc;
int ret;
memset(&startup_cmd, 0, sizeof(startup_cmd));
memset(&startup_response, 0, sizeof(startup_response));
startup_cmd.header.tag = htobe16(TPM_ST_NO_SESSIONS);
startup_cmd.header.cmd_size = htobe32(sizeof(tpm_cmd_hdr));
startup_cmd.header.cmd_code = htobe32(TPM_CMD_STARTUP);
ret = tpm_update_buffer(&startup_cmd, mode, sizeof(mode));
if (ret < 0) {
return ret;
}
ret = tpm_xfer(chip_data, &startup_cmd, &startup_response);
if (ret < 0) {
return ret;
}
tpm_rc = be32toh(startup_response.header.cmd_code);
if (tpm_rc != TPM_RESPONSE_SUCCESS) {
ERROR("%s: response code contains error = %X\n", __func__, tpm_rc);
return TPM_ERR_RESPONSE;
}
return TPM_SUCCESS;
}
int tpm_pcr_extend(struct tpm_chip_data *chip_data, uint32_t index,
uint16_t algorithm, const uint8_t *digest,
uint32_t digest_len)
{
tpm_cmd pcr_extend_cmd, pcr_extend_response;
uint32_t tpm_rc;
int ret;
memset(&pcr_extend_cmd, 0, sizeof(pcr_extend_cmd));
memset(&pcr_extend_response, 0, sizeof(pcr_extend_response));
if (digest == NULL) {
return TPM_INVALID_PARAM;
}
pcr_extend_cmd.header.tag = htobe16(TPM_ST_SESSIONS);
pcr_extend_cmd.header.cmd_size = htobe32(sizeof(tpm_cmd_hdr));
pcr_extend_cmd.header.cmd_code = htobe32(TPM_CMD_PCR_EXTEND);
/* handle (PCR Index)*/
ret = tpm_update_buffer(&pcr_extend_cmd, index, sizeof(index));
if (ret < 0) {
return ret;
}
/* authorization size , session handle, nonce size, attributes*/
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_MIN_AUTH_SIZE, sizeof(uint32_t));
if (ret < 0) {
return ret;
}
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_RS_PW, sizeof(uint32_t));
if (ret < 0) {
return ret;
}
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_ZERO_NONCE_SIZE, sizeof(uint16_t));
if (ret < 0) {
return ret;
}
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_ATTRIBUTES_DISABLE, sizeof(uint8_t));
if (ret < 0) {
return ret;
}
/* hmac/password size */
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_ZERO_HMAC_SIZE, sizeof(uint16_t));
if (ret < 0) {
return ret;
}
/* hashes count */
ret = tpm_update_buffer(&pcr_extend_cmd, TPM_SINGLE_HASH_COUNT, sizeof(uint32_t));
if (ret < 0) {
return ret;
}
/* hash algorithm */
ret = tpm_update_buffer(&pcr_extend_cmd, algorithm, sizeof(algorithm));
if (ret < 0) {
return ret;
}
/* digest */
for (int i = 0; i < digest_len; i++) {
ret = tpm_update_buffer(&pcr_extend_cmd, digest[i], sizeof(uint8_t));
if (ret < 0) {
return ret;
}
}
ret = tpm_xfer(chip_data, &pcr_extend_cmd, &pcr_extend_response);
if (ret < 0) {
return ret;
}
tpm_rc = be32toh(pcr_extend_response.header.cmd_code);
if (tpm_rc != TPM_RESPONSE_SUCCESS) {
ERROR("%s: response code contains error = %X\n", __func__, tpm_rc);
return TPM_ERR_RESPONSE;
}
return TPM_SUCCESS;
}

322
drivers/tpm/tpm2_fifo.c Normal file
View file

@ -0,0 +1,322 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <lib/libc/endian.h>
#include <drivers/delay_timer.h>
#include <drivers/tpm/tpm2.h>
#include <drivers/tpm/tpm2_chip.h>
#include <drivers/tpm/tpm2_interface.h>
#define LOCALITY_START_ADDRESS(x, y) \
((uint16_t)(x->address + (0x1000 * y)))
static int tpm2_get_info(struct tpm_chip_data *chip_data, uint8_t locality)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, locality);
uint32_t vid_did;
uint8_t revision;
int err;
err = tpm2_fifo_read_chunk(tpm_base_addr + TPM_FIFO_REG_VENDID, DWORD, &vid_did);
if (err < 0) {
return err;
}
err = tpm2_fifo_read_byte(tpm_base_addr + TPM_FIFO_REG_REVID, &revision);
if (err < 0) {
return err;
}
INFO("TPM Chip: vendor-id 0x%x, device-id 0x%x, revision-id: 0x%x\n",
0xFFFF & vid_did, vid_did >> 16, revision);
return TPM_SUCCESS;
}
static int tpm2_wait_reg_bits(uint16_t reg, uint8_t set, unsigned long timeout, uint8_t *status)
{
int err;
uint64_t timeout_delay = timeout_init_us(timeout * 1000);
do {
err = tpm2_fifo_read_byte(reg, status);
if (err < 0) {
return err;
}
if ((*status & set) == set) {
return TPM_SUCCESS;
}
} while (!timeout_elapsed(timeout_delay));
return TPM_ERR_TIMEOUT;
}
static int tpm2_fifo_request_access(struct tpm_chip_data *chip_data, uint8_t locality)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, locality);
uint8_t status;
int err;
err = tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_ACCESS, TPM_ACCESS_REQUEST_USE);
if (err < 0) {
return err;
}
err = tpm2_wait_reg_bits(tpm_base_addr + TPM_FIFO_REG_ACCESS,
TPM_ACCESS_ACTIVE_LOCALITY,
chip_data->timeout_msec_a, &status);
if (err == 0) {
chip_data->locality = locality;
return TPM_SUCCESS;
}
return err;
}
static int tpm2_fifo_release_locality(struct tpm_chip_data *chip_data, uint8_t locality)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, locality);
uint8_t buf;
int err;
err = tpm2_fifo_read_byte(tpm_base_addr + TPM_FIFO_REG_ACCESS, &buf);
if (err < 0) {
return err;
}
if (buf & (TPM_ACCESS_REQUEST_PENDING | TPM_ACCESS_VALID)) {
return tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_ACCESS,
TPM_ACCESS_RELINQUISH_LOCALITY);
}
ERROR("%s: Unable to release locality\n", __func__);
return TPM_ERR_RESPONSE;
}
static int tpm2_fifo_prepare(struct tpm_chip_data *chip_data)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, chip_data->locality);
uint8_t status;
int err;
err = tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_STATUS, TPM_STAT_COMMAND_READY);
if (err < 0) {
return err;
}
err = tpm2_wait_reg_bits(tpm_base_addr + TPM_FIFO_REG_STATUS,
TPM_STAT_COMMAND_READY,
chip_data->timeout_msec_b, &status);
if (err < 0) {
ERROR("%s: TPM Status Busy\n", __func__);
return err;
}
return TPM_SUCCESS;
}
static int tpm2_fifo_get_burstcount(struct tpm_chip_data *chip_data, uint16_t *burstcount)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, chip_data->locality);
uint64_t timeout_delay = timeout_init_us(chip_data->timeout_msec_a * 1000);
int err;
if (burstcount == NULL) {
return TPM_INVALID_PARAM;
}
do {
uint8_t byte0, byte1;
err = tpm2_fifo_read_byte(tpm_base_addr + TPM_FIFO_REG_BURST_COUNT_LO, &byte0);
if (err < 0) {
return err;
}
err = tpm2_fifo_read_byte(tpm_base_addr + TPM_FIFO_REG_BURST_COUNT_HI, &byte1);
if (err < 0) {
return err;
}
*burstcount = (uint16_t)((byte1 << 8) + byte0);
if (*burstcount != 0U) {
return TPM_SUCCESS;
}
} while (!timeout_elapsed(timeout_delay));
return TPM_ERR_TIMEOUT;
}
static int tpm2_fifo_send(struct tpm_chip_data *chip_data, const tpm_cmd *buf)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, chip_data->locality);
uint8_t status;
uint16_t burstcnt;
int err;
uint32_t len, index;
if (sizeof(buf->header) != TPM_HEADER_SIZE) {
ERROR("%s: invalid command header size.\n", __func__);
return TPM_INVALID_PARAM;
}
err = tpm2_fifo_read_byte(tpm_base_addr + TPM_FIFO_REG_STATUS, &status);
if (err < 0) {
return err;
}
if (!(status & TPM_STAT_COMMAND_READY)) {
err = tpm2_fifo_prepare(chip_data);
if (err < 0) {
return err;
}
}
/* write the command header to the TPM first */
const uint8_t *header_data = (const uint8_t *)&buf->header;
for (index = 0; index < TPM_HEADER_SIZE; index++) {
err = tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_DATA_FIFO,
header_data[index]);
if (err < 0) {
return err;
}
}
len = be32toh(buf->header.cmd_size);
while (index < len) {
err = tpm2_fifo_get_burstcount(chip_data, &burstcnt);
if (err < 0) {
return err;
}
for (; burstcnt > 0U && index < len; burstcnt--) {
err = tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_DATA_FIFO,
buf->data[index - TPM_HEADER_SIZE]);
if (err < 0) {
return err;
}
index++;
}
}
err = tpm2_wait_reg_bits(tpm_base_addr + TPM_FIFO_REG_STATUS,
TPM_STAT_VALID,
chip_data->timeout_msec_c,
&status);
if (err < 0) {
return err;
}
if (status & TPM_STAT_EXPECT) {
ERROR("%s: TPM is still expecting data after command buffer is sent\n", __func__);
return TPM_ERR_TRANSFER;
}
err = tpm2_fifo_write_byte(tpm_base_addr + TPM_FIFO_REG_STATUS, TPM_STAT_GO);
if (err < 0) {
return err;
}
return TPM_SUCCESS;
}
static int tpm2_fifo_read_data(struct tpm_chip_data *chip_data, tpm_cmd *buf,
uint16_t tpm_base_addr, uint8_t *status, int *size, int bytes_expected)
{
int err, read_size, loop_index;
uint16_t burstcnt;
uint8_t *read_data;
if (bytes_expected == TPM_READ_HEADER) {
/* read the response header from the TPM first */
read_data = (uint8_t *)&buf->header;
read_size = TPM_HEADER_SIZE;
loop_index = *size;
} else {
/* process the rest of the mssg with bytes_expected */
read_data = buf->data;
read_size = bytes_expected;
loop_index = *size - TPM_HEADER_SIZE;
}
err = tpm2_wait_reg_bits(tpm_base_addr + TPM_FIFO_REG_STATUS,
TPM_STAT_AVAIL,
chip_data->timeout_msec_c,
status);
if (err < 0) {
return err;
}
while (*size < read_size) {
err = tpm2_fifo_get_burstcount(chip_data, &burstcnt);
if (err < 0) {
ERROR("%s: TPM burst count error\n", __func__);
return err;
}
for (; burstcnt > 0U && loop_index < read_size;
burstcnt--, loop_index++, (*size)++) {
err = tpm2_fifo_read_byte(
tpm_base_addr + TPM_FIFO_REG_DATA_FIFO,
(void *)&read_data[loop_index]);
if (err < 0) {
return err;
}
}
}
return TPM_SUCCESS;
}
static int tpm2_fifo_receive(struct tpm_chip_data *chip_data, tpm_cmd *buf)
{
uint16_t tpm_base_addr = LOCALITY_START_ADDRESS(chip_data, chip_data->locality);
int size = 0, bytes_expected, err;
uint8_t status;
err = tpm2_fifo_read_data(chip_data, buf, tpm_base_addr, &status, &size, TPM_READ_HEADER);
if (err < 0) {
return err;
}
bytes_expected = be32toh(buf->header.cmd_size);
if (bytes_expected > sizeof(*buf)) {
ERROR("%s: tpm response buffer cannot store expected response\n", __func__);
return TPM_INVALID_PARAM;
}
if (size == bytes_expected) {
return size;
}
err = tpm2_fifo_read_data(chip_data, buf, tpm_base_addr, &status, &size, bytes_expected);
if (err < 0) {
return err;
}
if (size < bytes_expected) {
ERROR("%s: response buffer size is less than expected\n", __func__);
return TPM_ERR_RESPONSE;
}
return TPM_SUCCESS;
}
static interface_ops_t fifo_ops = {
.get_info = tpm2_get_info,
.send = tpm2_fifo_send,
.receive = tpm2_fifo_receive,
.request_access = tpm2_fifo_request_access,
.release_locality = tpm2_fifo_release_locality,
};
struct interface_ops *
tpm_interface_getops(struct tpm_chip_data *chip_data, uint8_t locality)
{
return &fifo_ops;
}

161
drivers/tpm/tpm2_fifo_spi.c Normal file
View file

@ -0,0 +1,161 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <errno.h>
#include <stdbool.h>
#include <string.h>
#include <drivers/gpio_spi.h>
#include <drivers/tpm/tpm2.h>
#include <drivers/tpm/tpm2_chip.h>
#include <drivers/tpm/tpm2_interface.h>
#define ENCODE_LIMIT 128
#define CS_ASSERT_OFFSET 0xD4
#define RETRY_COUNT 50
#define TPM_READ false
#define TPM_WRITE true
extern struct spi_plat *spidev;
static int tpm2_spi_transfer(const void *data_out, void *data_in, uint8_t len)
{
return spidev->ops->xfer(len, data_out, data_in);
}
/*
* Reference: TCG PC Client Platform TPM Profile (PTP) Specification v1.05
*/
static int tpm2_spi_start_transaction(uint16_t tpm_reg, bool write, uint8_t len)
{
int rc;
uint8_t header[4];
uint8_t header_response[4];
uint8_t zero = 0, byte;
int retries;
/* check to make sure len does not exceed the encoding limit */
if (len > ENCODE_LIMIT) {
return TPM_INVALID_PARAM;
}
/*
* 7.4.6 TPM SPI Bit protocol calls for the following header
* to be sent to the TPM at the start of every attempted read/write.
*/
/* header[0] contains the r/w and the xfer size, if the msb is not
* set, the operation is write, if it is set then it is read.
* The size of the transfer is encoded, and must not overwrite
* the msb, therefore an ENCODE LIMIT of 128 is present.
*/
header[0] = ((write) ? 0x00 : 0x80) | (len - 1);
/*
* header[1] contains the address offset 0xD4_xxxx as defined
* in the TPM spec, since the CS# is asserted.
*/
header[1] = CS_ASSERT_OFFSET;
/*
* header[2] and header[3] contain the address of the register
* to be read/written.
*/
header[2] = tpm_reg >> 8;
header[3] = tpm_reg;
rc = tpm2_spi_transfer(header, header_response, 4);
if (rc != 0) {
return TPM_ERR_TRANSFER;
}
/*
* 7.4.5 Flow Control defines a wait state in order to accommodate
* the TPM in case it needs to free its buffer.
*/
if ((header_response[3] & 0x01) != 0U) {
return TPM_SUCCESS;
}
/*
* if the wait state over bit is not set in the initial header_response,
* poll for the wait state over by sending a zeroed byte, if the
* RETRY_COUNT is exceeded the transfer fails.
*/
for (retries = RETRY_COUNT; retries > 0; retries--) {
rc = tpm2_spi_transfer(&zero, &byte, 1);
if (rc != 0) {
return TPM_ERR_TRANSFER;
}
if ((byte & 0x01) != 0U) {
return TPM_SUCCESS;
}
}
if (retries == 0) {
ERROR("%s: TPM Timeout\n", __func__);
return TPM_ERR_TIMEOUT;
}
return TPM_SUCCESS;
}
static void tpm2_spi_end_transaction(void)
{
spidev->ops->stop();
}
static void tpm2_spi_init(void)
{
spidev->ops->get_access();
spidev->ops->start();
}
static int tpm2_fifo_io(uint16_t tpm_reg, bool is_write, uint8_t len, void *val)
{
int rc;
tpm2_spi_init();
rc = tpm2_spi_start_transaction(tpm_reg, is_write, len);
if (rc != 0) {
tpm2_spi_end_transaction();
return rc;
}
rc = tpm2_spi_transfer(
is_write ? val : NULL,
is_write ? NULL : val,
len);
if (rc != 0) {
tpm2_spi_end_transaction();
return rc;
}
tpm2_spi_end_transaction();
return TPM_SUCCESS;
}
int tpm2_fifo_write_byte(uint16_t tpm_reg, uint8_t val)
{
return tpm2_fifo_io(tpm_reg, TPM_WRITE, BYTE, &val);
}
int tpm2_fifo_read_byte(uint16_t tpm_reg, uint8_t *val)
{
return tpm2_fifo_io(tpm_reg, TPM_READ, BYTE, val);
}
int tpm2_fifo_read_chunk(uint16_t tpm_reg, uint8_t len, void *val)
{
if ((len != BYTE) && (len != WORD) && (len != DWORD)) {
return TPM_INVALID_PARAM;
}
return tpm2_fifo_io(tpm_reg, TPM_READ, len, val);
}

View file

@ -0,0 +1,75 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <drivers/delay_timer.h>
#include <drivers/gpio.h>
#include <drivers/tpm/tpm2_slb9670/slb9670_gpio.h>
/*
* Infineon SLB9670 Chip Reset Parameters
*/
#define t_WRST 2 /* Warm Reset Time (us) */
#define t_RSTIN 60 /* Reset Inactive Time (ms) */
/*
* RPi3 GPIO pin configuration for TPM via bit-bang SPI
* References: https://pinout.xyz/pinout/spi
* - docs/design_documents/measured_boot_dtpm_poc.rst
*/
const struct gpio_spi_data tpm_rpi3_gpio_data = {
.cs_gpio = 7,
.sclk_gpio = 11,
.mosi_gpio = 10,
.miso_gpio = 9,
.reset_gpio = 24,
.spi_delay_us = 0,
.spi_mode = 0
};
/*
* When RST is asserted at certain points in time, then this
* triggers the TPM's security functions, in the case where
* multiple resets need to be asserted, there must be a wait
* of at least t_RSTIN between the resets
*
* In most cases this is not needed since RST is only being asserted
* once, ie for TPM initialization at the beginning of TFA.
*/
void tpm2_slb9670_reset_chip(struct gpio_spi_data *tpm_gpio_data)
{
/*
* since we don't know the value of the pin before it was init to 1
* it is best to assume the state was 0, and account for that by
* adding an initial RST inactive delay
*/
mdelay(t_RSTIN);
/* pull #RST pin to active low for 2us */
gpio_set_value(tpm_gpio_data->reset_gpio, 0);
udelay(t_WRST);
/* wait 60ms after warm reset before sending TPM commands */
gpio_set_value(tpm_gpio_data->reset_gpio, 1);
mdelay(t_RSTIN);
}
/*
* init GPIO pins for the Infineon slb9670 TPM
*/
void tpm2_slb9670_gpio_init(struct gpio_spi_data *tpm_gpio_data)
{
gpio_set_value(tpm_gpio_data->cs_gpio, 1);
gpio_set_direction(tpm_gpio_data->cs_gpio, GPIO_DIR_OUT);
gpio_set_value(tpm_gpio_data->sclk_gpio, 0);
gpio_set_direction(tpm_gpio_data->sclk_gpio, GPIO_DIR_OUT);
gpio_set_value(tpm_gpio_data->mosi_gpio, 1);
gpio_set_direction(tpm_gpio_data->mosi_gpio, GPIO_DIR_OUT);
gpio_set_direction(tpm_gpio_data->miso_gpio, GPIO_DIR_IN);
gpio_set_value(tpm_gpio_data->reset_gpio, 1);
gpio_set_direction(tpm_gpio_data->reset_gpio, GPIO_DIR_OUT);
}

View file

@ -0,0 +1,32 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef GPIO_SPI_H
#define GPIO_SPI_H
#include <stdint.h>
struct gpio_spi_data {
uint8_t cs_gpio, sclk_gpio, mosi_gpio, miso_gpio, reset_gpio;
uint32_t spi_delay_us;
unsigned int spi_mode;
};
struct spi_ops {
void (*get_access)(void);
void (*start)(void);
void (*stop)(void);
int (*xfer)(unsigned int bitlen, const void *dout, void *din);
};
struct spi_plat {
struct gpio_spi_data gpio_data;
const struct spi_ops *ops;
};
struct spi_plat *gpio_spi_init(struct gpio_spi_data *gpio_spi_data);
#endif /* GPIO_SPI_H */

103
include/drivers/tpm/tpm2.h Normal file
View file

@ -0,0 +1,103 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef TPM2_H
#define TPM2_H
#include <assert.h>
#include <endian.h>
#include <errno.h>
#include <stdint.h>
#include <drivers/tpm/tpm2_chip.h>
/* Return values */
enum tpm_ret_value {
TPM_SUCCESS = 0,
TPM_ERR_RESPONSE = -1,
TPM_INVALID_PARAM = -2,
TPM_ERR_TIMEOUT = -3,
TPM_ERR_TRANSFER = -4,
};
/*
* TPM FIFO register space address offsets
*/
#define TPM_FIFO_REG_ACCESS 0x00
#define TPM_FIFO_REG_INTR_ENABLE 0x08
#define TPM_FIFO_REG_INTR_VECTOR 0x0C
#define TPM_FIFO_REG_INTR_STS 0x10
#define TPM_FIFO_REG_INTF_CAPS 0x14
#define TPM_FIFO_REG_STATUS 0x18
#define TPM_FIFO_REG_BURST_COUNT_LO 0x19
#define TPM_FIFO_REG_BURST_COUNT_HI 0x20
#define TPM_FIFO_REG_DATA_FIFO 0x24
#define TPM_FIFO_REG_VENDID 0xF00
#define TPM_FIFO_REG_DEVID 0xF02
#define TPM_FIFO_REG_REVID 0xF04
#define TPM_ST_NO_SESSIONS U(0x8001)
#define TPM_ST_SESSIONS U(0x8002)
#define TPM_SU_CLEAR U(0x0000)
#define TPM_SU_STATE U(0x0001)
#define TPM_MIN_AUTH_SIZE 9
#define TPM_RS_PW 0x40000009
#define TPM_ZERO_NONCE_SIZE 0
#define TPM_ATTRIBUTES_DISABLE 0
#define TPM_ZERO_HMAC_SIZE 0
#define TPM_SINGLE_HASH_COUNT 1
#define TPM_CMD_STARTUP U(0x0144)
#define TPM_CMD_PCR_READ U(0x017E)
#define TPM_CMD_PCR_EXTEND U(0x0182)
#define TPM_RESPONSE_SUCCESS U(0x0000)
#define TPM_ACCESS_ACTIVE_LOCALITY U(1 << 5)
#define TPM_ACCESS_VALID U(1 << 7)
#define TPM_ACCESS_RELINQUISH_LOCALITY U(1 << 5)
#define TPM_ACCESS_REQUEST_USE U(1 << 1)
#define TPM_ACCESS_REQUEST_PENDING U(1 << 2)
#define TPM_STAT_VALID U(1 << 7)
#define TPM_STAT_COMMAND_READY U(1 << 6)
#define TPM_STAT_GO U(1 << 5)
#define TPM_STAT_AVAIL U(1 << 4)
#define TPM_STAT_EXPECT U(1 << 3)
#define TPM_READ_HEADER -1
#define TPM_HEADER_SIZE 10
#define MAX_SIZE_CMDBUF 256
#define MAX_CMD_DATA (MAX_SIZE_CMDBUF - TPM_HEADER_SIZE)
#pragma pack(1)
typedef struct tpm_cmd_hdr {
uint16_t tag;
uint32_t cmd_size;
uint32_t cmd_code;
} tpm_cmd_hdr;
typedef struct tpm_cmd {
tpm_cmd_hdr header;
uint8_t data[MAX_CMD_DATA];
} tpm_cmd;
#pragma pack()
int tpm_interface_init(struct tpm_chip_data *chip_data, uint8_t locality);
int tpm_interface_close(struct tpm_chip_data *chip_data, uint8_t locality);
int tpm_startup(struct tpm_chip_data *chip_data, uint16_t mode);
int tpm_pcr_extend(struct tpm_chip_data *chip_data, uint32_t index,
uint16_t algorithm, const uint8_t *digest,
uint32_t digest_len);
#endif /* TPM2_H */

View file

@ -0,0 +1,24 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdbool.h>
#include <stdint.h>
#ifndef TPM2_CHIP_H
#define TPM2_CHIP_H
#define BYTE U(0x1)
#define WORD U(0x2)
#define DWORD U(0x4)
struct tpm_chip_data {
uint8_t locality;
unsigned long timeout_msec_a, timeout_msec_b;
unsigned long timeout_msec_c, timeout_msec_d;
uint16_t address;
};
#endif /* TPM2_CHIP_H */

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef TPM2_INTERFACE_H
#define TPM2_INTERFACE_H
#include "tpm2_chip.h"
typedef struct interface_ops {
int (*get_info)(struct tpm_chip_data *chip_data, uint8_t locality);
int (*send)(struct tpm_chip_data *chip_data, const tpm_cmd *buf);
int (*receive)(struct tpm_chip_data *chip_data, tpm_cmd *buf);
int (*request_access)(struct tpm_chip_data *chip_data, uint8_t locality);
int (*release_locality)(struct tpm_chip_data *chip_data, uint8_t locality);
} interface_ops_t;
struct interface_ops *tpm_interface_getops(struct tpm_chip_data *chip_data, uint8_t locality);
int tpm2_fifo_write_byte(uint16_t tpm_reg, uint8_t val);
int tpm2_fifo_read_byte(uint16_t tpm_reg, uint8_t *val);
int tpm2_fifo_read_chunk(uint16_t tpm_reg, uint8_t len, void *val);
#endif /* TPM2_INTERFACE_H */

View file

@ -0,0 +1,16 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "drivers/gpio_spi.h"
#ifndef SLB9670_GPIO_H
#define SLB9670_GPIO_H
void tpm2_slb9670_reset_chip(struct gpio_spi_data *tpm_gpio_data);
void tpm2_slb9670_gpio_init(struct gpio_spi_data *tpm_gpio_data);
#endif /* SLB9670_GPIO_H */

View file

@ -192,6 +192,9 @@ endif
# Option to build TF with Measured Boot support
MEASURED_BOOT := 0
# Option to build TF with Discrete TPM support
DISCRETE_TPM := 0
# Option to enable the DICE Protection Environmnet as a Measured Boot backend
DICE_PROTECTION_ENVIRONMENT :=0

View file

@ -75,6 +75,9 @@ static const mmap_region_t plat_rpi3_mmap[] = {
#endif
MAP_DEVICE0,
MAP_FIP,
#if MEASURED_BOOT
RPI3_MAP_BL1_RW,
#endif
MAP_NS_DRAM0,
#ifdef BL32_BASE
MAP_BL32_MEM,

View file

@ -1,5 +1,5 @@
/*
* Copyright (c) 2015-2024, Arm Limited and Contributors. All rights reserved.
* Copyright (c) 2015-2025, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -171,6 +171,14 @@
#define BL1_RW_BASE (BL1_RW_LIMIT - PLAT_MAX_BL1_RW_SIZE)
#define BL1_RW_LIMIT (BL_RAM_BASE + BL_RAM_SIZE)
/*
* In order to access the TCG Event Log in BL2, we need to expose the BL1_RW region
* where the log resides.
*/
#define RPI3_MAP_BL1_RW MAP_REGION_FLAT(BL1_RW_BASE, \
BL1_RW_LIMIT - BL1_RW_BASE, \
MT_MEMORY | MT_RW | MT_SECURE)
/*
* BL2 specific defines.
*
@ -261,4 +269,15 @@
*/
#define SYS_COUNTER_FREQ_IN_TICKS ULL(19200000)
/*
* TCG Event Log
*/
#define PLAT_ARM_EVENT_LOG_MAX_SIZE UL(0x400)
/*
* NT_FW_CONFIG magic dram addr and max size
*/
#define PLAT_RPI3_DTO_BASE ULL(0x11530000)
#define PLAT_RPI3_DTO_MAX_SIZE ULL(0x001000)
#endif /* PLATFORM_DEF_H */

View file

@ -0,0 +1,18 @@
/*
* Copyright (c) 2025, Arm Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef RPI3_MEASURED_BOOT_H
#define RPI3_MEASURED_BOOT_H
#include <stdint.h>
#include <arch_helpers.h>
void rpi3_mboot_fetch_eventlog_info(uint8_t **eventlog_addr, size_t *eventlog_size);
int rpi3_set_nt_fw_info(size_t log_size, uintptr_t *ns_log_addr);
#endif /* RPI3_MEASURED_BOOT_H */

View file

@ -1,5 +1,5 @@
#
# Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.
# Copyright (c) 2013-2025, Arm Limited and Contributors. All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
#
@ -8,7 +8,8 @@ include lib/libfdt/libfdt.mk
include lib/xlat_tables_v2/xlat_tables.mk
PLAT_INCLUDES := -Iplat/rpi/common/include \
-Iplat/rpi/rpi3/include
-Iplat/rpi/rpi3/include \
-Iinclude/lib/libfdt
PLAT_BL_COMMON_SOURCES := drivers/ti/uart/aarch64/16550_console.S \
drivers/arm/pl011/aarch64/pl011_console.S \
@ -20,6 +21,40 @@ PLAT_BL_COMMON_SOURCES := drivers/ti/uart/aarch64/16550_console.S \
plat/rpi/common/rpi3_console_dual.c \
${XLAT_TABLES_LIB_SRCS}
ifeq (${DISCRETE_TPM},1)
TPM2_MK := drivers/tpm/tpm2.mk
$(info Including ${TPM2_MK})
include ${TPM2_MK}
endif
ifeq (${TPM_INTERFACE},FIFO_SPI)
PLAT_BL_COMMON_SOURCES += drivers/gpio/gpio_spi.c \
drivers/tpm/tpm2_slb9670/slb9670_gpio.c
endif
ifeq (${MEASURED_BOOT},1)
MEASURED_BOOT_MK := drivers/measured_boot/event_log/event_log.mk
$(info Including ${MEASURED_BOOT_MK})
include ${MEASURED_BOOT_MK}
PLAT_BL_COMMON_SOURCES += $(TPM2_SOURCES) \
${EVENT_LOG_SOURCES}
BL1_SOURCES += plat/rpi/rpi3/rpi3_bl1_mboot.c
BL2_SOURCES += plat/rpi/rpi3/rpi3_bl2_mboot.c \
plat/rpi/rpi3/rpi3_dyn_cfg_helpers.c \
common/fdt_wrappers.c \
common/fdt_fixup.c
CRYPTO_SOURCES := drivers/auth/crypto_mod.c
BL1_SOURCES += ${CRYPTO_SOURCES}
BL2_SOURCES += ${CRYPTO_SOURCES}
include drivers/auth/mbedtls/mbedtls_crypto.mk
endif
BL1_SOURCES += drivers/io/io_fip.c \
drivers/io/io_memmap.c \
drivers/io/io_storage.c \

View file

@ -0,0 +1,137 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdarg.h>
#include <stdint.h>
#include <common/desc_image_load.h>
#include <common/ep_info.h>
#include <drivers/auth/crypto_mod.h>
#include <drivers/gpio_spi.h>
#include <drivers/measured_boot/event_log/event_log.h>
#include <drivers/measured_boot/metadata.h>
#include <drivers/tpm/tpm2.h>
#include <drivers/tpm/tpm2_chip.h>
#include <drivers/tpm/tpm2_slb9670/slb9670_gpio.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <rpi_shared.h>
/* Event Log data */
uint8_t event_log[PLAT_ARM_EVENT_LOG_MAX_SIZE];
/* RPI3 table with platform specific image IDs, names and PCRs */
const event_log_metadata_t rpi3_event_log_metadata[] = {
{ FW_CONFIG_ID, MBOOT_FW_CONFIG_STRING, PCR_0 },
{ TB_FW_CONFIG_ID, MBOOT_TB_FW_CONFIG_STRING, PCR_0 },
{ BL2_IMAGE_ID, MBOOT_BL2_IMAGE_STRING, PCR_0 },
{ EVLOG_INVALID_ID, NULL, (unsigned int)(-1) } /* Terminator */
};
#if DISCRETE_TPM
extern struct tpm_chip_data tpm_chip_data;
#if (TPM_INTERFACE == FIFO_SPI)
extern struct gpio_spi_data tpm_rpi3_gpio_data;
struct spi_plat *spidev;
#endif
static void rpi3_bl1_tpm_early_interface_setup(void)
{
#if (TPM_INTERFACE == FIFO_SPI)
tpm2_slb9670_gpio_init(&tpm_rpi3_gpio_data);
tpm2_slb9670_reset_chip(&tpm_rpi3_gpio_data);
spidev = gpio_spi_init(&tpm_rpi3_gpio_data);
#endif
}
#endif
void bl1_plat_mboot_init(void)
{
#if DISCRETE_TPM
int rc;
rpi3_bl1_tpm_early_interface_setup();
rc = tpm_interface_init(&tpm_chip_data, 0);
if (rc != 0) {
ERROR("BL1: TPM interface init failed\n");
panic();
}
rc = tpm_startup(&tpm_chip_data, TPM_SU_CLEAR);
if (rc != 0) {
ERROR("BL1: TPM Startup failed\n");
panic();
}
#endif
event_log_init(event_log, event_log + sizeof(event_log));
event_log_write_header();
}
void bl1_plat_mboot_finish(void)
{
size_t event_log_cur_size;
image_desc_t *image_desc;
entry_point_info_t *ep_info;
event_log_cur_size = event_log_get_cur_size(event_log);
image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID);
assert(image_desc != NULL);
/* Get the entry point info */
ep_info = &image_desc->ep_info;
ep_info->args.arg2 = (uint64_t) event_log;
ep_info->args.arg3 = (uint32_t) event_log_cur_size;
#if DISCRETE_TPM
int rc;
/* relinquish control of TPM locality 0 and close interface */
rc = tpm_interface_close(&tpm_chip_data, 0);
if (rc != 0) {
ERROR("BL1: TPM interface close failed\n");
panic();
}
#endif
}
int plat_mboot_measure_image(unsigned int image_id, image_info_t *image_data)
{
int rc = 0;
unsigned char hash_data[CRYPTO_MD_MAX_SIZE];
const event_log_metadata_t *metadata_ptr = rpi3_event_log_metadata;
rc = event_log_measure(image_data->image_base, image_data->image_size, hash_data);
if (rc != 0) {
return rc;
}
#if DISCRETE_TPM
rc = tpm_pcr_extend(&tpm_chip_data, 0, TPM_ALG_ID, hash_data, TCG_DIGEST_SIZE);
if (rc != 0) {
ERROR("BL1: TPM PCR-0 extend failed\n");
panic();
}
#endif
while ((metadata_ptr->id != EVLOG_INVALID_ID) &&
(metadata_ptr->id != image_id)) {
metadata_ptr++;
}
assert(metadata_ptr->id != EVLOG_INVALID_ID);
event_log_record(hash_data, EV_POST_CODE, metadata_ptr);
/* Dump Event Log for user view */
dump_event_log((uint8_t *)event_log, event_log_get_cur_size(event_log));
return rc;
}

View file

@ -0,0 +1,151 @@
/*
* Copyright (c) 2025, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <stdarg.h>
#include <stdint.h>
#include "./include/rpi3_measured_boot.h"
#include <drivers/auth/crypto_mod.h>
#include <drivers/gpio_spi.h>
#include <drivers/measured_boot/event_log/event_log.h>
#include <drivers/measured_boot/metadata.h>
#include <drivers/tpm/tpm2.h>
#include <drivers/tpm/tpm2_chip.h>
#include <drivers/tpm/tpm2_slb9670/slb9670_gpio.h>
#include <plat/common/common_def.h>
#include <plat/common/platform.h>
#include <platform_def.h>
#include <tools_share/tbbr_oid.h>
/* RPI3 table with platform specific image IDs, names and PCRs */
const event_log_metadata_t rpi3_event_log_metadata[] = {
{ BL31_IMAGE_ID, MBOOT_BL31_IMAGE_STRING, PCR_0 },
{ BL33_IMAGE_ID, MBOOT_BL33_IMAGE_STRING, PCR_0 },
{ NT_FW_CONFIG_ID, MBOOT_NT_FW_CONFIG_STRING, PCR_0 },
{ EVLOG_INVALID_ID, NULL, (unsigned int)(-1) } /* Terminator */
};
#if DISCRETE_TPM
extern struct tpm_chip_data tpm_chip_data;
#if (TPM_INTERFACE == FIFO_SPI)
extern struct gpio_spi_data tpm_rpi3_gpio_data;
struct spi_plat *spidev;
#endif
static void rpi3_bl2_tpm_early_interface_setup(void)
{
#if (TPM_INTERFACE == FIFO_SPI)
tpm2_slb9670_gpio_init(&tpm_rpi3_gpio_data);
spidev = gpio_spi_init(&tpm_rpi3_gpio_data);
#endif
}
#endif
static uint8_t *event_log_start;
static size_t event_log_size;
void bl2_plat_mboot_init(void)
{
uint8_t *bl2_event_log_start;
uint8_t *bl2_event_log_finish;
#if DISCRETE_TPM
int rc;
rpi3_bl2_tpm_early_interface_setup();
rc = tpm_interface_init(&tpm_chip_data, 0);
if (rc != 0) {
ERROR("BL2: TPM interface init failed\n");
panic();
}
#endif
rpi3_mboot_fetch_eventlog_info(&event_log_start, &event_log_size);
bl2_event_log_start = event_log_start + event_log_size;
bl2_event_log_finish = event_log_start + PLAT_ARM_EVENT_LOG_MAX_SIZE;
event_log_init(bl2_event_log_start, bl2_event_log_finish);
}
void bl2_plat_mboot_finish(void)
{
int rc;
/* Event Log address in Non-Secure memory */
uintptr_t ns_log_addr;
/* Event Log filled size */
size_t event_log_cur_size;
event_log_cur_size = event_log_get_cur_size((uint8_t *)event_log_start);
/* write the eventlog addr and size to NT_FW_CONFIG TPM entry */
rc = rpi3_set_nt_fw_info(event_log_cur_size, &ns_log_addr);
if (rc != 0) {
ERROR("%s(): Unable to update %s_FW_CONFIG\n",
__func__, "NT");
/*
* fatal error due to Bl33 maintaining the assumption
* that the eventlog is successfully passed via
* NT_FW_CONFIG.
*/
panic();
}
/* Copy Event Log to Non-secure memory */
(void)memcpy((void *)ns_log_addr, (const void *)event_log_start,
event_log_cur_size);
/* Ensure that the Event Log is visible in Non-secure memory */
flush_dcache_range(ns_log_addr, event_log_cur_size);
/* Dump Event Log for user view */
dump_event_log((uint8_t *)event_log_start, event_log_cur_size);
#if DISCRETE_TPM
/* relinquish control of TPM locality 0 and close interface */
rc = tpm_interface_close(&tpm_chip_data, 0);
if (rc != 0) {
ERROR("BL2: TPM interface close failed\n");
panic();
}
#endif
}
int plat_mboot_measure_image(unsigned int image_id, image_info_t *image_data)
{
int rc = 0;
unsigned char hash_data[CRYPTO_MD_MAX_SIZE];
const event_log_metadata_t *metadata_ptr = rpi3_event_log_metadata;
/* Measure the payload with algorithm selected by EventLog driver */
rc = event_log_measure(image_data->image_base, image_data->image_size, hash_data);
if (rc != 0) {
return rc;
}
#if DISCRETE_TPM
rc = tpm_pcr_extend(&tpm_chip_data, 0, TPM_ALG_ID, hash_data, TCG_DIGEST_SIZE);
if (rc != 0) {
ERROR("BL2: TPM PCR-0 extend failed\n");
panic();
}
#endif
while ((metadata_ptr->id != EVLOG_INVALID_ID) &&
(metadata_ptr->id != image_id)) {
metadata_ptr++;
}
assert(metadata_ptr->id != EVLOG_INVALID_ID);
event_log_record(hash_data, EV_POST_CODE, metadata_ptr);
return rc;
}

View file

@ -1,12 +1,12 @@
/*
* Copyright (c) 2015-2019, ARM Limited and Contributors. All rights reserved.
* Copyright (c) 2015-2025, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <platform_def.h>
#include "./include/rpi3_measured_boot.h"
#include <arch_helpers.h>
#include <common/bl_common.h>
@ -18,6 +18,7 @@
#include <drivers/generic_delay_timer.h>
#include <drivers/rpi3/gpio/rpi3_gpio.h>
#include <drivers/rpi3/sdhost/rpi3_sdhost.h>
#include <platform_def.h>
#include <rpi_shared.h>
@ -27,6 +28,10 @@ static meminfo_t bl2_tzram_layout __aligned(CACHE_WRITEBACK_GRANULE);
/* Data structure which holds the MMC info */
static struct mmc_device_info mmc_info;
/* Variables that hold the eventlog addr and size for use in BL2 Measured Boot */
static uint8_t *event_log_start;
static size_t event_log_size;
static void rpi3_sdhost_setup(void)
{
struct rpi3_sdhost_params params;
@ -41,6 +46,12 @@ static void rpi3_sdhost_setup(void)
rpi3_sdhost_init(&params, &mmc_info);
}
void rpi3_mboot_fetch_eventlog_info(uint8_t **eventlog_addr, size_t *eventlog_size)
{
*eventlog_addr = event_log_start;
*eventlog_size = event_log_size;
}
/*******************************************************************************
* BL1 has passed the extents of the trusted SRAM that should be visible to BL2
* in x0. This memory layout is sitting at the base of the free trusted SRAM.
@ -67,6 +78,10 @@ void bl2_early_platform_setup2(u_register_t arg0, u_register_t arg1,
/* Setup SDHost driver */
rpi3_sdhost_setup();
/* populate eventlog addr and size for use in bl2 mboot */
event_log_start = (uint8_t *)(uintptr_t)arg2;
event_log_size = arg3;
plat_rpi3_io_setup();
}

View file

@ -0,0 +1,198 @@
/*
* Copyright (c) 2025, ARM Limited and Contributors. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <arch_helpers.h>
#include <common/desc_image_load.h>
#include <common/fdt_wrappers.h>
#include <libfdt.h>
#include <platform_def.h>
#define DTB_PROP_HW_LOG_ADDR "tpm_event_log_addr"
#define DTB_PROP_HW_LOG_SIZE "tpm_event_log_size"
static int rpi3_event_log_fdt_init_overlay(uintptr_t dt_base, int dt_size)
{
int ret;
int offset;
void *dtb = (void *)dt_base;
ret = fdt_create_empty_tree(dtb, dt_size);
if (ret < 0) {
ERROR("cannot create empty dtb tree: %s\n",
fdt_strerror(ret));
return ret;
}
offset = fdt_path_offset(dtb, "/");
if (offset < 0) {
ERROR("cannot find root of the tree: %s\n",
fdt_strerror(offset));
return offset;
}
offset = fdt_add_subnode(dtb, offset, "fragment@0");
if (offset < 0) {
ERROR("cannot add fragment node: %s\n",
fdt_strerror(offset));
return offset;
}
ret = fdt_setprop_string(dtb, offset, "target-path", "/");
if (ret < 0) {
ERROR("cannot set target-path property: %s\n",
fdt_strerror(ret));
return ret;
}
offset = fdt_add_subnode(dtb, offset, "__overlay__");
if (offset < 0) {
ERROR("cannot add __overlay__ node: %s\n",
fdt_strerror(offset));
return ret;
}
offset = fdt_add_subnode(dtb, offset, "tpm_event_log");
if (offset < 0) {
ERROR("cannot add tpm_event_log node: %s\n",
fdt_strerror(offset));
return offset;
}
ret = fdt_setprop_string(dtb, offset, "compatible",
"arm,tpm_event_log");
if (ret < 0) {
ERROR("cannot set compatible property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = fdt_setprop_u64(dtb, offset, "tpm_event_log_addr", 0);
if (ret < 0) {
ERROR("cannot set tpm_event_log_addr property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = fdt_setprop_u32(dtb, offset, "tpm_event_log_size", 0);
if (ret < 0) {
ERROR("cannot set tpm_event_log_size property: %s\n",
fdt_strerror(ret));
return ret;
}
return ret;
}
/*
* Write the Event Log address and its size in the DTB.
*
* This function is supposed to be called only by BL2.
*
* Returns:
* 0 = success
* < 0 = error
*/
static int rpi3_set_event_log_info(uintptr_t config_base,
uintptr_t log_addr, size_t log_size)
{
/* As libfdt uses void *, we can't avoid this cast */
void *dtb = (void *)config_base;
/* compatible is set based on the following tpm_tis_spi guidelines from
* https://www.kernel.org/doc/Documentation/devicetree/bindings
* /security/tpm/tpm_tis_spi.txt
*/
const char *compatible_tpm = "arm,tpm_event_log";
uint64_t base = cpu_to_fdt64(log_addr);
uint32_t sz = cpu_to_fdt32(log_size);
int err, node;
err = fdt_open_into(dtb, dtb, PLAT_RPI3_DTO_MAX_SIZE);
if (err < 0) {
ERROR("Invalid Device Tree at %p: error %d\n", dtb, err);
return err;
}
/*
* Verify that the DTB is valid, before attempting to write to it,
* and get the DTB root node.
*/
/* Check if the pointer to DT is correct */
err = fdt_check_header(dtb);
if (err < 0) {
WARN("Invalid DTB file passed\n");
return err;
}
/*
* Find the TPM node in device tree.
*/
node = fdt_node_offset_by_compatible(dtb, -1, compatible_tpm);
if (node < 0) {
ERROR("The compatible property '%s' not%s", compatible_tpm,
" found in the config\n");
return node;
}
err = fdt_setprop(dtb, node, DTB_PROP_HW_LOG_ADDR, &base, 8);
if (err < 0) {
ERROR("Failed to add log addr err %d\n", err);
return err;
}
err = fdt_setprop(dtb, node, DTB_PROP_HW_LOG_SIZE, &sz, 4);
if (err < 0) {
ERROR("Failed to add log size err %d\n", err);
return err;
}
err = fdt_pack(dtb);
if (err < 0) {
ERROR("Failed to pack Device Tree at %p: error %d\n", dtb, err);
return err;
}
/*
* Ensure that the info written to the DTB is visible
* to other images.
*/
flush_dcache_range(config_base, fdt_totalsize(dtb));
return err;
}
/*
* This function writes the Event Log address and its size
* in the RPi3 DTB.
*
* This function is supposed to be called only by BL2.
*
* Returns:
* 0 = success
* < 0 = error
*/
int rpi3_set_nt_fw_info(size_t log_size, uintptr_t *ns_log_addr)
{
uintptr_t ns_addr;
int err;
assert(ns_log_addr != NULL);
ns_addr = PLAT_RPI3_DTO_BASE + PLAT_RPI3_DTO_MAX_SIZE;
rpi3_event_log_fdt_init_overlay(PLAT_RPI3_DTO_BASE,
PLAT_RPI3_DTO_MAX_SIZE);
/* Write the Event Log address and its size in the DTB */
err = rpi3_set_event_log_info(PLAT_RPI3_DTO_BASE,
ns_addr, log_size);
/* Return Event Log address in Non-secure memory */
*ns_log_addr = (err < 0) ? 0UL : ns_addr;
return err;
}