feat(versal2): extended SMCCC payload for EEMI

Until Versal, the extended SMCCC payload was supported only for
QUERY_DATA, while other APIs used the legacy SMCCC format.

In Versal Gen 2, all EEMI APIs are supported with extended SMCCC
payload only, enabling a simplified and efficient pass-through
implementation.

Also, set TFA_NO_PM to 0 to enable power management by default.

Change-Id: I937be3c78ebe87c62f8697a0a82cdcd21c185f56
Signed-off-by: Senthil Nathan Thangaraj <senthilnathan.thangaraj@amd.com>
This commit is contained in:
Senthil Nathan Thangaraj 2025-02-20 10:57:26 -08:00
parent 414cf08b76
commit 0cc5e21055
3 changed files with 533 additions and 4 deletions

View file

@ -28,7 +28,7 @@ PL011_GENERIC_UART := 1
IPI_CRC_CHECK := 0
GIC_ENABLE_V4_EXTN := 0
GICV3_SUPPORT_GIC600 := 1
TFA_NO_PM := 1
TFA_NO_PM := 0
CPU_PWRDWN_SGI ?= 6
$(eval $(call add_define_val,CPU_PWR_DOWN_REQ_INTR,ARM_IRQ_SEC_SGI_${CPU_PWRDWN_SGI}))
@ -140,7 +140,7 @@ ifeq ($(TFA_NO_PM), 0)
BL31_SOURCES += plat/xilinx/common/pm_service/pm_api_sys.c \
plat/xilinx/common/pm_service/pm_ipi.c \
${PLAT_PATH}/plat_psci_pm.c \
plat/xilinx/common/pm_service/pm_svc_main.c \
${PLAT_PATH}/pm_service/pm_svc_main.c \
${PLAT_PATH}/pm_service/pm_client.c
else
BL31_SOURCES += ${PLAT_PATH}/plat_psci.c

View file

@ -0,0 +1,529 @@
/*
* Copyright (c) 2019-2022, Xilinx, Inc. All rights reserved.
* Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
/*
* Top-level SMC handler for Versal2 power management calls and
* IPI setup functions for communication with PMC.
*/
#include <errno.h>
#include <stdbool.h>
#include "../drivers/arm/gic/v3/gicv3_private.h"
#include <common/runtime_svc.h>
#include <drivers/arm/gicv3.h>
#include <lib/psci/psci.h>
#include <plat/arm/common/plat_arm.h>
#include <plat/common/platform.h>
#include <plat_private.h>
#include "pm_api_sys.h"
#include "pm_client.h"
#include "pm_ipi.h"
#include "pm_svc_main.h"
#define MODE 0x80000000U
#define INVALID_SGI 0xFFU
#define PM_INIT_SUSPEND_CB (30U)
#define PM_NOTIFY_CB (32U)
#define EVENT_CPU_PWRDWN (4U)
#define MBOX_SGI_SHARED_IPI (7U)
/**
* upper_32_bits - return bits 32-63 of a number
* @n: the number we're accessing
*/
#define upper_32_bits(n) ((uint32_t)((n) >> 32U))
/**
* lower_32_bits - return bits 0-31 of a number
* @n: the number we're accessing
*/
#define lower_32_bits(n) ((uint32_t)((n) & 0xffffffffU))
/**
* EXTRACT_SMC_ARGS - extracts 32-bit payloads from 64-bit SMC arguments
* @pm_arg: array of 32-bit payloads
* @x: array of 64-bit SMC arguments
*/
#define EXTRACT_ARGS(pm_arg, x) \
for (uint32_t i = 0U; i < (PAYLOAD_ARG_CNT - 1U); i++) { \
if ((i % 2U) != 0U) { \
pm_arg[i] = lower_32_bits(x[(i / 2U) + 1U]); \
} else { \
pm_arg[i] = upper_32_bits(x[i / 2U]); \
} \
}
/* 1 sec of wait timeout for secondary core down */
#define PWRDWN_WAIT_TIMEOUT (1000U)
DEFINE_RENAME_SYSREG_RW_FUNCS(icc_asgi1r_el1, S3_0_C12_C11_6)
/* pm_up = true - UP, pm_up = false - DOWN */
static bool pm_up;
static uint32_t sgi = (uint32_t)INVALID_SGI;
bool pwrdwn_req_received;
static void notify_os(void)
{
plat_ic_raise_ns_sgi((int)sgi, read_mpidr_el1());
}
static uint64_t cpu_pwrdwn_req_handler(uint32_t id, uint32_t flags,
void *handle, void *cookie)
{
uint32_t cpu_id = plat_my_core_pos();
VERBOSE("Powering down CPU %d\n", cpu_id);
/* Deactivate CPU power down SGI */
plat_ic_end_of_interrupt(CPU_PWR_DOWN_REQ_INTR);
return (uint64_t) psci_cpu_off();
}
/**
* raise_pwr_down_interrupt() - Callback function to raise SGI.
* @mpidr: MPIDR for the target CPU.
*
* Raise SGI interrupt to trigger the CPU power down sequence on all the
* online secondary cores.
*/
static void raise_pwr_down_interrupt(u_register_t mpidr)
{
plat_ic_raise_el3_sgi((int)CPU_PWR_DOWN_REQ_INTR, mpidr);
}
void request_cpu_pwrdwn(void)
{
int ret;
VERBOSE("CPU power down request received\n");
/* Send powerdown request to online secondary core(s) */
ret = psci_stop_other_cores(plat_my_core_pos(), (unsigned int)PWRDWN_WAIT_TIMEOUT, raise_pwr_down_interrupt);
if (ret != (int)PSCI_E_SUCCESS) {
ERROR("Failed to powerdown secondary core(s)\n");
}
/* Clear IPI IRQ */
pm_ipi_irq_clear(primary_proc);
/* Deactivate IPI IRQ */
plat_ic_end_of_interrupt(PLAT_VERSAL_IPI_IRQ);
}
static uint64_t ipi_fiq_handler(uint32_t id, uint32_t flags, void *handle,
void *cookie)
{
uint32_t payload[4] = {0};
enum pm_ret_status ret;
uint32_t ipi_status, i;
VERBOSE("Received IPI FIQ from firmware\n");
console_flush();
(void)plat_ic_acknowledge_interrupt();
/* Check status register for each IPI except PMC */
for (i = IPI_ID_APU; i <= IPI_ID_5; i++) {
ipi_status = (uint32_t)ipi_mb_enquire_status(IPI_ID_APU, i);
/* If any agent other than PMC has generated IPI FIQ then send SGI to mbox driver */
if ((ipi_status & (uint32_t)IPI_MB_STATUS_RECV_PENDING) > (uint32_t) 0) {
plat_ic_raise_ns_sgi((int)MBOX_SGI_SHARED_IPI, read_mpidr_el1());
break;
}
}
/* If PMC has not generated interrupt then end ISR */
ipi_status = (uint32_t)ipi_mb_enquire_status(IPI_ID_APU, IPI_ID_PMC);
if ((ipi_status & (uint32_t) IPI_MB_STATUS_RECV_PENDING) == (uint32_t) 0) {
plat_ic_end_of_interrupt(id);
goto end;
}
/* Handle PMC case */
ret = pm_get_callbackdata(payload, ARRAY_SIZE(payload), 0, 0);
if (ret != PM_RET_SUCCESS) {
payload[0] = (uint32_t) ret;
}
switch (payload[0]) {
case PM_INIT_SUSPEND_CB:
if (sgi != INVALID_SGI) {
notify_os();
}
break;
case PM_NOTIFY_CB:
if (sgi != INVALID_SGI) {
if (payload[2] == EVENT_CPU_PWRDWN) {
if (pwrdwn_req_received) {
pwrdwn_req_received = false;
request_cpu_pwrdwn();
(void)psci_cpu_off();
break;
} else {
/* No action needed, added for MISRA
* complaince
*/
}
pwrdwn_req_received = true;
} else {
/* No action needed, added for MISRA
* complaince
*/
}
notify_os();
} else if (payload[2] == EVENT_CPU_PWRDWN) {
request_cpu_pwrdwn();
(void)psci_cpu_off();
} else {
/* No action needed, added for MISRA
* complaince
*/
}
break;
case (uint32_t) PM_RET_ERROR_INVALID_CRC:
pm_ipi_irq_clear(primary_proc);
WARN("Invalid CRC in the payload\n");
break;
default:
pm_ipi_irq_clear(primary_proc);
WARN("Invalid IPI payload\n");
break;
}
/* Clear FIQ */
plat_ic_end_of_interrupt(id);
end:
return 0;
}
/**
* pm_register_sgi() - PM register the IPI interrupt.
* @sgi_num: SGI number to be used for communication.
* @reset: Reset to invalid SGI when reset=1.
*
* Return: On success, the initialization function must return 0.
* Any other return value will cause the framework to ignore
* the service.
*
* Update the SGI number to be used.
*
*/
int32_t pm_register_sgi(uint32_t sgi_num, uint32_t reset)
{
int32_t ret;
if (reset == 1U) {
sgi = INVALID_SGI;
ret = 0;
goto end;
}
if (sgi != INVALID_SGI) {
ret = -EBUSY;
goto end;
}
if (sgi_num >= GICV3_MAX_SGI_TARGETS) {
ret = -EINVAL;
goto end;
}
sgi = (uint32_t)sgi_num;
ret = 0;
end:
return ret;
}
/**
* pm_setup() - PM service setup.
*
* Return: On success, the initialization function must return 0.
* Any other return value will cause the framework to ignore
* the service.
*
* Initialization functions for Versal power management for
* communicaton with PMC.
*
* Called from sip_svc_setup initialization function with the
* rt_svc_init signature.
*
*/
int32_t pm_setup(void)
{
int32_t ret = 0;
pm_ipi_init(primary_proc);
pm_up = true;
/* register SGI handler for CPU power down request */
ret = request_intr_type_el3(CPU_PWR_DOWN_REQ_INTR, cpu_pwrdwn_req_handler);
if (ret != 0) {
WARN("BL31: registering SGI interrupt failed\n");
}
/*
* Enable IPI IRQ
* assume the rich OS is OK to handle callback IRQs now.
* Even if we were wrong, it would not enable the IRQ in
* the GIC.
*/
pm_ipi_irq_enable(primary_proc);
ret = request_intr_type_el3(PLAT_VERSAL_IPI_IRQ, ipi_fiq_handler);
if (ret != 0) {
WARN("BL31: registering IPI interrupt failed\n");
}
gicd_write_irouter(gicv3_driver_data->gicd_base, PLAT_VERSAL_IPI_IRQ, MODE);
/* Register for idle callback during force power down/restart */
ret = (int32_t)pm_register_notifier(primary_proc->node_id, EVENT_CPU_PWRDWN,
0x0U, 0x1U, SECURE_FLAG);
if (ret != 0) {
WARN("BL31: registering idle callback for restart/force power down failed\n");
}
return ret;
}
/**
* eemi_psci_debugfs_handler() - EEMI API invoked from PSCI.
* @api_id: identifier for the API being called.
* @pm_arg: pointer to the argument data for the API call.
* @handle: Pointer to caller's context structure.
* @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
*
* These EEMI APIs performs CPU specific power management tasks.
* These EEMI APIs are invoked either from PSCI or from debugfs in kernel.
* These calls require CPU specific processing before sending IPI request to
* Platform Management Controller. For example enable/disable CPU specific
* interrupts. This requires separate handler for these calls and may not be
* handled using common eemi handler.
*
* Return: If EEMI API found then, uintptr_t type address, else 0.
*
*/
static uintptr_t eemi_psci_debugfs_handler(uint32_t api_id, uint32_t *pm_arg,
void *handle, uint32_t security_flag)
{
enum pm_ret_status ret;
switch (api_id) {
case (uint32_t)PM_SELF_SUSPEND:
ret = pm_self_suspend(pm_arg[0], pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (u_register_t)ret);
case (uint32_t)PM_FORCE_POWERDOWN:
ret = pm_force_powerdown(pm_arg[0], (uint8_t)pm_arg[1], security_flag);
SMC_RET1(handle, (u_register_t)ret);
case (uint32_t)PM_REQ_SUSPEND:
ret = pm_req_suspend(pm_arg[0], (uint8_t)pm_arg[1], pm_arg[2],
pm_arg[3], security_flag);
SMC_RET1(handle, (u_register_t)ret);
case (uint32_t)PM_ABORT_SUSPEND:
ret = pm_abort_suspend(pm_arg[0], security_flag);
SMC_RET1(handle, (u_register_t)ret);
case (uint32_t)PM_SYSTEM_SHUTDOWN:
ret = pm_system_shutdown(pm_arg[0], pm_arg[1], security_flag);
SMC_RET1(handle, (u_register_t)ret);
default:
return (uintptr_t)0;
}
}
/**
* TF_A_specific_handler() - SMC handler for TF-A specific functionality.
* @api_id: identifier for the API being called.
* @pm_arg: pointer to the argument data for the API call.
* @handle: Pointer to caller's context structure.
* @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
*
* These EEMI calls performs functionality that does not require
* IPI transaction. The handler ends in TF-A and returns requested data to
* kernel from TF-A.
*
* Return: If TF-A specific API found then, uintptr_t type address, else 0
*
*/
static uintptr_t TF_A_specific_handler(uint32_t api_id, uint32_t *pm_arg,
void *handle, uint32_t security_flag)
{
switch (api_id) {
case TF_A_FEATURE_CHECK:
{
enum pm_ret_status ret;
uint32_t result[PAYLOAD_ARG_CNT] = {0U};
ret = eemi_feature_check(pm_arg[0], result);
SMC_RET1(handle, (uint64_t)ret | ((uint64_t)result[0] << 32U));
}
case TF_A_PM_REGISTER_SGI:
{
int32_t ret;
ret = pm_register_sgi(pm_arg[0], pm_arg[1]);
if (ret != 0) {
SMC_RET1(handle, (uint32_t)PM_RET_ERROR_ARGS);
}
SMC_RET1(handle, (uint32_t)PM_RET_SUCCESS);
}
case PM_GET_CALLBACK_DATA:
{
uint32_t result[4] = {0};
enum pm_ret_status ret;
ret = pm_get_callbackdata(result, ARRAY_SIZE(result), security_flag, 1U);
if (ret != PM_RET_SUCCESS) {
result[0] = (uint32_t) ret;
}
SMC_RET2(handle,
(uint64_t)result[0] | ((uint64_t)result[1] << 32U),
(uint64_t)result[2] | ((uint64_t)result[3] << 32U));
}
case PM_GET_TRUSTZONE_VERSION:
SMC_RET1(handle, ((uint64_t)PM_RET_SUCCESS) |
(((uint64_t)TZ_VERSION) << 32U));
default:
return (uintptr_t)0U;
}
}
/**
* eemi_api_handler() - Prepare EEMI payload and perform IPI transaction.
* @api_id: identifier for the API being called.
* @pm_arg: pointer to the argument data for the API call.
* @handle: Pointer to caller's context structure.
* @security_flag: SECURE_FLAG or NON_SECURE_FLAG.
*
* EEMI - Embedded Energy Management Interface is AMD-Xilinx proprietary
* protocol to allow communication between power management controller and
* different processing clusters.
*
* This handler prepares EEMI protocol payload received from kernel and performs
* IPI transaction.
*
* Return: If EEMI API found then, uintptr_t type address, else 0
*/
static uintptr_t eemi_api_handler(uint32_t api_id, const uint32_t *pm_arg,
void *handle, uint32_t security_flag)
{
enum pm_ret_status ret;
uint32_t buf[RET_PAYLOAD_ARG_CNT] = {0U};
uint32_t payload[PAYLOAD_ARG_CNT] = {0U};
uint32_t module_id;
module_id = (api_id & MODULE_ID_MASK) >> 8U;
PM_PACK_PAYLOAD7(payload, module_id, security_flag, api_id,
pm_arg[0], pm_arg[1], pm_arg[2], pm_arg[3],
pm_arg[4], pm_arg[5]);
ret = pm_ipi_send_sync(primary_proc, payload, (uint32_t *)buf,
RET_PAYLOAD_ARG_CNT);
SMC_RET4(handle, (uint64_t)ret | ((uint64_t)buf[0] << 32U),
(uint64_t)buf[1] | ((uint64_t)buf[2] << 32U),
(uint64_t)buf[3] | ((uint64_t)buf[4] << 32U),
(uint64_t)buf[5]);
}
/**
* pm_smc_handler() - SMC handler for PM-API calls coming from EL1/EL2.
* @smc_fid: Function Identifier.
* @x1: SMC64 Arguments from kernel.
* @x2: SMC64 Arguments from kernel.
* @x3: SMC64 Arguments from kernel (upper 32-bits).
* @x4: Unused.
* @cookie: Unused.
* @handle: Pointer to caller's context structure.
* @flags: SECURE_FLAG or NON_SECURE_FLAG.
*
* Return: Unused.
*
* Determines that smc_fid is valid and supported PM SMC Function ID from the
* list of pm_api_ids, otherwise completes the request with
* the unknown SMC Function ID.
*
* The SMC calls for PM service are forwarded from SIP Service SMC handler
* function with rt_svc_handle signature.
*
*/
uint64_t pm_smc_handler(uint32_t smc_fid, uint64_t x1, uint64_t x2, uint64_t x3,
uint64_t x4, const void *cookie, void *handle, uint64_t flags)
{
uintptr_t ret;
uint32_t pm_arg[PAYLOAD_ARG_CNT] = {0};
uint32_t security_flag = NON_SECURE_FLAG;
uint32_t api_id;
bool status = false, status_tmp = false;
uint64_t x[4] = {x1, x2, x3, x4};
/* Handle case where PM wasn't initialized properly */
if (pm_up == false) {
SMC_RET1(handle, SMC_UNK);
}
/*
* Mark BIT24 payload (i.e 1st bit of pm_arg[3] ) as secure (0)
* if smc called is secure
*
* Add redundant macro call to immune the code from glitches
*/
SECURE_REDUNDANT_CALL(status, status_tmp, is_caller_secure, flags);
if ((status != false) && (status_tmp != false)) {
security_flag = SECURE_FLAG;
}
if ((smc_fid & FUNCID_NUM_MASK) == PASS_THROUGH_FW_CMD_ID) {
api_id = lower_32_bits(x[0]);
EXTRACT_ARGS(pm_arg, x);
return eemi_api_handler(api_id, pm_arg, handle, security_flag);
}
pm_arg[0] = (uint32_t)x1;
pm_arg[1] = (uint32_t)(x1 >> 32U);
pm_arg[2] = (uint32_t)x2;
pm_arg[3] = (uint32_t)(x2 >> 32U);
pm_arg[4] = (uint32_t)x3;
(void)(x4);
api_id = smc_fid & FUNCID_NUM_MASK;
ret = eemi_psci_debugfs_handler(api_id, pm_arg, handle, (uint32_t)flags);
if (ret != (uintptr_t)0)
goto error;
ret = TF_A_specific_handler(api_id, pm_arg, handle, security_flag);
if (ret != (uintptr_t)0)
goto error;
error:
return ret;
}

View file

@ -1,7 +1,7 @@
/*
* Copyright (c) 2018-2019, Arm Limited and Contributors. All rights reserved.
* Copyright (c) 2018-2022, Xilinx, Inc. All rights reserved.
* Copyright (c) 2022-2024, Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2022-2025, Advanced Micro Devices, Inc. All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
@ -27,7 +27,7 @@
/* SiP Service Calls version numbers */
#define SIP_SVC_VERSION_MAJOR (0U)
#define SIP_SVC_VERSION_MINOR (1U)
#define SIP_SVC_VERSION_MINOR (2U)
/* These macros are used to identify PM calls from the SMC function ID */
#define SIP_FID_MASK GENMASK(23, 16)