feat(st-crypto): add AES decrypt/auth by SAES IP

Add code to be able to use STMicroelectronics SAES IP. This driver
can manage many AES algorithms (CBC, ECB, CCM, GCM). It will be used
by the authenticated decryption framework (AES-GCM only).

Change-Id: Ibd4030719fb12877dcecd5d2c395d13b4b15c260
Signed-off-by: Nicolas Toromanoff <nicolas.toromanoff@st.com>
This commit is contained in:
Nicolas Toromanoff 2020-09-18 09:19:11 +02:00 committed by Lionel Debieve
parent b0fbc02aea
commit 4bb4e83649
2 changed files with 972 additions and 0 deletions

View file

@ -0,0 +1,913 @@
/*
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <assert.h>
#include <endian.h>
#include <errno.h>
#include <stdint.h>
#include <drivers/clk.h>
#include <drivers/delay_timer.h>
#include <drivers/st/stm32_saes.h>
#include <drivers/st/stm32mp_reset.h>
#include <lib/mmio.h>
#include <lib/utils_def.h>
#include <libfdt.h>
#include <platform_def.h>
#define UINT8_BIT 8U
#define AES_BLOCK_SIZE_BIT 128U
#define AES_BLOCK_SIZE (AES_BLOCK_SIZE_BIT / UINT8_BIT)
#define AES_KEYSIZE_128 16U
#define AES_KEYSIZE_256 32U
#define AES_IVSIZE 16U
/* SAES control register */
#define _SAES_CR 0x0U
/* SAES status register */
#define _SAES_SR 0x04U
/* SAES data input register */
#define _SAES_DINR 0x08U
/* SAES data output register */
#define _SAES_DOUTR 0x0CU
/* SAES key registers [0-3] */
#define _SAES_KEYR0 0x10U
#define _SAES_KEYR1 0x14U
#define _SAES_KEYR2 0x18U
#define _SAES_KEYR3 0x1CU
/* SAES initialization vector registers [0-3] */
#define _SAES_IVR0 0x20U
#define _SAES_IVR1 0x24U
#define _SAES_IVR2 0x28U
#define _SAES_IVR3 0x2CU
/* SAES key registers [4-7] */
#define _SAES_KEYR4 0x30U
#define _SAES_KEYR5 0x34U
#define _SAES_KEYR6 0x38U
#define _SAES_KEYR7 0x3CU
/* SAES suspend registers [0-7] */
#define _SAES_SUSPR0 0x40U
#define _SAES_SUSPR1 0x44U
#define _SAES_SUSPR2 0x48U
#define _SAES_SUSPR3 0x4CU
#define _SAES_SUSPR4 0x50U
#define _SAES_SUSPR5 0x54U
#define _SAES_SUSPR6 0x58U
#define _SAES_SUSPR7 0x5CU
/* SAES Interrupt Enable Register */
#define _SAES_IER 0x300U
/* SAES Interrupt Status Register */
#define _SAES_ISR 0x304U
/* SAES Interrupt Clear Register */
#define _SAES_ICR 0x308U
/* SAES control register fields */
#define _SAES_CR_RESET_VALUE 0x0U
#define _SAES_CR_IPRST BIT(31)
#define _SAES_CR_KEYSEL_MASK GENMASK(30, 28)
#define _SAES_CR_KEYSEL_SHIFT 28U
#define _SAES_CR_KEYSEL_SOFT 0x0U
#define _SAES_CR_KEYSEL_DHUK 0x1U
#define _SAES_CR_KEYSEL_BHK 0x2U
#define _SAES_CR_KEYSEL_BHU_XOR_BH_K 0x4U
#define _SAES_CR_KEYSEL_TEST 0x7U
#define _SAES_CR_KSHAREID_MASK GENMASK(27, 26)
#define _SAES_CR_KSHAREID_SHIFT 26U
#define _SAES_CR_KSHAREID_CRYP 0x0U
#define _SAES_CR_KEYMOD_MASK GENMASK(25, 24)
#define _SAES_CR_KEYMOD_SHIFT 24U
#define _SAES_CR_KEYMOD_NORMAL 0x0U
#define _SAES_CR_KEYMOD_WRAPPED 0x1U
#define _SAES_CR_KEYMOD_SHARED 0x2U
#define _SAES_CR_NPBLB_MASK GENMASK(23, 20)
#define _SAES_CR_NPBLB_SHIFT 20U
#define _SAES_CR_KEYPROT BIT(19)
#define _SAES_CR_KEYSIZE BIT(18)
#define _SAES_CR_GCMPH_MASK GENMASK(14, 13)
#define _SAES_CR_GCMPH_SHIFT 13U
#define _SAES_CR_GCMPH_INIT 0U
#define _SAES_CR_GCMPH_HEADER 1U
#define _SAES_CR_GCMPH_PAYLOAD 2U
#define _SAES_CR_GCMPH_FINAL 3U
#define _SAES_CR_DMAOUTEN BIT(12)
#define _SAES_CR_DMAINEN BIT(11)
#define _SAES_CR_CHMOD_MASK (BIT(16) | GENMASK(6, 5))
#define _SAES_CR_CHMOD_SHIFT 5U
#define _SAES_CR_CHMOD_ECB 0x0U
#define _SAES_CR_CHMOD_CBC 0x1U
#define _SAES_CR_CHMOD_CTR 0x2U
#define _SAES_CR_CHMOD_GCM 0x3U
#define _SAES_CR_CHMOD_GMAC 0x3U
#define _SAES_CR_CHMOD_CCM 0x800U
#define _SAES_CR_MODE_MASK GENMASK(4, 3)
#define _SAES_CR_MODE_SHIFT 3U
#define _SAES_CR_MODE_ENC 0U
#define _SAES_CR_MODE_KEYPREP 1U
#define _SAES_CR_MODE_DEC 2U
#define _SAES_CR_DATATYPE_MASK GENMASK(2, 1)
#define _SAES_CR_DATATYPE_SHIFT 1U
#define _SAES_CR_DATATYPE_NONE 0U
#define _SAES_CR_DATATYPE_HALF_WORD 1U
#define _SAES_CR_DATATYPE_BYTE 2U
#define _SAES_CR_DATATYPE_BIT 3U
#define _SAES_CR_EN BIT(0)
/* SAES status register fields */
#define _SAES_SR_KEYVALID BIT(7)
#define _SAES_SR_BUSY BIT(3)
#define _SAES_SR_WRERR BIT(2)
#define _SAES_SR_RDERR BIT(1)
#define _SAES_SR_CCF BIT(0)
/* SAES interrupt registers fields */
#define _SAES_I_RNG_ERR BIT(3)
#define _SAES_I_KEY_ERR BIT(2)
#define _SAES_I_RW_ERR BIT(1)
#define _SAES_I_CC BIT(0)
#define SAES_TIMEOUT_US 100000U
#define TIMEOUT_US_1MS 1000U
#define SAES_RESET_DELAY 20U
#define IS_CHAINING_MODE(mod, cr) \
(((cr) & _SAES_CR_CHMOD_MASK) == (_SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT))
#define SET_CHAINING_MODE(mod, cr) \
mmio_clrsetbits_32((cr), _SAES_CR_CHMOD_MASK, _SAES_CR_CHMOD_##mod << _SAES_CR_CHMOD_SHIFT)
#define pragma weak stm32_saes_get_platdata
static struct stm32_saes_platdata saes_pdata;
int stm32_saes_get_platdata(struct stm32_saes_platdata *pdata)
{
return -ENODEV;
}
static int stm32_saes_parse_fdt(struct stm32_saes_platdata *pdata)
{
int node;
struct dt_node_info info;
void *fdt;
if (fdt_get_address(&fdt) == 0) {
return -FDT_ERR_NOTFOUND;
}
node = dt_get_node(&info, -1, DT_SAES_COMPAT);
if (node < 0) {
ERROR("No SAES entry in DT\n");
return -FDT_ERR_NOTFOUND;
}
if (info.status == DT_DISABLED) {
return -FDT_ERR_NOTFOUND;
}
if ((info.base == 0U) || (info.clock < 0) || (info.reset < 0)) {
return -FDT_ERR_BADVALUE;
}
pdata->base = (uintptr_t)info.base;
pdata->clock_id = (unsigned long)info.clock;
pdata->reset_id = (unsigned int)info.reset;
return 0;
}
static bool does_chaining_mode_need_iv(uint32_t cr)
{
return !(IS_CHAINING_MODE(ECB, cr));
}
static bool is_encrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
static bool is_decrypt(uint32_t cr)
{
return (cr & _SAES_CR_MODE_MASK) == (_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
static int wait_computation_completed(uintptr_t base)
{
uint64_t timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(base + _SAES_SR) & _SAES_SR_CCF) != _SAES_SR_CCF) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void clear_computation_completed(uintptr_t base)
{
mmio_setbits_32(base + _SAES_ICR, _SAES_I_CC);
}
static int saes_start(struct stm32_saes_context *ctx)
{
uint64_t timeout;
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
timeout = timeout_init_us(SAES_TIMEOUT_US);
while ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_BUSY) == _SAES_SR_BUSY) {
if (timeout_elapsed(timeout)) {
WARN("%s: timeout\n", __func__);
return -ETIMEDOUT;
}
}
return 0;
}
static void saes_end(struct stm32_saes_context *ctx, int prev_error)
{
if (prev_error != 0) {
/* Reset IP */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
udelay(SAES_RESET_DELAY);
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
static void saes_write_iv(struct stm32_saes_context *ctx)
{
/* If chaining mode need to restore IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Restore the _SAES_IVRx */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t), ctx->iv[i]);
}
}
}
static void saes_write_key(struct stm32_saes_context *ctx)
{
/* Restore the _SAES_KEYRx if SOFTWARE key */
if ((ctx->cr & _SAES_CR_KEYSEL_MASK) == (_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT)) {
uint8_t i;
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR0 + i * sizeof(uint32_t), ctx->key[i]);
}
if ((ctx->cr & _SAES_CR_KEYSIZE) == _SAES_CR_KEYSIZE) {
for (i = 0U; i < (AES_KEYSIZE_256 / 2U) / sizeof(uint32_t); i++) {
mmio_write_32(ctx->base + _SAES_KEYR4 + i * sizeof(uint32_t),
ctx->key[i + 4U]);
}
}
}
}
static int saes_prepare_key(struct stm32_saes_context *ctx)
{
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Set key size */
if ((ctx->cr & _SAES_CR_KEYSIZE) != 0U) {
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
} else {
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_KEYSIZE);
}
saes_write_key(ctx);
/* For ECB/CBC decryption, key preparation mode must be selected to populate the key */
if ((IS_CHAINING_MODE(ECB, ctx->cr) || IS_CHAINING_MODE(CBC, ctx->cr)) &&
is_decrypt(ctx->cr)) {
int ret;
/* Select Mode 2 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_KEYPREP << _SAES_CR_MODE_SHIFT);
/* Enable SAES */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
/* Wait Computation completed */
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
/* Set Mode 3 */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
}
return 0;
}
static int save_context(struct stm32_saes_context *ctx)
{
if ((mmio_read_32(ctx->base + _SAES_SR) & _SAES_SR_CCF) != 0U) {
/* Device should not be in a processing phase */
return -EINVAL;
}
/* Save CR */
ctx->cr = mmio_read_32(ctx->base + _SAES_CR);
/* If chaining mode need to save current IV */
if (does_chaining_mode_need_iv(ctx->cr)) {
uint8_t i;
/* Save IV */
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
ctx->iv[i] = mmio_read_32(ctx->base + _SAES_IVR0 + i * sizeof(uint32_t));
}
}
/* Disable the SAES peripheral */
mmio_clrbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/* To resume the processing of a message */
static int restore_context(struct stm32_saes_context *ctx)
{
int ret;
/* IP should be disabled */
if ((mmio_read_32(ctx->base + _SAES_CR) & _SAES_CR_EN) != 0U) {
VERBOSE("%s: Device is still enabled\n", __func__);
return -EINVAL;
}
/* Reset internal state */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_IPRST);
/* Restore the _SAES_CR */
mmio_write_32(ctx->base + _SAES_CR, ctx->cr);
/* Preparation decrypt key */
ret = saes_prepare_key(ctx);
if (ret != 0) {
return ret;
}
saes_write_iv(ctx);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
return 0;
}
/**
* @brief Initialize SAES driver.
* @param None.
* @retval 0 if OK; negative value else.
*/
int stm32_saes_driver_init(void)
{
int err;
err = stm32_saes_parse_fdt(&saes_pdata);
if (err != 0) {
err = stm32_saes_get_platdata(&saes_pdata);
if (err != 0) {
return err;
}
}
clk_enable(saes_pdata.clock_id);
if (stm32mp_reset_assert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
udelay(SAES_RESET_DELAY);
if (stm32mp_reset_deassert(saes_pdata.reset_id, TIMEOUT_US_1MS) != 0) {
panic();
}
return 0;
}
/**
* @brief Start a AES computation.
* @param ctx: SAES process context
* @param is_dec: true if decryption, false if encryption
* @param ch_mode: define the chaining mode
* @param key_select: define where the key comes from.
* @param key: pointer to key (if key_select is KEY_SOFT, else unused)
* @param key_size: key size
* @param iv: pointer to initialization vectore (unsed if ch_mode is ECB)
* @param iv_size: iv size
* @note this function doesn't access to hardware but store in ctx the values
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_init(struct stm32_saes_context *ctx, bool is_dec,
enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select,
const void *key, size_t key_size, const void *iv, size_t iv_size)
{
unsigned int i;
const uint32_t *iv_u32;
const uint32_t *key_u32;
ctx->assoc_len = 0U;
ctx->load_len = 0U;
ctx->base = saes_pdata.base;
ctx->cr = _SAES_CR_RESET_VALUE;
/* We want buffer to be u32 aligned */
assert((uintptr_t)key % __alignof__(uint32_t) == 0);
assert((uintptr_t)iv % __alignof__(uint32_t) == 0);
iv_u32 = iv;
key_u32 = key;
if (is_dec) {
/* Save Mode 3 = decrypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_DEC << _SAES_CR_MODE_SHIFT);
} else {
/* Save Mode 1 = crypt */
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_MODE_MASK,
_SAES_CR_MODE_ENC << _SAES_CR_MODE_SHIFT);
}
/* Save chaining mode */
switch (ch_mode) {
case STM32_SAES_MODE_ECB:
SET_CHAINING_MODE(ECB, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CBC:
SET_CHAINING_MODE(CBC, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CTR:
SET_CHAINING_MODE(CTR, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_GCM:
SET_CHAINING_MODE(GCM, (uintptr_t)&(ctx->cr));
break;
case STM32_SAES_MODE_CCM:
SET_CHAINING_MODE(CCM, (uintptr_t)&(ctx->cr));
break;
default:
return -EINVAL;
}
/* We will use HW Byte swap (_SAES_CR_DATATYPE_BYTE) for data.
* so we won't need to
* htobe32(data) before write to DINR
* nor
* be32toh after reading from DOUTR
*
* But note that wrap key only accept _SAES_CR_DATATYPE_NONE
*/
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_DATATYPE_MASK,
_SAES_CR_DATATYPE_BYTE << _SAES_CR_DATATYPE_SHIFT);
/* Configure keysize */
switch (key_size) {
case AES_KEYSIZE_128:
mmio_clrbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
case AES_KEYSIZE_256:
mmio_setbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSIZE);
break;
default:
return -EINVAL;
}
/* Configure key */
switch (key_select) {
case STM32_SAES_KEY_SOFT:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
/* Save key */
switch (key_size) {
case AES_KEYSIZE_128:
/* First 16 bytes == 4 u32 */
for (i = 0U; i < AES_KEYSIZE_128 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[3 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
case AES_KEYSIZE_256:
for (i = 0U; i < AES_KEYSIZE_256 / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->key + i), htobe32(key_u32[7 - i]));
/* /!\ we save the key in HW byte order
* and word order : key[i] is for _SAES_KEYRi
*/
}
break;
default:
return -EINVAL;
}
break;
case STM32_SAES_KEY_DHU:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_DHUK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHK << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_BHU_XOR_BH:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_BHU_XOR_BH_K << _SAES_CR_KEYSEL_SHIFT);
break;
case STM32_SAES_KEY_WRAPPED:
mmio_clrsetbits_32((uintptr_t)&(ctx->cr), _SAES_CR_KEYSEL_MASK,
_SAES_CR_KEYSEL_SOFT << _SAES_CR_KEYSEL_SHIFT);
break;
default:
return -EINVAL;
}
/* Save IV */
if (ch_mode != STM32_SAES_MODE_ECB) {
if ((iv == NULL) || (iv_size != AES_IVSIZE)) {
return -EINVAL;
}
for (i = 0U; i < AES_IVSIZE / sizeof(uint32_t); i++) {
mmio_write_32((uintptr_t)(ctx->iv + i), htobe32(iv_u32[3 - i]));
/* /!\ We save the iv in HW byte order */
}
}
return saes_start(ctx);
}
/**
* @brief Update (or start) a AES authentificate process of associated data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last assoc data block
* @param data: pointer to associated data
* @param data_size: data size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data, size_t data_size)
{
int ret;
uint32_t *data_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data % __alignof__(uint32_t) == 0);
data_u32 = (uint32_t *)data;
/* Init phase */
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
return ret;
}
clear_computation_completed(ctx->base);
if ((data == NULL) || (data_size == 0U)) {
/* No associated data */
/* ret already = 0 */
goto out;
}
/* There is an header/associated data phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_HEADER << _SAES_CR_GCMPH_SHIFT);
/* Enable the SAES peripheral */
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->assoc_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* We don't manage unaligned last block yet */
ret = -ENODEV;
goto out;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Update (or start) a AES authenticate and de/encrypt with payload data (CCM or GCM).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret = 0;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
uint32_t prev_cr;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
if ((data_in == NULL) || (data_size == 0U)) {
/* there is no data */
goto out;
}
/* There is a load phase */
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_PAYLOAD << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) ==
(_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
ctx->load_len += AES_BLOCK_SIZE_BIT;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
uint32_t block_in[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
uint32_t block_out[AES_BLOCK_SIZE / sizeof(uint32_t)] = {0};
memcpy(block_in, data_in + i, data_size - i);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, block_in[0U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[1U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[2U]);
mmio_write_32(ctx->base + _SAES_DINR, block_in[3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
VERBOSE("%s %d\n", __func__, __LINE__);
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
block_out[0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
block_out[3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(data_out + i, block_out, data_size - i);
ctx->load_len += (data_size - i) * UINT8_BIT;
}
out:
if (ret != 0) {
saes_end(ctx, ret);
}
return ret;
}
/**
* @brief Get authentication tag for AES authenticated algorithms (CCM or GCM).
* @param ctx: SAES process context
* @param tag: pointer where to save the tag
* @param data_size: tag size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag,
size_t tag_size)
{
int ret;
uint32_t tag_u32[4];
uint32_t prev_cr;
prev_cr = mmio_read_32(ctx->base + _SAES_CR);
mmio_clrsetbits_32(ctx->base + _SAES_CR, _SAES_CR_GCMPH_MASK,
_SAES_CR_GCMPH_FINAL << _SAES_CR_GCMPH_SHIFT);
if ((prev_cr & _SAES_CR_GCMPH_MASK) == (_SAES_CR_GCMPH_INIT << _SAES_CR_GCMPH_SHIFT)) {
/* Still in initialization phase, no header
* We need to enable the SAES peripheral
*/
mmio_setbits_32(ctx->base + _SAES_CR, _SAES_CR_EN);
}
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->assoc_len);
mmio_write_32(ctx->base + _SAES_DINR, 0);
mmio_write_32(ctx->base + _SAES_DINR, ctx->load_len);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
tag_u32[0] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[1] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[2] = mmio_read_32(ctx->base + _SAES_DOUTR);
tag_u32[3] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
memcpy(tag, tag_u32, MIN(sizeof(tag_u32), tag_size));
out:
saes_end(ctx, ret);
return ret;
}
/**
* @brief Update (or start) a AES de/encrypt process (ECB, CBC or CTR).
* @param ctx: SAES process context
* @param last_block: true if last payload data block
* @param data_in: pointer to payload
* @param data_out: pointer where to save de/encrypted payload
* @param data_size: payload size
*
* @retval 0 if OK; negative value else.
*/
int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_size)
{
int ret;
uint32_t *data_in_u32;
uint32_t *data_out_u32;
unsigned int i = 0U;
/* We want buffers to be u32 aligned */
assert((uintptr_t)data_in % __alignof__(uint32_t) == 0);
assert((uintptr_t)data_out % __alignof__(uint32_t) == 0);
data_in_u32 = (uint32_t *)data_in;
data_out_u32 = (uint32_t *)data_out;
if ((!last_block) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
ERROR("%s: non last block must be multiple of 128 bits\n",
__func__);
ret = -EINVAL;
goto out;
}
/* In CBC encryption we need to manage specifically last 2 128bits
* blocks if total size in not a block size aligned
* work TODO. Currently return ENODEV.
* Morevoer as we need to know last 2 block, if unaligned and
* call with less than two block, return -EINVAL.
*/
if (last_block && IS_CHAINING_MODE(CBC, ctx->cr) && is_encrypt(ctx->cr) &&
(round_down(data_size, AES_BLOCK_SIZE) != data_size)) {
if (data_size < AES_BLOCK_SIZE * 2U) {
ERROR("if CBC, last part size should be at least 2 * AES_BLOCK_SIZE\n");
ret = -EINVAL;
goto out;
}
/* Moreover the CBC specific padding for encrypt is not yet implemented */
ret = -ENODEV;
goto out;
}
ret = restore_context(ctx);
if (ret != 0) {
goto out;
}
while (i < round_down(data_size, AES_BLOCK_SIZE)) {
unsigned int w; /* Word index */
w = i / sizeof(uint32_t);
/* No need to htobe() as we configure the HW to swap bytes */
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 0U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 1U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 2U]);
mmio_write_32(ctx->base + _SAES_DINR, data_in_u32[w + 3U]);
ret = wait_computation_completed(ctx->base);
if (ret != 0) {
goto out;
}
/* No need to htobe() as we configure the HW to swap bytes */
data_out_u32[w + 0U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 1U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 2U] = mmio_read_32(ctx->base + _SAES_DOUTR);
data_out_u32[w + 3U] = mmio_read_32(ctx->base + _SAES_DOUTR);
clear_computation_completed(ctx->base);
/* Process next block */
i += AES_BLOCK_SIZE;
}
/* Manage last block if not a block size multiple */
if ((last_block) && (i < data_size)) {
/* In and out buffer have same size so should be AES_BLOCK_SIZE multiple */
ret = -ENODEV;
goto out;
}
if (!last_block) {
ret = save_context(ctx);
}
out:
/* If last block or error, end of SAES process */
if (last_block || (ret != 0)) {
saes_end(ctx, ret);
}
return ret;
}

View file

@ -0,0 +1,59 @@
/*
* Copyright (c) 2022, STMicroelectronics - All Rights Reserved
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef STM32_SAES_H
#define STM32_SAES_H
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define DT_SAES_COMPAT "st,stm32-saes"
struct stm32_saes_platdata {
uintptr_t base;
unsigned long clock_id;
unsigned int reset_id;
};
enum stm32_saes_chaining_mode {
STM32_SAES_MODE_ECB,
STM32_SAES_MODE_CBC,
STM32_SAES_MODE_CTR,
STM32_SAES_MODE_GCM,
STM32_SAES_MODE_CCM, /* Not use in TF-A */
};
enum stm32_saes_key_selection {
STM32_SAES_KEY_SOFT,
STM32_SAES_KEY_DHU, /* Derived HW unique key */
STM32_SAES_KEY_BH, /* Boot HW key */
STM32_SAES_KEY_BHU_XOR_BH, /* XOR of DHUK and BHK */
STM32_SAES_KEY_WRAPPED
};
struct stm32_saes_context {
uintptr_t base;
uint32_t cr;
uint32_t assoc_len;
uint32_t load_len;
uint32_t key[8]; /* In HW byte order */
uint32_t iv[4]; /* In HW byte order */
};
int stm32_saes_driver_init(void);
int stm32_saes_init(struct stm32_saes_context *ctx, bool is_decrypt,
enum stm32_saes_chaining_mode ch_mode, enum stm32_saes_key_selection key_select,
const void *key, size_t key_len, const void *iv, size_t iv_len);
int stm32_saes_update(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_len);
int stm32_saes_update_assodata(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data, size_t data_len);
int stm32_saes_update_load(struct stm32_saes_context *ctx, bool last_block,
uint8_t *data_in, uint8_t *data_out, size_t data_len);
int stm32_saes_final(struct stm32_saes_context *ctx, uint8_t *tag, size_t tag_len);
#endif