mirror of
https://github.com/ARM-software/arm-trusted-firmware.git
synced 2025-04-15 09:04:17 +00:00
Merge pull request #860 from jeenu-arm/hw-asstd-coh
Patches for platforms with hardware-assisted coherency
This commit is contained in:
commit
510a9de79f
12 changed files with 229 additions and 97 deletions
7
Makefile
7
Makefile
|
@ -306,6 +306,11 @@ ifeq (${ARCH},aarch32)
|
|||
endif
|
||||
endif
|
||||
|
||||
# When building for systems with hardware-assisted coherency, there's no need to
|
||||
# use USE_COHERENT_MEM. Require that USE_COHERENT_MEM must be set to 0 too.
|
||||
ifeq ($(HW_ASSISTED_COHERENCY)-$(USE_COHERENT_MEM),1-1)
|
||||
$(error USE_COHERENT_MEM cannot be enabled with HW_ASSISTED_COHERENCY)
|
||||
endif
|
||||
|
||||
################################################################################
|
||||
# Process platform overrideable behaviour
|
||||
|
@ -386,6 +391,7 @@ $(eval $(call assert_boolean,ENABLE_PSCI_STAT))
|
|||
$(eval $(call assert_boolean,ENABLE_RUNTIME_INSTRUMENTATION))
|
||||
$(eval $(call assert_boolean,ERROR_DEPRECATED))
|
||||
$(eval $(call assert_boolean,GENERATE_COT))
|
||||
$(eval $(call assert_boolean,HW_ASSISTED_COHERENCY))
|
||||
$(eval $(call assert_boolean,LOAD_IMAGE_V2))
|
||||
$(eval $(call assert_boolean,NS_TIMER_SWITCH))
|
||||
$(eval $(call assert_boolean,PL011_GENERIC_UART))
|
||||
|
@ -420,6 +426,7 @@ $(eval $(call add_define,ENABLE_PMF))
|
|||
$(eval $(call add_define,ENABLE_PSCI_STAT))
|
||||
$(eval $(call add_define,ENABLE_RUNTIME_INSTRUMENTATION))
|
||||
$(eval $(call add_define,ERROR_DEPRECATED))
|
||||
$(eval $(call add_define,HW_ASSISTED_COHERENCY))
|
||||
$(eval $(call add_define,LOAD_IMAGE_V2))
|
||||
$(eval $(call add_define,LOG_LEVEL))
|
||||
$(eval $(call add_define,NS_TIMER_SWITCH))
|
||||
|
|
|
@ -180,24 +180,29 @@ func bl31_warm_entrypoint
|
|||
_init_c_runtime=0 \
|
||||
_exception_vectors=runtime_exceptions
|
||||
|
||||
/* --------------------------------------------
|
||||
* Enable the MMU with the DCache disabled. It
|
||||
* is safe to use stacks allocated in normal
|
||||
* memory as a result. All memory accesses are
|
||||
* marked nGnRnE when the MMU is disabled. So
|
||||
* all the stack writes will make it to memory.
|
||||
* All memory accesses are marked Non-cacheable
|
||||
* when the MMU is enabled but D$ is disabled.
|
||||
* So used stack memory is guaranteed to be
|
||||
* visible immediately after the MMU is enabled
|
||||
* Enabling the DCache at the same time as the
|
||||
* MMU can lead to speculatively fetched and
|
||||
* possibly stale stack memory being read from
|
||||
* other caches. This can lead to coherency
|
||||
* issues.
|
||||
* --------------------------------------------
|
||||
/*
|
||||
* We're about to enable MMU and participate in PSCI state coordination.
|
||||
*
|
||||
* The PSCI implementation invokes platform routines that enable CPUs to
|
||||
* participate in coherency. On a system where CPUs are not
|
||||
* cache-coherent out of reset, having caches enabled until such time
|
||||
* might lead to coherency issues (resulting from stale data getting
|
||||
* speculatively fetched, among others). Therefore we keep data caches
|
||||
* disabled while enabling the MMU, thereby forcing data accesses to
|
||||
* have non-cacheable, nGnRnE attributes (these will always be coherent
|
||||
* with main memory).
|
||||
*
|
||||
* On systems with hardware-assisted coherency, where CPUs are expected
|
||||
* to be cache-coherent out of reset without needing explicit software
|
||||
* intervention, PSCI need not invoke platform routines to enter
|
||||
* coherency (as CPUs already are); and there's no reason to have caches
|
||||
* disabled either.
|
||||
*/
|
||||
#if HW_ASSISTED_COHERENCY
|
||||
mov x0, #0
|
||||
#else
|
||||
mov x0, #DISABLE_DCACHE
|
||||
#endif
|
||||
bl bl31_plat_enable_mmu
|
||||
|
||||
bl psci_warmboot_entrypoint
|
||||
|
|
|
@ -231,24 +231,27 @@ func sp_min_warm_entrypoint
|
|||
_init_c_runtime=0 \
|
||||
_exception_vectors=sp_min_vector_table
|
||||
|
||||
/* --------------------------------------------
|
||||
* Enable the MMU with the DCache disabled. It
|
||||
* is safe to use stacks allocated in normal
|
||||
* memory as a result. All memory accesses are
|
||||
* marked nGnRnE when the MMU is disabled. So
|
||||
* all the stack writes will make it to memory.
|
||||
* All memory accesses are marked Non-cacheable
|
||||
* when the MMU is enabled but D$ is disabled.
|
||||
* So used stack memory is guaranteed to be
|
||||
* visible immediately after the MMU is enabled
|
||||
* Enabling the DCache at the same time as the
|
||||
* MMU can lead to speculatively fetched and
|
||||
* possibly stale stack memory being read from
|
||||
* other caches. This can lead to coherency
|
||||
* issues.
|
||||
* --------------------------------------------
|
||||
/*
|
||||
* We're about to enable MMU and participate in PSCI state coordination.
|
||||
*
|
||||
* The PSCI implementation invokes platform routines that enable CPUs to
|
||||
* participate in coherency. On a system where CPUs are not
|
||||
* cache-coherent out of reset, having caches enabled until such time
|
||||
* might lead to coherency issues (resulting from stale data getting
|
||||
* speculatively fetched, among others). Therefore we keep data caches
|
||||
* disabled while enabling the MMU, thereby forcing data accesses to
|
||||
* have non-cacheable, nGnRnE attributes (these will always be coherent
|
||||
* with main memory).
|
||||
*
|
||||
* On systems where CPUs are cache-coherent out of reset, however, PSCI
|
||||
* need not invoke platform routines to enter coherency (as CPUs already
|
||||
* are), and there's no reason to have caches disabled either.
|
||||
*/
|
||||
#if HW_ASSISTED_COHERENCY
|
||||
mov r0, #0
|
||||
#else
|
||||
mov r0, #DISABLE_DCACHE
|
||||
#endif
|
||||
bl bl32_plat_enable_mmu
|
||||
|
||||
bl sp_min_warm_boot
|
||||
|
|
|
@ -176,7 +176,9 @@ interfaces are:
|
|||
* The page tables must be setup and the MMU enabled
|
||||
* The C runtime environment must be setup and stack initialized
|
||||
* The Data cache must be enabled prior to invoking any of the PSCI library
|
||||
interfaces except for `psci_warmboot_entrypoint()`.
|
||||
interfaces except for `psci_warmboot_entrypoint()`. For
|
||||
`psci_warmboot_entrypoint()`, if the build option `HW_ASSISTED_COHERENCY`
|
||||
is enabled however, data caches are expected to be enabled.
|
||||
|
||||
Further requirements for each interface can be found in the interface
|
||||
description.
|
||||
|
@ -270,11 +272,11 @@ wakes up, it will start execution from the warm reset address.
|
|||
Return : void
|
||||
|
||||
This function performs the warm boot initialization/restoration as mandated by
|
||||
[PSCI spec]. For AArch32, on wakeup from power down the CPU resets to secure
|
||||
SVC mode and the EL3 Runtime Software must perform the prerequisite
|
||||
initializations mentioned at top of this section. This function must be called
|
||||
with Data cache disabled but with MMU initialized and enabled. The major
|
||||
actions performed by this function are:
|
||||
[PSCI spec]. For AArch32, on wakeup from power down the CPU resets to secure SVC
|
||||
mode and the EL3 Runtime Software must perform the prerequisite initializations
|
||||
mentioned at top of this section. This function must be called with Data cache
|
||||
disabled (unless build option `HW_ASSISTED_COHERENCY` is enabled) but with MMU
|
||||
initialized and enabled. The major actions performed by this function are:
|
||||
|
||||
* Invalidates the stack and enables the data cache.
|
||||
* Initializes architecture and PSCI state coordination.
|
||||
|
|
|
@ -328,6 +328,15 @@ performed.
|
|||
* `HANDLE_EA_EL3_FIRST`: When defined External Aborts and SError Interrupts
|
||||
will be always trapped in EL3 i.e. in BL31 at runtime.
|
||||
|
||||
* `HW_ASSISTED_COHERENCY`: On most ARM systems to-date, platform-specific
|
||||
software operations are required for CPUs to enter and exit coherency.
|
||||
However, there exists newer systems where CPUs' entry to and exit from
|
||||
coherency is managed in hardware. Such systems require software to only
|
||||
initiate the operations, and the rest is managed in hardware, minimizing
|
||||
active software management. In such systems, this boolean option enables ARM
|
||||
Trusted Firmware to carry out build and run-time optimizations during boot
|
||||
and power management operations. This option defaults to 0.
|
||||
|
||||
* `LOAD_IMAGE_V2`: Boolean option to enable support for new version (v2) of
|
||||
image loading, which provides more flexibility and scalability around what
|
||||
images are loaded and executed during boot. Default is 0.
|
||||
|
|
|
@ -79,7 +79,8 @@ __section("tzfw_coherent_mem")
|
|||
#endif
|
||||
;
|
||||
|
||||
DEFINE_BAKERY_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
|
||||
/* Lock for PSCI state coordination */
|
||||
DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
|
||||
|
||||
cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
|
||||
|
||||
|
@ -247,6 +248,50 @@ static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
|
|||
return &psci_req_local_pwr_states[pwrlvl - 1][cpu_idx];
|
||||
}
|
||||
|
||||
/*
|
||||
* psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
|
||||
* memory.
|
||||
*
|
||||
* With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
|
||||
* it's accessed by both cached and non-cached participants. To serve the common
|
||||
* minimum, perform a cache flush before read and after write so that non-cached
|
||||
* participants operate on latest data in main memory.
|
||||
*
|
||||
* When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
|
||||
* memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
|
||||
* In both cases, no cache operations are required.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Retrieve local state of non-CPU power domain node from a non-cached CPU,
|
||||
* after any required cache maintenance operation.
|
||||
*/
|
||||
static plat_local_state_t get_non_cpu_pd_node_local_state(
|
||||
unsigned int parent_idx)
|
||||
{
|
||||
#if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
|
||||
flush_dcache_range(
|
||||
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
|
||||
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
|
||||
#endif
|
||||
return psci_non_cpu_pd_nodes[parent_idx].local_state;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update local state of non-CPU power domain node from a cached CPU; perform
|
||||
* any required cache maintenance operation afterwards.
|
||||
*/
|
||||
static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
|
||||
plat_local_state_t state)
|
||||
{
|
||||
psci_non_cpu_pd_nodes[parent_idx].local_state = state;
|
||||
#if !USE_COHERENT_MEM || !HW_ASSISTED_COHERENCY
|
||||
flush_dcache_range(
|
||||
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
|
||||
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
|
||||
#endif
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
* Helper function to return the current local power state of each power domain
|
||||
* from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
|
||||
|
@ -264,18 +309,7 @@ void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
|
|||
|
||||
/* Copy the local power state from node to state_info */
|
||||
for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
|
||||
#if !USE_COHERENT_MEM
|
||||
/*
|
||||
* If using normal memory for psci_non_cpu_pd_nodes, we need
|
||||
* to flush before reading the local power state as another
|
||||
* cpu in the same power domain could have updated it and this
|
||||
* code runs before caches are enabled.
|
||||
*/
|
||||
flush_dcache_range(
|
||||
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
|
||||
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
|
||||
#endif
|
||||
pd_state[lvl] = psci_non_cpu_pd_nodes[parent_idx].local_state;
|
||||
pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
|
||||
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
|
||||
}
|
||||
|
||||
|
@ -299,21 +333,16 @@ static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
|
|||
psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
|
||||
|
||||
/*
|
||||
* Need to flush as local_state will be accessed with Data Cache
|
||||
* Need to flush as local_state might be accessed with Data Cache
|
||||
* disabled during power on
|
||||
*/
|
||||
flush_cpu_data(psci_svc_cpu_data.local_state);
|
||||
psci_flush_cpu_data(psci_svc_cpu_data.local_state);
|
||||
|
||||
parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
|
||||
|
||||
/* Copy the local_state from state_info */
|
||||
for (lvl = 1; lvl <= end_pwrlvl; lvl++) {
|
||||
psci_non_cpu_pd_nodes[parent_idx].local_state = pd_state[lvl];
|
||||
#if !USE_COHERENT_MEM
|
||||
flush_dcache_range(
|
||||
(uintptr_t)&psci_non_cpu_pd_nodes[parent_idx],
|
||||
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
|
||||
#endif
|
||||
set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
|
||||
parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
|
||||
}
|
||||
}
|
||||
|
@ -347,13 +376,8 @@ void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
|
|||
|
||||
/* Reset the local_state to RUN for the non cpu power domains. */
|
||||
for (lvl = PSCI_CPU_PWR_LVL + 1; lvl <= end_pwrlvl; lvl++) {
|
||||
psci_non_cpu_pd_nodes[parent_idx].local_state =
|
||||
PSCI_LOCAL_STATE_RUN;
|
||||
#if !USE_COHERENT_MEM
|
||||
flush_dcache_range(
|
||||
(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
|
||||
sizeof(psci_non_cpu_pd_nodes[parent_idx]));
|
||||
#endif
|
||||
set_non_cpu_pd_node_local_state(parent_idx,
|
||||
PSCI_LOCAL_STATE_RUN);
|
||||
psci_set_req_local_pwr_state(lvl,
|
||||
cpu_idx,
|
||||
PSCI_LOCAL_STATE_RUN);
|
||||
|
@ -364,7 +388,7 @@ void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
|
|||
psci_set_aff_info_state(AFF_STATE_ON);
|
||||
|
||||
psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
|
||||
flush_cpu_data(psci_svc_cpu_data);
|
||||
psci_flush_cpu_data(psci_svc_cpu_data);
|
||||
}
|
||||
|
||||
/******************************************************************************
|
||||
|
@ -969,3 +993,33 @@ int psci_get_suspend_afflvl(void)
|
|||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*******************************************************************************
|
||||
* Initiate power down sequence, by calling power down operations registered for
|
||||
* this CPU.
|
||||
******************************************************************************/
|
||||
void psci_do_pwrdown_sequence(unsigned int power_level)
|
||||
{
|
||||
#if HW_ASSISTED_COHERENCY
|
||||
/*
|
||||
* With hardware-assisted coherency, the CPU drivers only initiate the
|
||||
* power down sequence, without performing cache-maintenance operations
|
||||
* in software. Data caches and MMU remain enabled both before and after
|
||||
* this call.
|
||||
*/
|
||||
prepare_cpu_pwr_dwn(power_level);
|
||||
#else
|
||||
/*
|
||||
* Without hardware-assisted coherency, the CPU drivers disable data
|
||||
* caches and MMU, then perform cache-maintenance operations in
|
||||
* software.
|
||||
*
|
||||
* We ought to call prepare_cpu_pwr_dwn() to initiate power down
|
||||
* sequence. We currently have data caches and MMU enabled, but the
|
||||
* function will return with data caches and MMU disabled. We must
|
||||
* ensure that the stack memory is flushed out to memory before we start
|
||||
* popping from it again.
|
||||
*/
|
||||
psci_do_pwrdown_cache_maintenance(power_level);
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -119,10 +119,9 @@ int psci_do_cpu_off(unsigned int end_pwrlvl)
|
|||
#endif
|
||||
|
||||
/*
|
||||
* Arch. management. Perform the necessary steps to flush all
|
||||
* cpu caches.
|
||||
* Arch. management. Initiate power down sequence.
|
||||
*/
|
||||
psci_do_pwrdown_cache_maintenance(psci_find_max_off_lvl(&state_info));
|
||||
psci_do_pwrdown_sequence(psci_find_max_off_lvl(&state_info));
|
||||
|
||||
#if ENABLE_RUNTIME_INSTRUMENTATION
|
||||
PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
|
||||
|
@ -154,17 +153,17 @@ exit:
|
|||
*/
|
||||
if (rc == PSCI_E_SUCCESS) {
|
||||
/*
|
||||
* Set the affinity info state to OFF. This writes directly to
|
||||
* main memory as caches are disabled, so cache maintenance is
|
||||
* Set the affinity info state to OFF. When caches are disabled,
|
||||
* this writes directly to main memory, so cache maintenance is
|
||||
* required to ensure that later cached reads of aff_info_state
|
||||
* return AFF_STATE_OFF. A dsbish() ensures ordering of the
|
||||
* return AFF_STATE_OFF. A dsbish() ensures ordering of the
|
||||
* update to the affinity info state prior to cache line
|
||||
* invalidation.
|
||||
*/
|
||||
flush_cpu_data(psci_svc_cpu_data.aff_info_state);
|
||||
psci_flush_cpu_data(psci_svc_cpu_data.aff_info_state);
|
||||
psci_set_aff_info_state(AFF_STATE_OFF);
|
||||
dsbish();
|
||||
inv_cpu_data(psci_svc_cpu_data.aff_info_state);
|
||||
psci_dsbish();
|
||||
psci_inv_cpu_data(psci_svc_cpu_data.aff_info_state);
|
||||
|
||||
#if ENABLE_RUNTIME_INSTRUMENTATION
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved.
|
||||
* Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
|
@ -165,10 +165,12 @@ void psci_cpu_on_finish(unsigned int cpu_idx,
|
|||
*/
|
||||
psci_plat_pm_ops->pwr_domain_on_finish(state_info);
|
||||
|
||||
#if !HW_ASSISTED_COHERENCY
|
||||
/*
|
||||
* Arch. management: Enable data cache and manage stack memory
|
||||
*/
|
||||
psci_do_pwrup_cache_maintenance();
|
||||
#endif
|
||||
|
||||
/*
|
||||
* All the platform specific actions for turning this cpu
|
||||
|
|
|
@ -38,17 +38,60 @@
|
|||
#include <psci.h>
|
||||
#include <spinlock.h>
|
||||
|
||||
#if HW_ASSISTED_COHERENCY
|
||||
|
||||
/*
|
||||
* The following helper macros abstract the interface to the Bakery
|
||||
* Lock API.
|
||||
* On systems with hardware-assisted coherency, make PSCI cache operations NOP,
|
||||
* as PSCI participants are cache-coherent, and there's no need for explicit
|
||||
* cache maintenance operations or barriers to coordinate their state.
|
||||
*/
|
||||
#define psci_lock_init(non_cpu_pd_node, idx) \
|
||||
((non_cpu_pd_node)[(idx)].lock_index = (idx))
|
||||
#define psci_flush_dcache_range(addr, size)
|
||||
#define psci_flush_cpu_data(member)
|
||||
#define psci_inv_cpu_data(member)
|
||||
|
||||
#define psci_dsbish()
|
||||
|
||||
/*
|
||||
* On systems where participant CPUs are cache-coherent, we can use spinlocks
|
||||
* instead of bakery locks.
|
||||
*/
|
||||
#define DEFINE_PSCI_LOCK(_name) spinlock_t _name
|
||||
#define DECLARE_PSCI_LOCK(_name) extern DEFINE_PSCI_LOCK(_name)
|
||||
|
||||
#define psci_lock_get(non_cpu_pd_node) \
|
||||
spin_lock(&psci_locks[(non_cpu_pd_node)->lock_index])
|
||||
#define psci_lock_release(non_cpu_pd_node) \
|
||||
spin_unlock(&psci_locks[(non_cpu_pd_node)->lock_index])
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* If not all PSCI participants are cache-coherent, perform cache maintenance
|
||||
* and issue barriers wherever required to coordinate state.
|
||||
*/
|
||||
#define psci_flush_dcache_range(addr, size) flush_dcache_range(addr, size)
|
||||
#define psci_flush_cpu_data(member) flush_cpu_data(member)
|
||||
#define psci_inv_cpu_data(member) inv_cpu_data(member)
|
||||
|
||||
#define psci_dsbish() dsbish()
|
||||
|
||||
/*
|
||||
* Use bakery locks for state coordination as not all PSCI participants are
|
||||
* cache coherent.
|
||||
*/
|
||||
#define DEFINE_PSCI_LOCK(_name) DEFINE_BAKERY_LOCK(_name)
|
||||
#define DECLARE_PSCI_LOCK(_name) DECLARE_BAKERY_LOCK(_name)
|
||||
|
||||
#define psci_lock_get(non_cpu_pd_node) \
|
||||
bakery_lock_get(&psci_locks[(non_cpu_pd_node)->lock_index])
|
||||
#define psci_lock_release(non_cpu_pd_node) \
|
||||
bakery_lock_release(&psci_locks[(non_cpu_pd_node)->lock_index])
|
||||
|
||||
#endif
|
||||
|
||||
#define psci_lock_init(non_cpu_pd_node, idx) \
|
||||
((non_cpu_pd_node)[(idx)].lock_index = (idx))
|
||||
|
||||
/*
|
||||
* The PSCI capability which are provided by the generic code but does not
|
||||
* depend on the platform or spd capabilities.
|
||||
|
@ -166,8 +209,8 @@ extern non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS];
|
|||
extern cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
|
||||
extern unsigned int psci_caps;
|
||||
|
||||
/* One bakery lock is required for each non-cpu power domain */
|
||||
DECLARE_BAKERY_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
|
||||
/* One lock is required per non-CPU power domain node */
|
||||
DECLARE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
|
||||
|
||||
/*******************************************************************************
|
||||
* SPD's power management hooks registered with PSCI
|
||||
|
@ -204,6 +247,14 @@ void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl);
|
|||
void psci_print_power_domain_map(void);
|
||||
unsigned int psci_is_last_on_cpu(void);
|
||||
int psci_spd_migrate_info(u_register_t *mpidr);
|
||||
void psci_do_pwrdown_sequence(unsigned int power_level);
|
||||
|
||||
/*
|
||||
* CPU power down is directly called only when HW_ASSISTED_COHERENCY is
|
||||
* available. Otherwise, this needs post-call stack maintenance, which is
|
||||
* handled in assembly.
|
||||
*/
|
||||
void prepare_cpu_pwr_dwn(unsigned int power_level);
|
||||
|
||||
/* Private exported functions from psci_on.c */
|
||||
int psci_cpu_on_start(u_register_t target_cpu,
|
||||
|
|
|
@ -86,7 +86,7 @@ static void psci_init_pwr_domain_node(unsigned int node_idx,
|
|||
/* Set the power state to OFF state */
|
||||
svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
|
||||
|
||||
flush_dcache_range((uintptr_t)svc_cpu_data,
|
||||
psci_flush_dcache_range((uintptr_t)svc_cpu_data,
|
||||
sizeof(*svc_cpu_data));
|
||||
|
||||
cm_set_context_by_index(node_idx,
|
||||
|
@ -242,9 +242,9 @@ int psci_setup(const psci_lib_args_t *lib_args)
|
|||
|
||||
/*
|
||||
* Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
|
||||
* during warm boot before data cache is enabled.
|
||||
* during warm boot, possibly before data cache is enabled.
|
||||
*/
|
||||
flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
|
||||
psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
|
||||
sizeof(psci_plat_pm_ops));
|
||||
|
||||
/* Initialize the psci capability */
|
||||
|
|
|
@ -91,10 +91,10 @@ static void psci_suspend_to_pwrdown_start(unsigned int end_pwrlvl,
|
|||
psci_set_suspend_pwrlvl(end_pwrlvl);
|
||||
|
||||
/*
|
||||
* Flush the target power level as it will be accessed on power up with
|
||||
* Flush the target power level as it might be accessed on power up with
|
||||
* Data cache disabled.
|
||||
*/
|
||||
flush_cpu_data(psci_svc_cpu_data.target_pwrlvl);
|
||||
psci_flush_cpu_data(psci_svc_cpu_data.target_pwrlvl);
|
||||
|
||||
/*
|
||||
* Call the cpu suspend handler registered by the Secure Payload
|
||||
|
@ -121,13 +121,11 @@ static void psci_suspend_to_pwrdown_start(unsigned int end_pwrlvl,
|
|||
#endif
|
||||
|
||||
/*
|
||||
* Arch. management. Perform the necessary steps to flush all
|
||||
* cpu caches. Currently we assume that the power level correspond
|
||||
* the cache level.
|
||||
* Arch. management. Initiate power down sequence.
|
||||
* TODO : Introduce a mechanism to query the cache level to flush
|
||||
* and the cpu-ops power down to perform from the platform.
|
||||
*/
|
||||
psci_do_pwrdown_cache_maintenance(max_off_lvl);
|
||||
psci_do_pwrdown_sequence(max_off_lvl);
|
||||
|
||||
#if ENABLE_RUNTIME_INSTRUMENTATION
|
||||
PMF_CAPTURE_TIMESTAMP(rt_instr_svc,
|
||||
|
@ -304,12 +302,10 @@ void psci_cpu_suspend_finish(unsigned int cpu_idx,
|
|||
*/
|
||||
psci_plat_pm_ops->pwr_domain_suspend_finish(state_info);
|
||||
|
||||
/*
|
||||
* Arch. management: Enable the data cache, manage stack memory and
|
||||
* restore the stashed EL3 architectural context from the 'cpu_context'
|
||||
* structure for this cpu.
|
||||
*/
|
||||
#if !HW_ASSISTED_COHERENCY
|
||||
/* Arch. management: Enable the data cache, stack memory maintenance. */
|
||||
psci_do_pwrup_cache_maintenance();
|
||||
#endif
|
||||
|
||||
/* Re-init the cntfrq_el0 register */
|
||||
counter_freq = plat_get_syscnt_freq2();
|
||||
|
|
|
@ -105,6 +105,10 @@ FWU_FIP_NAME := fwu_fip.bin
|
|||
# For Chain of Trust
|
||||
GENERATE_COT := 0
|
||||
|
||||
# Whether system coherency is managed in hardware, without explicit software
|
||||
# operations.
|
||||
HW_ASSISTED_COHERENCY := 0
|
||||
|
||||
# Flag to enable new version of image loading
|
||||
LOAD_IMAGE_V2 := 0
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue